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The aim of this research is to demonstrate the existence and the uniqueness of the weak solution for a semilinear fractional
parabolic problem with the special case of the second integral boundary condition. For this aim, we split the proof into two
parts; to study the main linear problem part, we used the variable separation method, and concerning the semilinear problem
part, we apply an iterative method and a priori estimate for the study of the weak solution.

1. Introduction

Fractional calculus is a mathematical analysis branch that
explores the various different possibilities of describing the
differentiation operator power of real or complex numbers.
Fractional differential equations are extraordinary differen-
tial equations [1]. Many natural phenomena and modern
problems of physics, mechanics, biology and technology,
chemistry, engineering, etc. can be modeled by fractional
partial differential equations (FPDEs). For details, see
([2–12]) and the references therein.

The first who drew attention to these problems with an
integral one-space variables condition is Cannon [13], which
gold of the study of heat conduction in a bar heated thin is
demonstrated by using the potential method, and the impor-
tance of the problems with integral conditions has been
pointed out by Samarskii [14]. The basic physical meaning
of integral conditions (total energy, average temperature,
the total mass of impurities, total flux, moments, etc.) has
served as the main reason for the growing interest in this
kind of problem.

In modern physics and technology, many problems are
found using nonlocal conditions for partial differential equa-
tions, which are defined using integral conditions. So, the
first type of integral condition is given by the following:

ð1
0
k x, tð Þu x, tð Þdx = E tð Þ, ð1Þ

where k is a given function.
Or second type

u l, tð Þ =
ð1
0
k x, tð Þu x, tð Þdx, ∀t ∈ 0, Tð Þ,

∂u
∂x

l, tð Þ =
ð1
0
k x, tð Þu x, tð Þdx, ∀t ∈ 0, Tð Þ,

ð2Þ

can be used when it is impossible to directly measure the
quantity sought on the border. Its total value or its average
is known. We find a lot of research studied this kind of inte-
gral like [15–17].
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Many researchers have widely studied the solvability
“existence and uniqueness” of solutions of fractional and
integer partial differential equation problem by many
method; see, for example, [18–23].

There are a few works that study the nonlinear fractional
partial differential equation with initial and boundary condi-
tions, not to mention the nonlocal problem like [24].

In this work, we developed the study of fractional prob-
lems to partial differential equations on the one hand and
beyond this in the nonlinear direction, which simulates heat
diffusion in the complex phenomena. We also relied on the
modeling of Neumann’s condition, i.e., heat flow by an inte-
gral condition, which is closer to reality in this situation.

Motivated by this, in our article, we treat for the exis-
tence and the uniqueness of the weak solution of the mixed
semilinear problem for a fractional partial differential equa-
tion with an integral condition of the second type, where we
start by studying the nonlocal linear problem by the variable
separation method, to demonstrate the existence and the
uniqueness of the weak solution of the semilinear problem;
we then apply an iterative method based on the results
obtained by the linear problem.

2. Preliminaries

Definition 1 (see [25, 26]). For any 0 < α < 1, the Caputo and
Riemann Liouville derivatives are defined, respectively, as
follows:

(1) The left Caputo derivatives:

C
0D

α
t u x, tð Þ≔ 1

Γ α − 1ð Þ
ðt
0

∂u x, tð Þ
∂Γ

1
t − τð Þα dτ ð3Þ

(2) The left Riemann-Liouville derivatives:

R
0D

α
t u x, tð Þ≔ 1

Γ α − 1ð Þ
∂
∂t

ðt
0

u x, tð Þ
∂τ

1
τ − tð Þα dτ ð4Þ

(3) The right Caputo derivatives:

R
0D

α
t u x, tð Þ≔ −1

Γ α − 1ð Þ
ðt
0

∂u x, tð Þ
∂τ

1
τ − tð Þα dτ ð5Þ

(4) The right Riemann-Liouville derivatives:

R
t D

α
t u x, tð Þ≔ 1

Γ α − 1ð Þ
∂
∂t

ðt
0

u x, tð Þ
τ − tð Þα dτ ð6Þ

Proposition 2 (see [25, 26]). For n = 1, we have

R
0D

α
t u x, tð Þ= c

0D
α
t u x, tð Þ + u 0ð Þ

Γ 1 − αð Þtα ,

R
0D

α
t u x, tð Þ= c

0D
α
t u x, tð Þ + u Tð Þ

Γ 1 − αð Þ T − tð Þα :
ð7Þ

If uðx, 0Þ = 0, then we have

R
0D

α
t u x, tð Þ= c

0D
α
t u x, tð Þ: ð8Þ

Definition 3 (see [27]). For any real σ > 0 and finite interval
½a, b� of the real axis R, we define the seminorm

uj j2l Hα Ωð Þ ≔
RDα

t u
�� ��2

L2 Ωð Þ, ð9Þ

and norm

uk klH α Ωð Þ ≔ uk k2L2 Ωð Þ + uj j2l Hα
0 Ωð Þ

� �1/2
: ð10Þ

We then define lHα
0ðΩÞ as the closure of C∞

0 ðΩÞ with respect
to the norm k⋅klHα

0ðΩÞ.

