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A new integral transform method for regularized long-wave (RLW) models having fractional-order is presented in this study.
Although analytical approaches are challenging to apply to such models, semianalytical or numerical techniques have received
much attention in the literature. We propose a new technique combining integral transformation, the Elzaki transform (ET),
and apply it to regularized long-wave equations in this study. The RLW equations describe ion-acoustic waves in plasma and
shallow water waves in seas. The results obtained are extremely important and necessary for describing various physical
phenomena. This work considers an up-to-date approach and fractional operators in this context to obtain satisfactory
approximate solutions to the proposed problems. We first define the Elzaki transforms of the Caputo fractional derivative
(CFD) and Atangana-Baleanu fractional derivative (ABFD) and implement them for solving RLW equations. We can readily
obtain numerical results that provide us with improved approximations after only a few iterations. The derived solutions were
found to be in close contact with the exact solutions. Furthermore, the suggested procedure has attained the best level of
accuracy. In fact, when compared to other analytical techniques for solving nonlinear fractional partial differential equations,
the present method might be considered one of the finest.

1. Introduction

Fractional calculus (FC) is a model discipline of mathemat-
ics that focuses entirely on fractional-order derivatives and
integration. Fractional derivatives and fractional integra-
tions are noninteger-order derivatives and integration that
can model various phenomena in engineering and science.
FC began in 1695 when L’Hospital asked Leibniz, “What
would be the physical meaning of fractional derivative?”
This question inspired many great scientists in the eigh-
teenth and nineteenth centuries to focus on fractional
calculus, which has a wide range of applications in applied
science and technology. Many researchers have demon-

strated that fractional generalizations of integer-order
models efficiently represent natural phenomena [1–5]. The
classical derivatives are local. In contrast, the Caputo frac-
tional derivative is nonlocal, i.e., we can study changes in
the neighborhood of a point using classical derivatives. Still,
wemay analyze changes in an interval usingCaputo fractional
derivatives. Because of this quality, the Caputo fractional
derivative can be used to model a wider range of physical
phenomena, including solidmechanics [6, 7], diffusion proce-
dures [8], continuum and statistical mechanics [9], electro-
magnetism [10], viscoelastic materials [11], fluid mechanics
[12], propagation of spherical flames [13], viscoelastic mate-
rials [14], and so on [15–17].
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Fractional differential equations have been studied for
decades due to their widespread application in science and
engineering. Fractional partial differential equations are used
to describe various phenomena in acoustics, electromag-
netics, material science, viscoelasticity, electrochemistry,
and plasma physics. Fractional differential equations have
numerical solutions that are of great interest. For fractional
differential equations, no method provides an accurate solu-
tion. Only series solution methods or linearization can gen-
erate approximate solutions [18–21]. Nonlinear phenomena
can be found in various engineering and science domains,
including chemical kinetics, nonlinear spectroscopy, solid
state physics, fluid physics, computational biology, quantum
mechanics, and thermodynamics. Different higher-order
nonlinear partial differential equations (PDEs) define the
idea of nonlinearity. Nonlinear models for all physical sys-
tems describe basic phenomena. The literature has presented
integrative transform approaches for solving fractional
differential equations. Elzaki transform (ET) is an integral
transform [22] in this context. Several scholars [23–30] have
looked at some essential solution approaches for real-world
issues, as well as numerical simulations obtained using the
novel integral transformation.

In this article, three alternative fractional homogeneous
RLW equations are studied; the RLW equations, according
to some scientists, are the best equations than the classical
Korteweg-de Vries (KdV) equation [31]. We use the Elzaki
transform combined with the CFD and ABC operator [32]
to solve three special RLW problems. The approximate
solutions are then obtained, and the numerical simulations
of the solutions are analyzed [33, 34] and provided the
nonlinear RLW equations.

Dδ
Iφ ψ,Ið Þ − φψψI ψ,Ið Þ + φψ ψ,Ið Þ + φ ψ,Ið Þφψ ψ,Ið Þ = 0,

ð1Þ

having initial source

φ ψ, 0ð Þ = 3α sec h2 δζð Þ, ð2Þ

Dδ
Iφ ψ,Ið Þ − 2φψψI ψ,Ið Þ + φψ ψ,Ið Þ = 0, ð3Þ

having initial source

φ ψ, 0ð Þ = e−ψ, ð4Þ

Dδ
Iφ ψ,Ið Þ + φψψψψ ψ,Ið Þ = 0, ð5Þ

having initial source

φ ψ, 0ð Þ = sin ψ: ð6Þ

Equation (1) is known as a general regularized long-
wave equation (GRLWE) having fractional-order, whereas
Equations (3) and (5) represents fractional regularized
long-wave equations (RLWEs).

