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In this paper, the method for evaluating an analytical solution of fuzzy Newell-Whitehead-Segel equation with certain affecting
terms of force has been given. The notions of an Atangana-Baleanu-Caputo derivative in the vague or uncertainty form are
used to reach this type of result for the solution as mentioned earlier. The fuzzy Laplace transformation is implemented at the
first attempt to achieve the series form result. Secondly, the iterative method is applied to investigate the suggested solution by
inverse Laplace transform. Some new solutions on the Laplace transform of an arbitrary derivative under uncertainty are
presented. The solution has been provided in terms of infinite series for the research, which reduces the problem to a few
equations. The required results are then calculated in a series solution form that quickly leads to the analytical answer. The
solution is divided into two sections, or fuzzy branches, the lower and upper branches. We proved certain test problems to
demonstrate the effectiveness of the recommended approach.

1. Introduction

Fuzzy set theory is a valuable method for modeling uncer-
tain issues. As a result, fuzzy concepts have been used to
simulate a variety of natural phenomena. In particular,
fuzzy partial differential equations (PDEs) have been used
in engineering, pattern formation theory, control systems,
population dynamics, knowledge-based systems, power
engineering, image processing, trial automation, consumer
electronics, robotics, management, operations research,
and artificial expert/intelligence. Due to its importance in
a variety of scientific areas, fuzzy set theory has a close
link with fractional calculus [1-4]. Byatt and Kandel [5]
proposed fuzzy DEs in 1978, while Agarwal et al. [6] were
the first to address the Riemann-Liouville differentiability
and fuzziness concept under the Hukuhara differentiabil-
ity. FC and fuzzy set theory integrates several numerical
methodologies that allow for more in-depth knowledge
of complex systems while also lowering the computing
cost of solving them.

Physical models of real-world phenomena usually con-
tain considerable uncertainty for many reasons. Fuzzy sets
appear to be a good tool for modeling the uncertainty that
ambiguity and impreciseness bring up. We use it in disci-
plines including medical, environmental, economic, medical,
social, economic, physical, and social science, where data
contains uncertainty. To investigate these issues, Zadeh
introduced fuzziness to set theory in 1965. Fractional calcu-
lus has risen in prominence over the last forty years due to
its various applications in engineering and physics [7-11].
In the behavior of defined system processes, many examples
exhibit fuzzy instead of stochastic uncertainty. Several
writers have been interested in studying the theoretical
underpinnings of fuzzy issues in recent years. Fractional
fuzziness differential equations (FFDEs) are particularly
valuable in modeling scientific and technical problems, like
population models, civil engineering, electrohydraulics
modeling, and weapon systems evaluation. In mathematics,
fractional calculus, along with the help of fuzzy theory, is a
key instrument for dealing with ambiguity and determining
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subjective or ambiguous status and providing more general
solutions. This has been addressed in a variety of real-world
situations, including the golden mean [12], practical systems
[13], medicine [14], gravity [15], engineering phenomena,
and quantum physics. For the very first time, Zadeh [16]
became acquainted with fuzzy sets. Then, there was work on
the concept of a fuzzy number and its use in fuzzy control [17].

The necessity to model some real-world challenges while
accounting for data uncertainty led to fuzzy partial differen-
tial equations. As we will see subsequently, partial differen-
tial equations are important in many domains of
engineering and science. Heat transfer is an important part
of mechanical and aerospace engineering study because
many equipment and systems in both aerospace and
mechanical engineering disciplines are subject to heat [18,
19]. The governing differential equation for the above-
mentioned physical setting may be derived using heat con-
duction equations. An engineer can foresee possible form
changes of the plate in vibrations based on the equations
mentioned earlier in simulation findings. Numerous engi-
neering problems fall into this category by nature, and engi-
neers should address them using numerical approaches; see
for more details [20, 21].

