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In this paper, we establish some upper bounds of the numerical radius of a bounded linear operator S defined on a complex
Hilbert space with polar decomposition S =U ∣ S ∣ , involving generalized Aluthge transform. These bounds generalize some
bounds of the numerical radius existing in the literature. Moreover, we consider particular cases of generalized Aluthge
transform and give some examples where some upper bounds of numerical radius are computed and analyzed for certain
operators.

1. Introduction

In mathematical analysis, inequalities play a vital role in
studying the properties of operators in the form of their
upper and lower bounds. Mathematical inequalities provide
the best way to describe as well as propose solutions to
real-world problems in almost all fields of science and
engineering. The boundedness property of different kinds
of operators studied in the subjects of analysis, precisely
in mathematical and functional analysis, is the key factor
in developing the theory and applications. For example,
upper and lower bounds are utilized to define the operator
norm, which plays significantly in solving related prob-
lems. The study of the numerical radius of an operator
defined on the Hilbert space is in the focus of researchers
in these days in studying perturbation, convergence, itera-
tive solution methods, and integrative methods, etc, see
[1–9]. In this regard, the numerical radius inequality
stated in (3) is studied extensively by various mathemati-
cians, see [10–21]. Actually, it is interesting for the
researchers to get refinements and generalizations of this

inequality [22–27]. The goal of this paper is to study gen-
eralizations of numerical radius bounds under certain
additional conditions. Henceforth, we define the prelimi-
nary notions to proceed with the findings of this work.

The polar decomposition is an important feature in the
theory of operators. It is defined by A =UB, where U is the
unitary matrix, and B is the symmetric positive semidefinite
matrix. It is interesting to see that when A is nonsingular
and symmetric, then B is a good symmetric positive definite
approximation toA and 1/2ðA + BÞ is the best symmetric pos-
itive semidefinite approximation to A, see [6]. Let BðHÞ be
the C∗-algebra of all bounded linear operators on complex
Hilbert space. Let S =U ∣ S ∣ be the unique polar decomposi-
tion of S ∈BðHÞ, where U is a partial isometry and ∣S ∣ is
the square root of an operator which is defined as jSj = ffiffiffiffiffiffiffi

S∗S
p

:
The numerical range of an operator S is defined as

W Sð Þ = Sx, xh i: xk k = 1, x ∈Hf g, ð1Þ

where WðSÞ denotes the numerical range. The numeri-
cal radius of an operator is the radius of the smallest
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circle centered at the origin and contains the numerical
range, i.e.,

w Sð Þ = sup λj j: λ ∈W Sð Þf g: ð2Þ

The numerical radius defines a norm on BðHÞ which is
equivalent to the usual operator norm, satisfying the following
inequality:

1
2 Sk k ≤w Sð Þ ≤ Sk k: ð3Þ

If S2 = 0, then the first inequality becomes equality and if S
is normal then the second inequality becomes equality. Many
authors worked on numerical radius inequalities and devel-
oped a number of numerical radius bounds [10, 13–18].

In [17], Kittaneh gave an upper bound of numerical
radius as follows:

w Sð Þ ≤ 1
2 Sk k + S2

�� ��1/2� �
, ð4Þ

and showed that this bound is sharper than the upper bound
given in (3).

In [25], Aluthge introduced a transform of an opera-
tor S ∈BðHÞ which is called Aluthge transform that is
defined as

Δ Sð Þ = Sj j1/2U Sj j1/2: ð5Þ

In [26], Yamazaki developed an upper bound of the
numerical radius involving Aluthge transform as follows:

w Sð Þ ≤ 1
2 Sk k +w ΔSð Þð Þ, ð6Þ

and proved that it is sharper than the bound given in (4).
In [27], Okubo introduced a new generalization of