Magnetohydrodynamic waves in plasma, ion-acoustic
waves in plasma, stress waves in compressed gas bubble

mixes, rotating tube flow, and longitudinal dispersive waves
in elastic rods are just some of the applications of the RLW
equations. The RLW equations are suitable models for many
significant physical structures in applied physics and engi-
neering. They also work on a variety of liquid flow phenom-
ena where diffusion is essential, such as in viscous or shock
situations. It can be used to simulate any nonlinear wave dif-
fusion problem, including dissipation. Depending on the
problem modeling [35], this dissipation could result in heat
conduction, viscosity, thermal radiation, chemical reaction,
mass diffusion, or other sources. Many necessary ocean
research and engineering phenomena, such as minor fre-
quency shallow-water waves and long-waves, are defined
by fractional RLW equations. Several experts in ocean
shallow liquid waves are interested in nonlinear waves
described using the RLW equations having fractional-
order. The fractional RLW equations were used to represent
nonlinear waves in the ocean. Indeed, the tsunami’s massive
surface waves are defined by fractional RLW equations.
Huge internal waves in the ocean’s interior caused by
temperature differences that can destroy marine ships could
be defined as fractional RLW equations in the existing,
exceedingly complex framework.

The article is given as follows: In Section 2, some
basic definitions are essential for the formulation of the
problem. The method is described in Section 3, using a
novel integral transformation. Section 4 presents the main
results, numerical simulations, and graphical representa-
tions. Finally, Section 5 presents all of the research study’s
significant findings.

2. Preliminaries

The fundamental concepts with and without a singular
kernel of fractional derivatives, fractional integrals, and their
Elzaki transform are presented in this section.

Definition 1. The Caputo fractional derivative (CFD) is
defined as [1]

CDδ
I μ Ið Þð Þ =

1
Γ m − δð Þ

ðI
0

μm ηð Þ
I − ηð Þδ+1−m

dη,m − 1 < δ <m,

dm

dIm μ Ið Þ, δ =m:

8>>><>>>:
ð7Þ

Definition 2. The Atangana-Baleanu derivative having
fractional-order in theCaputomanner (ABC) is defined as [36]

ABCDδ
I μ Ið Þð Þ = N δð Þ

1 − δ

ðI
m
μ′ ηð ÞEδ −

δ I − ηð Þδ
1 − δ

" #
dη, ð8Þ

where μ ∈H1ðα, βÞ, β > α, δ ∈ ½0, 1�. A normalization func-
tion equal to 1 when δ = 0 and δ = 1 is represented by NðδÞ
in Equation (8).
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Definition 3. The ABC operator fractional integral is given
by [36].

IδI μ Ið Þð Þ = 1 − δ

N δð Þμ Ið Þ + δ

Γ δð ÞN δð Þ
ðI
m
μ ηð Þ I − ηð Þδ−1dη:

ð9Þ

Definition 4. In set A, the exponential function Elzaki trans-
form is defined as [37, 38]

A = μ Ið Þ: ∃G, p1, p2 > 0, μ Ið Þj j <Ge Ij j/pj , if I ∈ −1ð Þj × 0,∞½ Þ
n o

:

ð10Þ

G is a finite number for a specific function in the set, but
p1, p2 can be finite or infinite.

Definition 5. The Elzaki transformation of a function μðIÞ is
given by [38].

E μ Ið Þf g ϖð Þ = ~U ϖð Þ = ϖ
ð∞
0
e−I/ϖμ Ið ÞdI, ð11Þ

where I ≥ 0, p1 ≤ ϖ ≤ p2.

Theorem 6 (Elzaki transformation convolution theorem,
[39]). The following equality holds:

E μ ∗ vf g = 1
ϖ
E μð ÞE vð Þ, ð12Þ

where Elzaki transform is represented by Ef:g.