The classic Newell-Whitehead-Segel model (NWS) is
among the most widely used amplitude equations for pre-
senting the occurrence of stationary spatial stripe patterns
in a two-dimensional system, as well as the dynamic behav-
ior near the Rayleigh-Benard convection bifurcation point of
binary fluid mixtures [22]. The rolling pattern, in which the
cylinders are made using fluid streamlines that may be
twisted to form the hexagonal, and spiral-like pattern, in
which the striped cells and honeycomb are formed by split-
ting the flow of the fluid, are both visible. For example, stripe
patterns can be observed in the human fingerprints, visual
cortex, and zebra skin. It is important to note that hexagonal
patterns may be created using laser beam propagation across
the nonlinear optical medium in a diffusion and chemical
reaction model [23].

Nonlinear fractional partial differential equations
(FPDEs) are seen in many mathematical structures. Solving
these equations, on the other hand, is frequently challenging.
Effective and established techniques are required to find
approximate or analytical solutions to these equations.
There are many standard numeric-analytic strategies, like
Sumudu transform method [24], homotopy analysis method
[25], variational iteration method [26], fractional complex
transform method [27], and homotopy perturbation algo-
rithm [28].

2. Basic Definitions

Definition 1. Let us consider fuzzy continuous term of ©(7)
on [0,p] CR in sense of Atangana-Baleanu-Caputo (ABC)
operator with respect to # as [29].

The ABC derivative of @() € %" (0,#) expressed as

D'O(®n) = ABC(y) J”ié(s)My {__”y (n- s)]’} de. (1)

1-y ),de 1-
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Replacing E[(=y/(1-y))(n-¢)'] by E[(-y/(1-y))
(n—¢)], we have “differential Caputo-Fabrizio deriva-
tive.” Further, if (7)) € CF[0,0] N LF[0,0], such that @(x) =
©,,6,(n)],y€[0,1] and 5, €
ABC derlvative is defined as

(0,g0), then the fractional fuzzy

Diom)] =[Dje,m.Djesm]. 0<s<l, (@)
such that

D%@y( )= Aff(:) JZ %@(s)EV {% (n—e) :| de,

Dy, = L0 L owE, [ - de

D% [constant] = 0.

Here, ABC(y) show “function of normalization” and
defined by x(0) =x(1) =1, and E, is named as the “Mittag-
Leftler” term.

Definition 2. Then, the ABC integral is defined as [29]

HV(:)(U)Z(I_Y)@(”)+ Y r(q_e)y_lé(S)ds.

ABC(y)  ABC(y) Jo I(y)
(4)
Further, if ©(y7) € CF[0,p] N LF[0,40], where L]0, o] and
CFl0, ] define the “space continues fuzzy term 17 is the

space of “fuzzy integrable Lebesgue terms,” respectively.
Then, fuzzy fractional ABC integral is defined as

(56|, = [50s(n), KOs ()], 0=851, (5)

such that

50501) = 5500 ©0) * zacy ), (1€ @)
1-y

— B y . ,
WQ(W) + W[O(n _8))’ ®(€>d£
(6)

”géa(ﬂ) =

Definition 3. The “Fuzzy Laplace transform” of ABC deriva-
tive of ®(y) is given as [29]
- ABC(y) = s
ZIDO®M)| = i | Z|O(n) - "' O(0) | |.
[phen)| [(1=y) +7] 7 (em -6
(7)

Definition 4. The function of “Mittag-Leffler” E4(r7) is
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defined as [29]

(&) n

Eg(n)= Y —~——1

nzofi(nﬁ+l)’ B>0. (8)

Definition 5. A mapping k : R — [0, 1]. If it holds, it is con-
sidered to be a fuzzy number [29]. (i) is upper
semicontinuous;

(ii) x{p(er) +p(e,)} = min {i(e,), x(e;) }
(ili) Je, € R such that x(g,) =1

(iv) cl{r € R, k(r) > 0} is compact

Definition 6. The parametric form of a fuzzy number is
(x(6),%(8)) such that 0<§<1 and conditions [29]

(i) k() increasing, left-continuous over (0, 1] and right
continues at 0

(i) k(8) decreasing, left-continuous over (0,1] and
right continues at 0

(iii) k() < k(3)

3. Methodology

In this section, we apply Laplace transform to analyze the
general solution of PDE. On both sides implementing
Laplace transform, we get