Aluthge transform, called λ-Aluthge transform defined by

ΔλS = Sj jλU Sj j1−λ ; λ ∈ 0, 1½ �: ð7Þ

In [23], Abu-Omar and Kittaneh further generalized the
bound given in (6) using λ-Aluthge transform as follows:

w Sð Þ ≤ 1
2 Sk k +w ΔλSð Þð Þ: ð8Þ

In [19], Bhunia et al. found some bounds of the numer-
ical radius for S ∈BðHÞ: Later, Bag et al. [24] working along
the same lines succeeded to get the following upper bounds
of the numerical radius:

w2 Sð Þ ≤ 1
2 Sk k ΔλSk k + 1

4 S∗S + SS∗k k, ð9Þ

w2 Sð Þ ≤ 1
4 w ΔλSð Þ2� �

+ Sk k ΔλSk k + S∗S + SS∗k k� �
, ð10Þ

w2 Sð Þ ≤ 〠
∞

n=1

1
4n Δn−1

λ S
�� �� Δn

λSk k + Δn−1
λ S

� �∗
Δn−1
λ S

� �����

+ Δn−1
λ S

� �
Δn−1
λ S

� �∗����,
ð11Þ

w4 Sð Þ ≤ 1
16 w ΔλSð Þ2� �

+ Sk k ΔλSk k� �2
+ 1
8w S2P + PS2

� �
+ 1
16 Pk k2,

ð12Þ
where P = S∗S + SS∗ and λ ∈ ½0, 1�.

In [22], Shebrawi and Bakherad presented a new form of
Aluthge transform so called generalized Aluthge transform
defined by

Δf ,gS = f Sj jð ÞUg Sj jð Þ, ð13Þ

where f and g are nonnegative continuous functions such
that f ðjSjÞgðjSjÞ = jSj, ðjSj ≥ 0Þ. They proved the following
upper bound of the numerical radius by using generalized
Aluthge transform

w Sð Þ ≤ 1
2 Sk k +w Δf ,gS

� �� �
, ð14Þ

which is a generalization of the upper bound shown in (6)
and (8).

Our aim is to study the upper bounds of the numerical
radius by applying generalized Aluthge transform defined
in (13) by imposing further certain conditions on continu-
ous functions. The first contribution of this paper is that
we develop upper bounds of the numerical radius using
generalized Aluthge transform, which extends and general-
izes some already existing bounds. Specifically, we extend
the inequalities (9)–(12) for generalized Aluthge transform
under certain conditions on f and g. As a consequence,
the upper bounds of numerical radius involving Aluthge
transform and λ-Aluthge transform appear as a special case
of our bounds. Another contribution of the paper is that we
have presented examples of generalized Aluthge transform
in addition to the classical Aluthge transform and λ-Aluthge
transform, which are used for computing bounds of numer-
ical radius. More precisely, we have considered five choices
of continuous functions f and g in (13) and used them to
compute upper bounds of numerical radius for certain
operators.

2. Main Results

We start this section by attaining the generalized Aluthge
transform Δf ,g defined in (13) under the following addi-
tional conditions:

(i) gðjSjÞf ðjSjÞ = jSj
(ii) f ðjSjÞ and gðjSjÞ both are positive operators

Now, we give some results that will be used repeatedly to
achieve our goal.
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Lemma 1 [26]. Let S ∈BðHÞ: Then, we have

w Sð Þ = sup
θ∈ℝ

Hθk k = sup
θ∈ℝ

Re eιθS
� ���� ���, ð15Þ

where Hθ = ðRe ðeιθSÞÞ = ðeιθS + e−ιθS∗Þ/2 for all θ ∈ℝ:

Lemma 2 [23]. Let M1,M2,N1,N2 ∈BðHÞ: Then,

r M1N1 +M2N2ð Þ
≤
1
2

w N1M1ð Þ +w N2M2ð Þð Þ

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w N1M1ð Þ −w N2M2ð Þ + 4 N1M2k k N2M1k k

p
,

ð16Þ

where r denotes the spectral radius.

Next, we give the numerical radius bound by using the
generalized Aluthge transform.