Definition 7. The Elzaki transform of the CFD operator Dδ
I

ðμðIÞÞ is given by [40].

E CD
δ
I μ Ið Þð Þ

n o
ϖð Þ = ϖ−δ ~U ϖð Þ − 〠

m−1

k=0
ϖ2−δ+kμk 0ð Þ, ð13Þ

where m − 1 < δ <m.

Theorem 8. The ABC fractional derivative Dδ
IðμðIÞÞ Elzaki

transform is defined as [32].

E ABCD
δ
I μ Ið Þð Þ

n o
ϖð Þ = N δð Þϖ

δϖδ + 1 − δ

~U ϖð Þ
ϖ

− ϖμ 0ð Þ
 !

,

ð14Þ

where EfμðIÞgϖ = ~UðϖÞ.

Proof. From Definition 2, we have

E ABCD
δ
I μ Ið Þð Þ

n o
ϖð Þ =E

N δð Þ
1 − δ

ðI
0
μ′ ηð ÞEδ −

δ I − ηð Þδ
1 − δ

" #
dη

( )
ϖð Þ:

ð15Þ

Then, taking into account the Elzaki transform’s defini-
tion and convolution, we get

E ABCDδ
I μ Ið Þð Þ

n o
ϖð Þ =E

N δð Þ
1 − δ

ðI
0
μ′ ηð ÞEδ −

δ I − ηð Þδ
1 − δ

" #
dη

( )

=
N δð Þ
1 − δ

1
ϖ
E μ′ ηð Þ
n o

E Eδ −
δIδ

1 − δ

" #
dη

( )

=
N δð Þ
1 − δ

~U ϖð Þ
ϖ

− ϖμ 0ð Þ
" #

�
ð∞
0
e−1/ϖEδ −

δIδ

1 − δ

" #
dI

" #

=
N δð Þϖ

δϖδ + 1 − δ

~U ϖð Þ
ϖ

− ϖμ 0ð Þ
" #

:

ð16Þ

3. Description of the Technique via a New
Integral Transform

The essential technique that was employed in this research
will be presented in this section of the study. We use the
following fractional nonlinear PDE general form to study
this methodology:

Dδ
Iφ ψ,Ið Þ + L φ ψ,Ið Þð Þ +N φ ψ,Ið Þð Þ = θ ψ,Ið Þ,

ψ,Ið Þ ∈ 0, 1½ � × 0, T½ �, κ − 1 < δ < κ,
ð17Þ

having initial source

∂zφ
∂Iz ψ, 0ð Þ = μz ψð Þ, z = 0, 1,⋯, κ − 1, ð18Þ

and the boundary sources

φ 0,Ið Þ = γ0 Ið Þ,
φ 1,Ið Þ = γ1 Ið Þ,

I ≥ 0,

ð19Þ

where known functions are μz , θ, γ0, and γ1. In Equation
(17), Dδ

Iφðψ,IÞ represents the Caputo or ABC fractional
derivatives, Lð:Þ and Nð:Þ denote the linear and nonlinear
terms. The recursive steps for handling the specified prob-
lems are described (1)-(2), (3)-(4), and (5)-(6). We investi-
gate Efφðψ,IÞgðϖÞ = ~ζðψ, ϖÞ for Equation (17) by taking
the Elzaki transform with the aid of CFD in Equation (13)
and ABC in Equation (14). The modified functions for the
Caputo fractional derivative can then be obtained.
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~ζ ψ, ϖð Þ = ϖδ eθ ϖ,Ið Þ −E L φ ψ,Ið Þð Þ +N φ ψ,Ið Þð Þ½ �
� �

+ ϖ2φ ψ, 0ð Þ:
ð20Þ

We also get the modified functions for the ABC deriva-
tive, which are as follows.