2

2 [py(6m)| =% {Aaawz (6tvm) + e% (hv)6(w. n))} :

Evaluating the Laplace transformation, Equation (9)
implies that

- |5 (6nn) + 5= (1O |-

By applying the initial condition, we have

refBunn] =atvn + EL

2

|4 a?p (6wm) + %(h(w)éw,n))],

3

< [@ww)}%é(%nh%
7 a‘?;( (W) + 5 ((w)éw,n))]
(12)

We can write the unknown functions as to investigate
the series-type solution ®(y,7)=Y,2,0,(y,n). We can
write of Equation (9), and we get

v iémn)} - Late+ EEb
i (Fonn)
* o <h<w) ién(w,n)ﬂ

Comparisons of term by term of Equation (13), we have

Z[6un)] = catwn)

2

z{él<w,n>]=%;;7mz}aafp( o)) + a((w)@)o(w))},
“louson] - Ll s (@uvon) 3 (keceom)
(6] = EE G A% (&wm) + %(h(w)énw,n))} nzo.

(14)

Using inverse Laplace transformation in Equation (14),
we get

Outwi) = gt

Oy =" % aa—wz (Gotwem) + 5 (h(W)eo 12 n))”
Outyn) =7 |E S e |4 (8wm) + 5 (O, n))”;

én+] (y)=<"

Ms’f[ﬁ—z (X (h(w)én(w,n))H, nz0.

sYABC(y) oy?
(15)
Thus, the fuzzy solutions are obtained as
Oy n)= Y ©,(y:1),
n=0
- (16)
Oy 1) = Y, O,(v:1).
n=0
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FI1GURE 1: The first graph shows the fuzzy 3D upper and lower figure of analytical solution at y =1 and the second graph at fractional of

y=0.8.

4. Numerical Results

4.1. Case I. Consider the fractional fuzzy Newell-Whitehead-
Segel equation:

ACDIG - B, ~20+30° =0, >0, yeR, 0<ys<l,
(17)

with the initial condition

O(y,0) =4, (1)

_K(9)A(2-32) i
il o o )

_ Y
A2 - 3/\ {1 - i }
(

8, (von) =
(v 1) ABC Ty+1)

— 2472
0, (y) = () 2C DU “zyl)) (O L L

(ABC s T(y+1) ' Ty+D))
5 e BN (s oy v
Oy =) 0 (ampp e 20 .

(19)

The higher terms can be obtained in a similar way. We used
to find the series solution Equation (17); therefore, we write

Oy, 1) = By (Y, 1) + O, (¥, 1) + O, (W, 1) + Os (v, 1) + Oy (y, 1)+
(20)

The upper and lower fuzzy portion type can be written as

Oy, 1) =B(y:1) + O (¥, 1) + O, (¥, 1) + O3 (v, 1) + Oy (¥, 1)+,
Oy, 1) =B, (y, 1) + O, (¥, 1) + O, (s 1) + O3 (Y, 1) + Oy (y, 1)+,
)A
A

1

) K(0)A(2-31) v
Oy =xOA =\ 5cy) [ T 1)]

ZA(Z - 3)»)(1 - 3A)
(ABC(y))?
2p(1-y)
v T
Oy =F(O)A+ k(%(é(;;k) [l Tre r(ﬁ IJ
. R((S) 2/\(2 — 3A)(l —2 3/\)
(ABC(7))
29(1=y)* vy
'[“‘” T+ 1) *r(zwl)}*"'

+%(5)

(21)
The exact solution is

_(=23)A exp™!

Oy.m) =& (=2/3) + A — A exp?1’ (22)

In Figure 1, the first graph shows the 3D fuzzy upper and
lower figure of an analytical solution at y =1 and second the
fractional graph of y = 0.8. Figure 2 shows the 3D fuzzy figure
of upper and lower of an analytical solution at y = 0.6 and the
second figure at fractional order of y = 0.4. In Figure 3, the fig-
ure shows the 3D fuzzy figure of upper and lower of various
fractional orders of y. Figure 4 shows the 2D fuzzy figure of
the upper and lower of various fractional orders of .
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FI1GURE 2: The first graph shows the fuzzy 3D upper and lower figure of analytical solution at y = 0.6 and the second graph at fractional of y = 0.4.