Theorem 3. Let S ∈BðHÞ: Then, we have

w2 Sð Þ ≤ 1
2

g Sj jð Þk k Δf ,gS
�� �� f Sj jð Þk k + 1

4
S∗S + SS∗k k: ð17Þ

Proof. Since

Hθ =
1
2 eιθS + e−ιθS∗
� �

for all θ ∈ℝ, ð18Þ

therefore,

Hθ
2 = 1

4 eιθS + e−ιθS∗
� �2

= 1
4 e2ιθS2 + e−2ιθS∗2 + SS∗ + S∗S
� �

= 1
4 e2ιθU Sj jU Sj j + e−2ιθ Sj jU∗ Sj jU∗ + SS∗ + S∗S
� �

= 1
4 e2ιθUg Sj jð Þf Sj jð ÞUg Sj jð Þf Sj jð Þ
�

+ e−2ιθ f Sj jð Þg Sj jð ÞU∗ f Sj jð Þg Sj jð ÞU∗ + SS∗ + S∗S
�

= 1
4 e2ιθUg Sj jð Þ Δf ,gS

� �
f Sj jð Þ

�

+ e−2ιθ f Sj jð Þ Δf ,gS
� �∗g Sj jð ÞU∗ + SS∗ + S∗S

�
:

ð19Þ

The third equality is obtained by putting S =U ∣ S ∣ and
S∗ = ∣S ∣U∗ in second equality, the fourth equality holds
because f ðjSjÞgðjSjÞ = jSj and gð∣S ∣ Þf ð∣S ∣ Þ = ∣S ∣ , and the
fifth equality holds because Δf ,gS = f ð∣S ∣ ÞUgð∣S ∣ Þ and

ðΔf ,gSÞ∗ = gð∣S ∣ ÞU∗ f ð∣S ∣ Þ. Since kZZ∗k = kZk2 for any
Z ∈BðHÞ, therefore

Hθk k2 = 1
4 e2ιθUg Sj jð Þ Δf ,gS

� �
f Sj jð Þ

����

+ e−2ιθ f Sj jð Þ Δf ,gS
� �∗g Sj jð ÞU∗ + SS∗ + S∗S

����

≤
1
4 g Sj jð Þk k Δf ,gS

�� �� f Sj jð Þk k�
+ f Sj jð Þk k Δf ,gS

� �∗�� �� g Sj jð Þk k + SS∗ + S∗Sk k�
= 1
4 2 g Sj jð Þk k Δf ,gS

�� �� f Sj jð Þk k + SS∗ + S∗Sk k� �
:

ð20Þ
The first inequality holds because kS1S2k ≤ kS1kkS2k,

kS1 + S2k ≤ kS1k + kS2k for any S1, S2 ∈BðHÞ, U is partial
isometry and ∣e2ιθ ∣ = 1 and the second equality holds by
using the fact that kSk = kS∗k.

Now, by taking supremum of the last inequality over
θ ∈ℝ and then using Lemma 1, we get

w2 Sð Þ ≤ 1
2 g Sj jð Þk k Δf ,gS

�� �� f Sj jð Þk k + 1
4 SS∗ + S∗Sk k, ð21Þ

as required.

The following result is another generalized bound of
numerical radius for bounded linear operators on H .

Theorem 4. Let S ∈BðHÞ: Then,

w2 Sð Þ ≤ 1
4

w Δf ,gS
� �2� �

+ g Sj jð Þk k Δf ,gS
�� �� f Sj jð Þk k

�

+ S∗S + SS∗k k
�
:

ð22Þ

Proof. Let S be any bounded linear operator with polar
decomposition S =U jSj: Since

Hθ =
1
2 eιθS + e−ιθS∗
� �

for all θ ∈ℝ, ð23Þ

therefore,

Hθ
2 = 1

4 eιθS + e−ιθS∗
� �2

= 1
4 e2ιθS2 + e−2ιθS∗2 + SS∗ + S∗S
� �

:

ð24Þ
Using the properties of operator norm k·k on BðHÞ, we

have

Hθk k2 ≤ 1
4 e2ιθUg Sj jð Þ Δf ,gS

� �
f Sj jð Þ

����

+ e−2ιθ f Sj jð Þ Δf ,gS
� �∗g Sj jð ÞU∗

��� + SS∗ + S∗Sk k
�

= 1
4 r e2ιθUg Sj jð Þ Δf ,gS

� �
f Sj jð Þ

��

+ e−2ιθ f Sj jð Þ Δf ,gS
� �∗g Sj jð ÞU∗

�
+ SS∗ + S∗Sk k

�

= 1
4 r M1N1 +M2N2ð Þ + SS∗ + S∗Sk kð Þ,

ð25Þ
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where M1 = eιθUgð∣S ∣ ÞðΔf ,gSÞ, N1 = f ð∣S ∣ Þ, M2 = e−2ιθ f
ð∣S ∣ ÞðΔf ,gSÞ∗,N2 = gð∣S ∣ ÞU∗. The first equality above holds
for hermitian operator A ∈BðHÞ satisfying rðAÞ = kAk:
Now, an application of Lemma 2 together with wðSÞ =wðS∗Þ
and wðαSÞ = ∣α ∣wðSÞ yields

Hθk k2 ≤ 1
4 w Δf ,gS

� �2� ��

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 f ∣S ∣ð Þð Þ2 Δf ,gS

� �∗�� �� g ∣S ∣ð Þð Þ2Δf ,gS
�� ��q

+ SS∗ + S∗Sk k
�

≤
1
4 w Δf ,gS

� �2� ��

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 f Sj jð Þk k2 Δf ,gS

� �∗�� �� g Sj jð Þk k2 Δf ,gS
�� ��q

+ SS∗ + S∗Sk k
�

= 1
4 w Δf ,gS

� �2� �
+ f ∣S ∣ð Þk k g ∣S ∣ð Þk k Δf ,gS

�� ���

+ SS∗ + S∗Sk k
�
:

ð26Þ

The last equality holds by using the fact kSk = kS∗k. Now,
we take supremum over θ ∈ℝ to get

sup
θ∈ℝ

Hθk k2 ≤ sup
θ∈ℝ

1
4 w Δf ,gS

� �2� ���

+ g Sj jð Þk k Δf ,gS
�� �� f Sj jð Þk k + SS∗ + S∗Sk k

�	
:

ð27Þ

By using Lemma 1 in above inequality, we obtain

w2 Sð Þ ≤ 1
4 w Δf ,gS

� �2� �
+ g Sj jð Þk k Δf ,gS

�� �� f Sj jð Þk k
�

+ SS∗ + S∗Sk k
�
,

ð28Þ

as required.

The following inequality is another generalized bound of
numerical radius.

Theorem 5. Let S ∈BðHÞ. Then we have

w4 Sð Þ ≤ 1
16

w Δf ,gS
� �2� �

+ g ∣S ∣ð Þk k Δf ,gS
�� �� f ∣S ∣ð Þk k

� �2

+ 1
8
w S2P + PS2
� �

+ 1
16

Pk k2,
ð29Þ

where P = S∗S + SS∗:

Proof. Since

Hθ =
1
2 eιθS + e−ιθS∗
� �

for all θ ∈ℝ, ð30Þ

therefore,

Hθ
2 = 1

4 eιθS + e−ιθS∗
� �2

= 1
4 e2ιθS2 + e−2ιθS∗2 + SS∗ + S∗S
� �

Hθ
4

= 1
16 e2ιθS2 + e−2ιθS∗2

� �
+ P

� �2

= 1
16 e2ιθS2 + e−2ιθS∗2

� �2
�

+ e2ιθS2 + e−2ιθS∗2
� �

P + P e2ιθS2 + e−2ιθS∗2
� �

+ P2
	

= 1
16 e2ιθS2 + e−2ιθS∗2

� �2
�

+ e2ιθS2P + e−2ιθS∗2P + Pe2ιθS2 + Pe−2ιθS∗2
� �

+ P2
	

= 1
16 e2ιθS2 + e−2ιθS∗2

� �2
+ e2ιθ S2P + PS2

� ��

+ e−2ιθ S∗2P + PS∗2
� �

+ P2
	

= 1
16 e2ιθS2 + e−2ιθS∗2

� �2
�

+ 2 Re e2ιθ S2P + PS2
� �� �� �

+ P2
	
,

ð31Þ
where

Re e2ιθ S2P + PS2
� �� �

= e2ιθ S2P + PS2
� �

+ e−2ιθ S2P + PS2
� �∗

2 :