~ζ ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� � eθ ψ, ϖð Þ −E L φ ψ,Ið Þð Þ +N φ ψ,Ið Þð Þ½ �

� �
+ ϖ2φ ψ, 0ð Þ,

ð21Þ

where E½θðψ,IÞ� = eθðψ, ϖÞ. We also get when we consider
the Elzaki transforms of the boundary conditions

E γ0 Ið Þ½ � = ~ζ 0, ϖð Þ,
E γ1 Ið Þ½ � = ~ζ 1, ϖð Þ,

ϖ ≥ 0:

ð22Þ

The solution to Equations (17)–(19) is then obtained by
using the perturbation method as

~ζ ψ, ϖð Þ = 〠
∞

E=0
XE~ζE ψ, ϖð Þ,E = 0, 1, 2,⋯: ð23Þ

The nonlinear component in Equation (17) can be calcu-
lated as

N φ ψ,Ið Þ½ � = 〠
∞

E=0
XEΨE ψ,Ið Þ, ð24Þ

and the parts ΨEðψ,IÞ are define in as

ΨE φ0, φ1,⋯,φEð Þ = 1
E!

∂E

∂νE
N 〠

∞

i=0
νiφi

 !" #
λ=0

,E = 0, 1, 2,⋯:

ð25Þ

By putting Equations (23) and (24) into Equation (20),
we obtain the components of the Caputo operator’s solution:

〠
∞

E=0
XE~ζ ψ, ϖð Þ = −Xϖδ E L 〠

∞

E=0
XEφE ψ,Ið Þ

 !
+ 〠

∞

E=0
XEΨE ψ,Ið Þ

" # !
+ ϖδ eθ ψ, ϖð Þ

� �
+ ϖ2φ ψ, 0ð Þ:

ð26Þ

and by putting Equations (23) and (24) into Equation (21),
we have the recursive relation that provides the Atangana-
Baleanu operator’s solution:

〠
∞

E=0
XE~ζ ψ, ϖð Þ = −X

δϖδ + 1 − δ

N δð Þ
� �

E L 〠
∞

E=0
XEφE ψ,Ið Þ

 !" 

+ 〠
∞

E=0
XEΨE ψ,Ið Þ

#!

+
δϖδ + 1 − δ

N δð Þ
� � eθ ψ, ϖð Þ

� �
+ ϖ2φ ψ, 0ð Þ:

ð27Þ

Thus, on solving Equations (26) and (27) with respect to
X , the given Caputo homotopies are identified:

X0 : ~ζ0 ψ, ϖð Þ = ϖδ eθ ψ, ϖð Þ
� �

+ ϖ2φ ψ, 0ð Þ,

X1 : ~ζ1 ψ, ϖð Þ = −ϖδE L φ0 ψ,Ið Þð Þ +Ψ0 ψ,Ið Þ½ �,
X2 : ~ζ2 ψ, ϖð Þ = −ϖδE L φ1 ψ,Ið Þð Þ +Ψ1 ψ,Ið Þ½ �,

⋮

Xn+1 : ~ζn+1 ψ, ϖð Þ = −ϖδE L φn ψ,Ið Þð Þ +Ψn ψ,Ið Þ½ �:
ð28Þ

Furthermore,wedetermine theABChomotopies as follows:

X0 : ~ζ0 ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �eθ ψ, ϖð Þ + ϖ2φ ψ, 0ð Þ,

X1 : ~ζ1 ψ, ϖð Þ = −
δϖδ + 1 − δ

N δð Þ
� �

E L φ0 ψ,Ið Þð Þ +Ψ0 ψ,Ið Þ½ �,

X2 : ~ζ2 ψ, ϖð Þ = −
δϖδ + 1 − δ

N δð Þ
� �

E L φ1 ψ,Ið Þð Þ +Ψ1 ψ,Ið Þ½ �,

⋮

Xn+1 : ~ζn+1 ψ, ϖð Þ = −
δϖδ + 1 − δ

N δð Þ
� �

E L φn ψ,Ið Þð Þ +Ψn ψ,Ið Þ½ �:

ð29Þ

WhenX ⟶ 1, we can assume that Equations (28) and (29)
represent the approximate solution to Equations (26) and (27);
thus, the result is determined by

Δn ψ, ϖð Þ = 〠
n

σ=0

~ζσ ψ, ϖð Þ: ð30Þ

Weget the approximate solution of Equation (17), by taking
the inverse ET to Equation (30).