10 0.5

FIGURE 3: The first graph shows the fuzzy 3D upper and lower
figure of the various fractional orders of y.

4.2. Case II. Consider the fractional fuzzy Newell-
Whitehead-Segel equation:

ABCDZé—éW—@)(l—é) =0, >0, yeR 0<y<l.
(23)
The initial condition is
O(y,0
PO e o)

Using the proposed method, we get

1
O(vs1) = (‘”W

_ ) 1
Oy (v, 1) = () 7(1 +expt )’

_ k(8 5 exp¥ v
Ou(y2n) = ABC(y)3 (1 + exp¥6)’ Yt )
. _ R(8) 5 exp v
1y 1) = ABC(y)§ 1+exp‘l’/\/_ L=y+ I'(y+1)]

k(8) 25 [exp¥Vo(-1+2 exp¥V?
QZ(V/’ }7) = ( ) 218 ( 1 )
(ABC(y)) (1+ exp¥/e)
(a-yr+ 2=y v
YV Ty T Tyrn))
— k(&) 25 [exp?Vo(~1+2 exp¥/V®
62(1//”7): ( ) 21_8 ( 1o\ 4 )
(ABC(y)) (1+exp¥"®)

2y(L=y) v
I(y+1) I(2y+1))’

-((l—y)2+

The higher terms can be obtained in a similar way. We
used to find the series solution Equation (23); therefore, we
write

(25)

= éo(‘/” )+ él(‘l’> n)+ éz(‘l’> 1) “'éa(‘/” 1) +(:)4(‘//) )+
(26)

O(y,n)

The upper and lower fuzzy portion type can be written
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FIGURE 4: The first graph shows the fuzzy 2D upper and lower figure of the various fractional orders of y.

F1GURE 5: The first graph shows the fuzzy 3D upper and lower figure of analytical solution at y = 1 and the second graph at fractional of y = 0.8.

F1GURE 6: The first graph shows the fuzzy 3D upper and lower figure of analytical solution at y = 0.6 and the second graph at fractional of y = 0.4.
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as

% exp¥!
O(y,n)=x«(d +
Oly.n) =£(9) (1 +expvve)?  ABC(y) (1 +exp¥/e)?
v’ k() 25
-vt + 27Q
Ply+1)] ~ (ABC(y))* 18
exp‘”"f(—l +2 exp“”vé)
(1+expv/ve)*
N PRI (S O A o/
{(1 D Ty T Tayen)
1 RO
(1 + eXpV’/‘[)z ABC(y)3 (1 + expw/\/é)s
y
{ Cp ]+ o) 2
I(y+1)] (ABC(y))*18
exp?Vf(-1+2 exp“’/‘/_)
(1+ expW‘/—

exp“’/ V6

O(y,n) =&(3)

~[<1—y> R e

2 Zy
[(y+1) <2y+1>}+"'

(27)

The exact solution is

- R 1 2
O(y,n) = K<1+expw/f6‘(5’6)'7) ) (28)

In Figure 5, the first graph shows the 3D fuzzy upper and
lower figure of an analytical solution at y = 1 and the second
the fractional graph of y = 0.8. Figure 6 shows the 3D fuzzy
figure of upper and lower of an analytical solution at y = 0.6
and the second figure at fractional order of y=0.4. In
Figure 7, the figure shows the 3D fuzzy figure of upper and
lower of various fractional orders of y. Figure 8 shows the
2D fuzzy figure of the upper and lower of various fractional
orders of y.

4.3. Case III. Consider the fractional fuzzy Newell-
Whitehead-Segel equation:

ACDI® -0, -O+0 =0, 1>0, yeR 0<y<l
(29)
The initial condition is
O, 0)= — |
(v, 0) (1+ exp3‘/’/m)2/3 (30)

k= (k(8)k(0)) = (- 1,1-8).