ð32Þ
In third equality P = S∗S + SS∗: Now, by using the prop-

erties of operator norm ∥·∥ on BðHÞ, we have

Hθk k4 ≤ 1
16 e2ιθS2 + e−2ιθS∗2

��� ���2
�

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2

	

= 1
16 e2ιθU Sj jU Sj j + e−2ιθ Sj jU∗ Sj jU∗

��� ���2
�

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2

	

= 1
16 e2ιθUg Sj jð Þ Δf ,gS

� �
f Sj jð Þ

����

+ e−2ιθ f Sj jð Þ Δf ,gS
� �∗g Sj jð ÞU∗

���2

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2

�
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= 1
16 r2 e2ιθUg Sj jð Þ Δf ,gS

� �
f Sj jð Þ

��

+ e−2ιθ f Sj jð Þ Δf ,gS
� �∗g Sj jð ÞU∗

�

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2

�

= 1
16 r2 M1N1 +M2N2ð Þ

�

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2

�
, ð33Þ

whereM1 = eιθUgð∣S ∣ ÞðΔf ,gSÞ, N1 = f ð∣S ∣ Þ,M2 = e−2ιθ f ð∣S ∣ Þ
ððΔf ,gSÞ∗Þ, and N2 = gð∣S ∣ ÞU∗: The first equality obtained
by using S =U ∣ S ∣ and S∗ = ∣S ∣U∗ in first inequality, the
second equality obtained by using f ð∣S ∣ Þgð∣S ∣ Þ = ∣S ∣ and
gð∣S ∣ Þf ð∣S ∣ Þ = ∣S ∣ in third equality, and the fifth equality
holds for hermitian operator satisfying rðAÞ = ∥A∥: Now,
by using Lemma 2 together with wðSÞ =wðS∗Þ and wðαSÞ =
∣ α ∣wðSÞ, it yields

Hθk k4 ≤ 1
16 w Δf ,gS

� �2� ���

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 f ∣S ∣ð Þð Þ2e−2ιθ Δf ,gS

� �∗�� �� g Sj jð ÞÞ2eιθΔf ,gS
�� ��q 	2

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2

	

≤
1
16 w Δf ,gS

� �2� ���

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 f Sj jð Þk k2 Δf ,gS

� �∗�� �� g Sj jð Þk k2 Δf ,gS
�� ��q 	2

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2

	

= 1
16 w Δf ,gS

� �2� �
+ f Sj jð Þk k g Sj jð Þk k Δf ,gS

�� ��� �2
�

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2

	
:

ð34Þ

The last equality holds by using the fact kSk = kS∗k. Now,
we take supremum over θ ∈ℝ to get

sup
θ∈ℝ

Hθk k4 ≤ sup
θ∈ℝ

1
16 w Δf ,gS

� �2� �
+ f Sj jð Þk k g Sj jð Þk k Δf ,gS

�� ��� �2
�

+ 2 Re e2ιθ S2P + PS2
� �� ���� ��� + Pk k2�

	
:

ð35Þ

Applying Lemma 1 on above inequality, we obtain

w4 Sð Þ ≤ 1
16 w Δf ,gS

� �2� �
+ f ∣S ∣ð Þk k g ∣S ∣ð Þk k Δf ,gS

�� ��� �2

+ 1
8w S2P + PS2

� �
+ 1
16 Pk k2:

ð36Þ

as required.

To give the next bound of numerical radius, first, we
define iterated generalized Aluthge transform. The iterated
generalized Aluthge transform is defined as

Δk
f ,gS = Δ Δk−1

f ,g S
� �

;∀k ∈ℕ, ð37Þ

where f and g both are nonnegative and continuous
functions.