φ ψ, ϖð Þ ≅ φn ψ,Ið Þ =E−1�� Δn ψ, ϖð Þf g: ð31Þ

4. Applications

In this part, we will examine the problems in Equations
(1)–(6) by means of Elzaki transform. First, we implement
the Elzaki transform technique with the aid of Caputo deriv-
ative to solve problem (1) having initial source (2). By taking
the Elzaki transform, we get
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~ζ ψ, ϖð Þ = ϖδE φψψI ψ,Ið Þ − φψ ψ,Ið Þ − φ ψ,Ið Þφψ ψ,Ið Þ
h i

+ ϖ2φ ψ, 0ð Þ:

ð32Þ

We use the Elzaki perturbation transform approach to
solve Equation (32) and obtain

〠
∞

E=0
XE~ζE ψ, ϖð Þ =XϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

24
− 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψ

35
−XϖδE 〠

∞

E=0
XEΨE ψ,Ið Þ

 !" #
+ ϖ2φ ψ, 0ð Þ:

ð33Þ

We now have by taking the Elzaki inverse transform to
Equation (33),

〠
∞

E=0
XEφE ψ, ϖð Þ =XE−1 ϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

2424
− 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψ

##

−XE−1 ϖδE 〠
∞

E=0
XEΨE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð34Þ

The ΨEð:Þ values in Equation (34) are functions that
indicate the nonlinear terms assumed in Equation (26) and
are analyzed as follows:

Ψ0 φð Þ = φ0 φ0ð Þψ,
Ψ1 φð Þ = φ0 φ1ð Þψ + φ1 φ0ð Þψ,

Ψ2 φð Þ = φ0 φ2ð Þψ + φ1 φ1ð Þψ + φ2 φ0ð Þψ,
⋮

ð35Þ

Then, by examining the associated powers of X , we
obtain the terms of the Caputo operator solution:

X0 : ~ζ0 ψ,Ið Þ =E−1 ϖ23α sec h2 δψð Þ� �
= 3α sec h2 δψð Þ,

X1 : ~ζ1 ψ,Ið Þ =E−1 ϖδE L φ0 ψ,Ið Þð Þ½ �
h i

−E−1 ϖδE Ψ0 ψ,Ið Þ½ �
h i

= 3αδ 1 + 6αδ + cos h 2δψð Þf g sec h4 δψð Þ tan h δψð Þ Iδ

Γ δ + 1ð Þ ,

X2 : ~ζ2 ψ,Ið Þ =E−1 ϖδE L φ1 ψ,Ið Þð Þ½ �
h i

−E−1 ϖδE Ψ1 ψ,Ið Þ½ �
h i

= −
3
32

αδ2 −8 − 96α − 576α2
	

+ 3 −3 − 16α + 144α2

 �

cos h 2δψð Þ
+ 48α cos h 4δψð Þ

+ cos h 6δψð Þg sec h8 δψð Þ I2δ

Γ 2δ + 1ð Þ ,

⋮ ð36Þ

As a result, the approximate solution to the problem is

φ ψ,Ið Þ = 3α sec h2 δψð Þ + 3αδ 1 + 6αδf
 

+ cos h 2δψð Þg sec h4 δψð Þ tan h δψð Þ Iδ

Γ δ + 1ð Þ
−

3
32

αδ2 −8 − 96α − 576α2 + 3 −3 − 16α + 144α2

 �

cosh 2δψð Þ	
+ 48α cosh 4δψð Þ + cosh 6δψð Þg sec h8 δψð Þ I2δ

Γ 2δ + 1ð Þ ,+⋯
!
,

ð37Þ

providing the problem’s integer-order ðδ = 1Þ solution, φðψ,
IÞ = 3α sec h2ðδðψ − ð1 + αÞIÞÞ.

On the other hand, we use the Elzaki transform in com-
bination with the Atangana-Baleanu operator to solve the
problem. First, we use the Elzaki transform to solve the
problem:

~ζ ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

E φψψI ψ,Ið Þ − φψ ψ,Ið Þ − φ ψ,Ið Þφψ ψ,Ið Þ
h i

+ ϖ2φ ψ, 0ð Þ:
ð38Þ

To Equation (38), we use the Elzaki perturbation trans-
form approach and get

〠
∞

E=0
XE~ζE ψ, ϖð Þ =X

δϖδ + 1 − δ

N δð Þ
� �

E

� 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

− 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψ

24 35
−X

δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEΨE ψ,Ið Þ

 !" #
+ ϖ2φ ψ, 0ð Þ:

ð39Þ

By taking the inverse ET of Equation (39), we get
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The ΨEð:Þ terms in Equation (40) are nonlinear
polynomials that were described in Equation (25). We

derive the following results by repeating the methods for
nonlinear polynomials:

As a result, based on the ABC operator, the approximate
solution is as follows:

〠
∞

E=0
XEφE ψ,Ið Þ =XE−1 δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

− 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψ

24 3524 35
−XE−1 δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEΨE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð40Þ

X0 : φ0 ψ,Ið Þ = E−1 ϖ23α sec h2 δψð Þ� �
= 3α sec h2 δψð Þ,

X1 : φ1 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ0 ψ,Ið Þ½ �
� 

−E−1 δϖδ + 1 − δ

N δð Þ
� �

E Ψ0 ψ,Ið Þ½ �
� 

= −
3αδ 1 + 6αδ + cosh 2δψð Þf g sec h4 δψð Þ tanh δψð Þ

N δð Þ
δIδ

Γ δ + 1ð Þ + 1 − δ

 !
, ð41Þ

X2 : φ2 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ1 ψ,Ið Þ½ �
� 

−E−1 δϖδ + 1 − δ

N δð Þ
� �

E Ψ1 ψ,Ið Þ½ �
� 

= −
−3/32αδ2 −8 − 96α − 576α2 + 3 −3 − 16α + 144α2


 �
cosh 2δψð Þ + 48α cosh 4δψð Þ + cosh 6δψð Þ	 �

sec h8 δψð Þ
N δð Þð Þ2

�
δIδ
� �2
Γ 2δ + 1ð Þ +

2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + 1 − δð Þ2
0B@

1CA,

⋮ ð42Þ

φ ψ,Ið Þ = 〠
n

σ=0
φσ ψ,Ið Þ = 3α sec h2 δψð Þ − 3αδ 1 + 6αδ + cosh 2δψð Þf g sec h4 δψð Þ tanh δψð Þ

N δð Þ
δIδ

Γ δ + 1ð Þ + 1 − δ

 !

−
−3/32αδ2 −8 − 96α − 576α2 + 3 −3 − 16α + 144α2


 �
cosh 2δψð Þ + 48α cosh 4δψð Þ + cosh 6δψð Þ	 �

sec h8 δψð Þ
N δð Þð Þ2

2

�
δIδ
� �2
Γ 2δ + 1ð Þ +

2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + 1 − δð Þ2
0B@

1CA+⋯,

ð43Þ
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providing the problem’s integer-order ðδ = 1Þ solution, φðψ,
IÞ = 3α sec h2ðδðψ − ð1 + αÞIÞÞ.

Secondly, we implement the Elzaki transform technique
with the aid of Caputo derivative to solve problem (3) having
initial source (4). By taking the Elzaki transform, we get

~ζ ψ, ϖð Þ = ϖδE 2φψψI ψ,Ið Þ − φψ ψ,Ið Þ
h i

+ ϖ2φ ψ, 0ð Þ:
ð44Þ

We use the Elzaki perturbation transform approach to
solve Equation (44) and obtain

〠
∞

E=0
XE~ζE ψ, ϖð Þ =XϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

24
− 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψ

#
+ ϖ2φ ψ, 0ð Þ:

ð45Þ

We now have by taking the Elzaki inverse transform to
Equation (45),

〠
∞

E=0
XE~ζE ψ,Ið Þ =XE−1 ϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð46Þ

Then, by examining the associated powers of X , we
obtain the terms of the Caputo operator solution:

X0 : φ0 ψ,Ið Þ =E−1 ϖ2e−ψ
� �

= e−ψ,

X1 : φ1 ψ,Ið Þ =E−1 ϖδE L φ0 ψ,Ið Þð Þ½ �
h i

,

= e−ψ
Iδ

Γ δ + 1ð Þ ,

X2 : φ1 ψ,Ið Þ =E−1 ϖδE L φ1 ψ,Ið Þð Þ½ �
h i

,

= e−ψ
I2δ

Γ 2δ + 1ð Þ ,

⋮

ð47Þ

As a result, the approximate solution to the problem is

φ ψ,Ið Þ = e−ψ + e−ψ
Iδ

Γ δ + 1ð Þ + e−ψ
I2δ

Γ 2δ + 1ð Þ+⋯, ð48Þ

providing the problem’s integer-order ðδ = 1Þ solution φðψ,
IÞ = eðI−ψÞ.