0.5

FIGURE 7: The first graph shows the fuzzy 3D upper and lower
figure of the various fractional orders of y.

Using the proposed method, we get

1

(1+ exp3w/m)2/3 ’
1

(1 + exp3v/vio)?

Oy (v 1) = (5)

O(y> 1) =&(3)

(3V10)y

k(&) 7 expl
5

_ B v
©1(y-m) = ABC(y) (1 + exp3‘4’/\/—) B [ v }

I'(y+1)
exp3/VOY { . y }
(1+ exp3‘4’/m)5/3 Ir(y+1)
k(8) 25 [exp¥Vo(=1+2 exp¥")
(ABC(y))* 18 (1+exprve)*
— v\ 212y
‘U_wu2§IWW+ v\
y+1) Ir'2y+1)

6, (yon) = K(8) 25 [exp?Vo(-1+2 exp¥F)
¥ 1) = (ABC()}))Zﬁ (1 + ewaNE)4

.QLWV+”U‘”W+ ﬁ%y)_

I'(y+1) I'2y+1)
The higher terms can be obtained in a similar way. We used
to find the series solution Equation (29); therefore, we write

O,(y.n) =

(31)

(yom)-
(32)

Oy, 1) = Oy (v, 1) + O, (v, 1) + O, (¥, 1) + O3 (y, 1) + O,
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FIGURE 8: The first graph shows the fuzzy 3D upper and lower figure of the various fractional orders of y.
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FIGURE 9: The first graph shows the fuzzy 3D upper and lower figure of analytical solution at y = 1 and the second graph at fractional of y = 0.8.
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F1GURE 10: The first graph shows the fuzzy 3D upper and lower figure of analytical solution at y = 0.6 and the second graph at fractional of y = 0.4.
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F1GURE 11: The first graph shows the fuzzy 3D upper and lower
figure of the various fractional orders of y.

The upper and lower fuzzy portion type can be written as

O, 1) =By (w, ) + B, (W, 1) + Oy (W, 1) + O3 (W, 1) + Oy (W, )+,
Oy, 1) =By (v, 1) + O, (¥, 1) + O, (Y, 1) + O3 (Y, 1) + Oy (y, 1)+,

~ 1 k() 7 exp®VOY
O(y,n) =«(9) (1+ exp3"’/m)2/3 + ABC(y) 5 (1+ exp3‘l’/m)5/3
[rope ] 202
F(y+1)] " (ABC(y)? 18

(exp‘*’/‘/g (—1 +2 exp‘/’/ﬁ’)>

(1+exp‘V/‘/g)4
R e e Y

((1 Y+ T(y+1) +I‘(2y+1) *
) 7 | K(0) 7 explVy
O(v,n)=%(8
(1) =R( )(Hexpwym ABC(7)5 (1 + expvv0)

[1 + ]+ #(©) §
Yt T (ABC(y))” 18

( exp¥Vo(-1+2 exp“’/f))

1+exp‘l’/f
— )Y 2372V
0 4 Chnb 0L/ L G/ A VIO
I'(y+1) I'(2y+1)

(33)

The exact solution is

@(1//,11)=K<1 tanh( 2\/_( %”))) (34)

In Figure 9, the first graph shows the 3D fuzzy upper and
lower figure of an analytical solution at y =1 and the second
the fractional graph of y = 0.8. Figure 10 shows the 3D fuzzy

figure of upper and lower of an analytical solution at y =0.6
and the second figure at fractional order of y=0.4. In
Figure 11, the figure shows the 3D fuzzy figure of upper and
lower of various fractional orders of y.

4.4. Case IV. Consider the fractional fuzzy Newell-
Whitehead-Segel equation:

ACDIG - B,, 30 +40° =0, 4>0, yeR 0<ysl. (35)
The initial condition is
~ 3 expVV
@ ’0 = - >
v-0) \/;exp\/g‘/’ + exp(Ver2)y (36)
k= (x(0)k(d))=(6-1,1-9).