By using Theorem 4 repeatedly, we can obtain numerical
radius bound in terms of iterated generalized Aluthge
transform.

Theorem 6. Let S ∈BðHÞ be such that the sequence
f∥Δn

f ,gS∥g∞n=1 is convergent then

w2 Sð Þ ≤ 〠
∞

k=1

1

4k
f ∣Δk−1

f ,g S ∣
� ���� ��� g ∣Δk−1

f ,g S ∣
� ���� ��� Δk

f ,gS
��� ����

+ Δk−1
f ,g S

� �∗
Δk−1
f ,g S

� �
+ Δk−1

f ,g S
� �

Δk−1
f ,g S

� �∗��� ���:
ð38Þ

Proof. In order to prove the theorem, it is sufficient to prove
the following assertion

w2 Sð Þ ≤ 〠
n

k=1

1
4k

f Δk−1
f ,g S




 


� ���� ��� Δk
f ,gS

��� ��� g Δk−1
f ,g S




 


� ���� ����

+ Δk−1
f ,g S

� �∗
Δk−1
f ,g S

� �
+ Δk−1

f ,g S
� �

Δk−1
f ,g S

� �∗��� ����

+ 1
4n w

2 Δn
f ,gS

� �
for all n ∈ℕ:

ð39Þ

We use mathematical induction to prove the above
assertion. An application of Theorem 4 gives

w2 Sð Þ ≤ 1
4 f Sj jð Þk k g Sj jð Þk k Δf ,gS

�� �� + S∗S + SS∗k k� �

+ 1
4w Δf ,gS

� �2� �
:

ð40Þ

The use of the inequality wðS2Þ ≤w2ðSÞ gives

w2 Sð Þ ≤ 1
4 f Sj jð Þk k Δf ,gS

�� �� g Sj jð Þk k + S∗S + SS∗k k� �

+ 1
4w

2 Δf ,gS
� �

:

ð41Þ
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Thus the preliminary induction step holds. Now, sup-
pose that

w2 Sð Þ ≤ 〠
m

k=1

1
4k

f Δk−1
f ,g S




 


� ���� ��� Δk
f ,gS

��� ��� g Δk−1
f ,g S




 


� ���� ����

+ Δk−1
f ,g S

� �∗
Δk−1
f ,g S

� �
+ Δk−1

f ,g S
� �

Δk−1
f ,g S

� �∗��� ����

+ 1
4m w2 Δm

f ,gS
� �

for somem ∈ℕ:

ð42Þ
Then, another application of Theorem 4 yields

w2 Sð Þ ≤ 〠
m

k=1

1
4k

∥f ∣Δk
f ,gS ∣

� �
∥∥Δk+1

f ,g S∥∥g Δk
f ,gS




 


� �
∥

�

+ Δk
f ,gS

� �∗
Δk
f ,gS

� �
+ Δk

f ,gS
� �

Δk
f ,gS

� �∗��� ����

+ 1
4 ∥f ∣Δm

f ,gS ∣
� �

∥∥Δm+1
f ,g S∥∥g Δm

f ,gS



 


� �

∥
�

+ Δm
f ,gS

� �∗
Δm
f ,gS

� �
+ Δm

f ,gS
� �

Δm
f ,gS

� �∗��� ����

+ 1
4m+1 w Δm+1

f ,g S
� �2

� 	
:

ð43Þ

Simplifying and using the inequality wðS2Þ ≤w2ðSÞ gives

w2 Sð Þ ≤ 〠
m+1

k=1

1
4k

f Δk
f ,gS




 


� ���� ��� Δk+1
f ,g S

��� ��� g Δk
f ,gS




 


� ���� ����

+ Δk
f ,gS

� �∗
Δk
f ,gS

� �
+ Δk

f ,gS
� �

Δk
f ,gS

� �∗��� ����

+ 1
4m+1 w

2 Δm+1
f ,g S

� �
:

ð44Þ

Hence, the assertion (39) holds for all n ∈ℕ:

Now, using the inequality wðSÞ ≤ ∥S∥ in (39) and then
using the hypothesis, we get the desired inequality (38).