On the other hand, we use the Elzaki transform in
combination with the Atangana-Baleanu operator to solve

the problem. First, we use the Elzaki transform to solve
the problem:

~ζ ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

E φψψI ψ,Ið Þ − φψ ψ,Ið Þ
h i� �

+ ϖ2φ ψ, 0ð Þ:

ð49Þ

To Equation (49), we use the Elzaki perturbation
transform approach and get

〠
∞

E=0
XE~ζE ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

� E 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

240@
− 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψ

#!
+ ϖ2φ ψ, 0ð Þ:

ð50Þ

By taking the inverse ET of the last equation, we get

〠
∞

E=0
XE~ζE ψ,Ið Þ =XE−1

� δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEφE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð51Þ

Thus, on comparing both sides

X0 : φ0 ψ,Ið Þ =E−1 ϖ2e−ψ
� �

= e−ψ,

X1 : φ1 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ0ð ÞψψI − φ0ð Þψ
h i� 

=
e−ψ

N δð Þ
Iδ

Γ δð Þ + 1 − δ

 !
,

X2 : φ2 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ1ð ÞψψI − φ1ð Þψ
h i� 

=
e−ψ

N δð Þð Þ2
δ2I2δ

Γ 2δ + 1ð Þ +
1 − δð ÞδI2δ

Γ δ + 1ð Þ + 1 − δð Þ2
 !

ð52Þ

As a result, based on the ABC operator, the approxi-
mate solution is as follows:
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φ ψ,Ið Þ = e−ψ +
e−ψ

N δð Þ
Iδ

Γ δð Þ + 1 − δ

 !

+
e−ψ

N δð Þð Þ2
δ2I2δ

Γ 2δ + 1ð Þ +
1 − δð ÞδI2δ

Γ δ + 1ð Þ + 1 − δð Þ2
 !

+⋯,

ð53Þ

providing the problem’s integer-order ðδ = 1Þ solution, φ
ðψ,IÞ = eðI−ψÞ.

Finally, we use the Elzaki transform approach with the
aid of Caputo and ABC derivative operators to solve the
problem in Equations (5)–(6). To Equations (5)–(6), we first
apply the Elzaki transform with the aid of Caputo derivative:

~ζ ψ, ϖð Þ = ϖδE φψψψψ ψ,Ið Þ
h i

+ ϖ2φ ψ, 0ð Þ: ð54Þ

We use the Elzaki perturbation transform approach to
solve Equation (54) and obtain

〠
∞

E=0
XE~ζE ψ, ϖð Þ =XϖδE 〠

∞

E=0
XEφE ψ, ϖð Þ

 !
ψψψψ

24 35
+ ϖ2φ ψ, 0ð Þ:

ð55Þ

We now have by taking the Elzaki inverse transform to
Equation (55)

〠
∞

E=0
XEφE ψ,Ið Þ =XE−1 ϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð56Þ

Then, by examining thsse associated powers of X , we
obtain the terms of the Caputo operator solution:

X0 : φ0 ψ,Ið Þ =E−1 ϖ2 sin ψ
� �

= sin ψ,

X1 : φ1 ψ,Ið Þ =E−1 ϖδE L φ0 ψ,Ið Þð Þ½ �
h i

,

= − sin ψ
Iδ

Γ δ + 1ð Þ ,

X2 : φ1 ψ,Ið Þ =E−1 ϖδE L φ1 ψ,Ið Þð Þ½ �
h i

,

= sin ψ
I2δ

Γ 2δ + 1ð Þ ,

⋮

ð57Þ

As a result, the approximate solution to the problem is

φ ψ,Ið Þ = sin ψ − sin ψ
Iδ

Γ δ + 1ð Þ + sin ψ
I2δ

Γ 2δ + 1ð Þ+⋯,

ð58Þ

providing the problems integer-order ðδ = 1Þ solution φðψ,
IÞ = sin ψeð−IÞ.