Using the proposed method, we get

expVs¥
4 expf‘V +exp(Vo2)y’

_ B 3 exp
Oy, 1) = K(‘;)\/;m’

O(y, 1) = £(5)

Vey (Vel2)y Y
0, (o) = 20 9\f exp*™ exp L
ABC(y) 2 4 (expV® + exp(*/m)‘l’)2 I'(y+1)
6 k(9) 9 \f exp ™ expleV
1) = ABC(y)2 V4 (expv®¥ + exp(*/g/z)‘l’) re I(y+1))’
0, (v 1) x(5) 81 \/gexpﬁ“’ exp(V/2V (—expV + exp(Vo2V)
Os(y>1) = Vi
’ (ABC(y))* 4 V4 (exp®¥ + exp(Vi2¥)°’
(1= yp s 2=y
I'(y+1) I'(2y+1))’
6 _k(8) 81 \/gexp‘/g"’ exp(Vo2V (—expY®¥ + exp(VEIDV)
= Ry 4 Vs

(exp¥® + exp(\/g’z)\")3

2 2y(-y)n”
'((l_w Ty

y
I'2y+ 1))'

(37)

The higher terms can be obtained in a similar way. We
used to find the series solution Equation (35); therefore, we
write

= éo(‘I/» n)+ él(‘l/) n)+ éz(‘l/) n)+ (:)3(‘/4 n)+ (:)4(1//’ n)+--
(38)

O(y.n)

The upper and lower fuzzy portion type can be written
as
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F1GURE 13: The first graph shows the fuzzy 3D upper and lower figure of analytical solution at y = 0.6 and the second graph at fractional of y = 0.4.

I 20

FIGURE 14: The first graph shows the fuzzy 3D upper and lower
figure of the various fractional orders of y.

Oy, 1) =84 (¥, 1) + O (¥, 1) + Oy (¥, 1) + O3(y, ) + Oy (¥, 1)+,
Oy, 1) = Oy (¥, 1) + O, (y, 1) + Oy (. 17) + O3 (Y, 1) + Oy (y, )+,

vy
O(y,n) =x(9) \/% expmpe jpexp(\/é/z)w + AEBS());) ;
.\ﬁw[l_w v’ }
4 (exp¥® + expr/ZW’)Z I(y+1)
k(&) 81 \/3 expV®V exp(\/élz)w(_expﬁv + exp(ﬁ/Z)w)
(ABC(y))* 4 V4 (expvev +exp(\/3/2)w)3

PO 1€ el 0L/ L
(o S o)

Vey K
O(y.n) = R(ﬁ)\/gexpmejpexpmn)v ’ Ag(g()y);
4 (exp¥® + exp(ﬁlz)w)2 ret)
,_K®) 81 \f exp ™ explYF2 (—exp ™ + expl¥2Y)
(ABC(y))Z 4\ 4 (exp\/éw + exp(\/élz)'lf)a

-y Y
(0w R )

(39)
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The exact solution is

~ ~ /3 exp”®
Oy>m) = K\/; exp\/g‘l/ + eXp((\/é/Z)x//—(Q/Z)r/) ' (40)

In Figure 12, the first graph shows the 3D fuzzy upper
and lower figure of an analytical solution at y=1 and the
second the fractional graph of y =0.8. Figure 13 shows the
3D fuzzy figure of upper and lower of an analytical solution
at y = 0.6 and the second figure at fractional order of y = 0.4.
In Figure 14, the figure shows the 3D fuzzy figure of upper
and lower of various fractional orders of y.

5. Conclusion

In this paper, investigating the fractional Newell-
Whitehead-Segel equation with uncertainty is not an easy
problem to analyze, especially in advanced differentiability
such as Atangana-Baleanu-Caputo on the fuzzy valued func-
tions. Because the generated models are more complex to
solve as parametric coupled systems than standard fuzzy dif-
ferential equations, we must use the meaning of the uncer-
tain Atangana-Baleanu-Caputo derivative to identify the
significance of these solutions to the uncertain models. It
can be seen that the solution for each level is an interval at
each point, implying that our solutions are fuzzy number
functions at each point in the domain.
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