Remark 7. It is easy to observe from the Theorems 3–6 that
the upper bounds (17)–(38) are generalized bounds. Indeed,
if we take f ð∣S ∣ Þ = jSjλ and gð∣S ∣ Þ = jSj1−λ for λ ∈ ½0, 1�, in
the bounds (17)–(38), then we obtain bounds (9)–(12).

3. Examples

In this section, we shall consider some choices of f and g
in generalized Aluthge transform (13) and use them to
compute upper bounds of numerical radius for some
matrices.

Example 8. Given S =
0 5 0
0 0 1
0 2 0

0
BB@

1
CCA: Then, S =U ∣ S ∣ is a

polar decomposition of S, where ∣S ∣ =
0 0 0
0

ffiffiffiffiffi
29

p
0

0 0 1

0
BB@

1
CCA,

and U =
0 5/

ffiffiffiffiffi
29

p
0

0 0 1
0 2/

ffiffiffiffiffi
29

p
0

0
BB@

1
CCA is partial isometry. The bounds

(14), (17), (22), and (29) are computed for some choices of f
and g in (13) for given S in Table 1.

The numerical radius of S is

w Sð Þ = 2:9154: ð45Þ

Table 1: Bounds (14), (17), (22), and (29) for different choices of f and g in (13).

f , gð Þ Bound (14) Bound (17) Bound (22) Bound (29)

e Sj j, Sj je− Sj j
� �

22.7288 56.6787 40.1743 40.0320

e Sj j1/2 , Sj je− Sj j1/2
� �

3.7695 4.1934 3.6238 3.2146

Sj j1/2, Sj j1/2� �
3.4881 3.7078 3.3353 3.0645

e Sj j1/3 , Sj je− Sj j1/3
� �

3.3468 3.6354 3.2707 3.0389

Table 2: Bounds (14), (17), (22), and (29) for different choices of f and g in (13).

f , gð Þ Bound (14) Bound (17) Bound (22) Bound (29)

Sj j1/3, Sj j2/3� �
2.62245 2.37007943 2.27893615 2.1589862

Sj j1/2, Sj j1/2� �
2.5 2.2912878 2.1794494 2.0963298

e Sj j1/3 , Sj je− Sj j1/3
� �

2.5 2.29120815 2.1794075 2.09630510

e Sj j1/2 , Sj je− Sj j1/2
� �

2.5 2.29120547 2.17940617 2.09630427
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Example 9. Let S =
0 3 0
0 0 0
0 2 2

0
BB@

1
CCA: Then, S =U ∣ S ∣ is a polar

decomposition of S, where ∣S ∣ =
0 0 0
0 3 0
0 0 2

0
BB@

1
CCA, and U =

0 1 0
0 0 0
0 0 1

0
BB@

1
CCA is partial isometry.

The bounds (14), (17), (22), and (29) are computed for
some choices of f and g in (13) for given S in Table 2.

The numerical radius of S is

w Sð Þ = 2: ð46Þ

4. Conclusion

Summarizing the investigation carried out, we note that gen-
eralized Aluthge transform (13) with additional conditions
(i) and (ii) is useful in achieving the generalized upper
bounds for numerical radius. It is proved in Theorems 3,
Theorem 4, Theorem 5, and Theorem 6 that bounds (17),
(22), (29), and (38) are upper bounds of numerical radius
that generalize the upper bounds (9), (10), (11), and (12)
of numerical radius already existing in the literature. Theo-
retical investigations are supported by examples in which
computations are carried out for finding bounds (14), (17),
(22), and (29) of numerical radius for some choices of the
pair f , g in the generalized Aluthge transform Δf ,g. Exam-
ples 8 and 9 demonstrate that generalized Aluthge transform
provides a wide range of transforms that may be used as a
tool to compute the upper bounds for numerical radius.
These results might be helpful in studying perturbation, con-
vergence, iterative solution methods, and integrative
methods, which is the subject of future work. In the future,
we also have a plan to investigate the lower bounds of
numerical radius.
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