On the other hand, we use the Elzaki transform in
combination with the Atangana-Baleanu operator to solve
the problem. First, we use the Elzaki transform to solve
the problem:

~ζ ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

E φψψψψ ψ,Ið Þ
h i� �

+ ϖ2φ ψ, 0ð Þ:

ð59Þ

To Equation (59), we use the Elzaki perturbation
transform approach and get

〠
∞

E=0
XE~ζE ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

� E 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψψψψ

24 350@ 1A
+ ϖ2φ ψ, 0ð Þ:

ð60Þ

By taking the inverse ET of the last equation, we get

〠
∞

E=0
XEφE ψ,Ið Þ =XE−1 δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEφE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð61Þ

Thus, on comparing both sides

X0 : φ0 ψ,Ið Þ =E−1 ϖ2 sin ψ
� �

= sin ψ,

X1 : φ1 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ0ð Þψψψψ
h i� 

=
sin ψ

N δð Þ
Iδ

Γ δð Þ + 1 − δ

 !
,

X2 : φ2 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ1ð Þψψψψ
h i� 

=
sin ψ

N δð Þð Þ2
δ2I2δ

Γ 2δ + 1ð Þ +
1 − δð ÞδI2δ

Γ δ + 1ð Þ + 1 − δð Þ2
 !

:

ð62Þ
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As a result, based on the ABC operator, the approxi-
mate solution is as follows:

φ ψ,Ið Þ = sin ψ +
sin ψ

N δð Þ
Iδ

Γ δð Þ + 1 − δ

 !

+
sin ψ

N δð Þð Þ2
δ2I2δ

Γ 2δ + 1ð Þ +
1 − δð ÞδI2δ

Γ δ + 1ð Þ + 1 − δð Þ2
 !

+⋯,

ð63Þ

providing the problems integer-order ðδ = 1Þ solution, φð
ψ,IÞ = sin ψ exp ð−IÞ.

5. Results and Discussion

Figures 1(a) and 1(b) demonstrates the comparison between
approximate solution and exact solution, while Figures 1(c)
and 1(d) shows the 3D and 2D behavior of proposed
methods results at different fractional-orders of the problem
given by Equation (1). Figure 1 indicates that approximate
solution obtained by the suggested techniques is more close
to exact solution. We have shown the exact and approximate
solutions in Figures 2(a) and 2(b), and the results to the
problem given by Equation (3) with respect to various values
of fractional parameter in Caputo and Atangana-Baleanu
manner can be seen in Figures 2(c) and 2(d). Figures 3(a)
and 3(b) represents the comparison between proposed
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Figure 1: Example 1 solution graph (a) exact solution, (b) analytical solution at δ = 1, (c) analytical solution at various fractional-orders of δ,
and (d) I = 0:5.
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method solution and exact solution, whereas Figures 3(c)
and 3(d) shows the behavior of the proposed methods as
various fractional-orders of the problem given by Equation
(5). On the other hand, in Tables 1–3 we presented the
absolute error analysis of RLW equation obtained with

the help of proposed method at various values of ψ and
I. It is observed from tables that proposed method solu-
tion are in good contact with the exact solution and have
high level of precisions between results and shows absolute
error between results.
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Figure 2: Example 2 solution graph (a) exact solution, (b) analytical solution at λ = 1, (c) analytical solution at various fractional-orders of δ,
and (d) I = 0:5.
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Figure 3: Example 3 solution graph (a) exact solution, (b) analytical solution at δ = 1, (c) analytical solution at various fractional-orders of δ,
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6. Conclusion

The approximate solutions of some particular regularized
long-wave equations of fractional-order are determined in this
paper using a new integral transform method known as the
Elzaki transformation. To begin, we consider the Elzaki trans-
form of the fractional Atangana-Baleanu operator and used it
to solve the proposed problems. The used scheme’s trustwor-
thiness and efficiency are based on its capacity to provide an
appropriate convergence zone for the solution. The excellent
accuracy of the findings and the simplicity of the solution
approach confirm suggested method supremacy over other
numerical methods. Also, we have shown how the Caputo
and Atangana-Baleanu fractional operators differ when it
comes to finding approximate solutions to the illustrative
examples. To ensure the validity of the suggested technique,
we showed the results in graphs and tables. The representa-
tions of graphs and tables demonstrate that the results
obtained by suggested scheme are very accurate. In addition,
the behavior of fractional-order results is discussed which con-
firm that the solution gets closer as the fractional-order tends
toward integer-order. Finally, the approximation solution
strategy employed is highly efficient and applicable to a wide
range of nonlinear equations defining real systems.
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