Definition 4 (see [27]). For any real σ > 0, we define the
seminorm

uj j2r H α
0 Ωð Þ ≔

R
t D

α
Tu

�� ��2
L2 Ωð Þ, ð11Þ

and norm

uk krHσ
0 Ωð Þ

≔ uk k2L2 Ωð Þ + uj j2r Hσ
0 Ωð Þ

� �1/2
: ð12Þ

We then define RHα
0ðΩÞ as the closure of C∞

0 ðΩÞ with
respect to the norm k⋅krHα

0 ðΩÞ.

Definition 5. For any real σ > 0, we define the seminorm

uj jcHα Ωð Þ =
RDα

t u,
R
t D

αu
� �

L2 Ωð Þ
cos απð Þ

					
					
1/2

, ð13Þ

and norm

uk kcHα Ωð Þ = uk k2L2 Ωð Þ + uj j2cHα Ωð Þ
� �1/2

: ð14Þ

Lemma 6 (see [27, 28]). For any real σ ∈ℝ+ if u∈lHαðΩÞ and
v ∈ C∞

0 ðΩÞ, then
RDα

t u tð Þ, v tð Þ� �
L2 Ωð Þ = u tð Þ,RTDαv tð Þ� �

L2 Ωð Þ: ð15Þ
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Lemma 7 (see [27, 28]). For 0 < σ < 2, σ ≠ 1, u ∈H0
σ/2ðΩÞ

on a

RDσ
t u tð Þ= RDt

σ/2RDt
σ/tu tð Þ: ð16Þ

Lemma 8 see ([27, 28]). For σ ∈ℝ+, σ ≠ n + 1/2, the semi-
norms j⋅jlH σðΩÞ,j⋅jrHσ ðΩÞ and j⋅jcHσðΩÞ are equivalent. Then,

we pose

⋅j jlH σ Ωð Þ ≅ ⋅j jrHσ Ωð Þ: ð17Þ

Lemma 9 see ([27, 28]). For any real σ > 0, the space R

Hσ
0 ðΩÞ with respect to the norm (12) is complete.

3. Formulation of the Nonlinear Problem (18)

Let Q = fðx, tÞ ∈ℝ2with 0 < x < 1and 0 < t < Tg.
We would like to deal with the following nonlinear

problem:

c
0D

α
t u x, tð Þ − a

∂2u x, tð Þ
∂x2

+ bu x, tð Þ = f x, t, u,
∂u
∂x

� �
, ∀ x, tð Þ ∈Q,

u x, 0ð Þ = φ xð Þ, ∀x ∈ 0, 1ð Þ,
u 0, tð Þ = 0, ∀t ∈ 0, 1ð Þ,
∂u
∂x

1, tð Þ =
ð1
0
u x, tð Þdx, ∀t ∈ 0, Tð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð18Þ

where 0 < α < 1 and a, b ∈ℝ∗
+.

In the remainder of this section, we assume f ∈ L2ðQÞ to
be Lipschitz; i.e., there is a constant k > 0 as

f x, t, u, uxð Þ − f x, t, v, vxð Þk kL2 Qð Þ

≤ k u − vk kL2 Qð Þ + ux − vxk kL2 Qð Þ
� �

, ∀u, ux, v,x ∈ L2 Qð Þ:
ð19Þ

4. Study of the Associated Linear Problem

4.1. Position of the Associated Linear Problem (20). In Q = ð
0, 1Þ × ð0, TÞ, with T <∞, we examine the following associ-
ated linear problem:

c
0D

α
t u x, tð Þ − a

∂2u x, tð Þ
∂x2

+ bu x, tð Þ = f x, tð Þ, ∀ x, tð Þ ∈Q,
u x, 0ð Þ = φ xð Þ, ∀x ∈ 0, 1ð Þ,
u 0, tð Þ = 0, ∀t ∈ 0, Tð Þ,
∂u
∂x

1, tð Þ =
ð1
0
u x, tð Þdx, ∀t ∈ 0, Tð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð20Þ

which can be written in this operational form:

Lu= c
0D

α
t u x, tð Þ − a

∂2u x, tð Þ
∂x2

+ bu x, tð Þ = f x, tð Þ: ð21Þ

With the initial condition

ℓu = u x, 0ð Þ = φ xð Þ, x ∈ 0, 1ð Þ, ð22Þ

Dirichlet boundary condition

u 0, tð Þ = 0, t ∈ 0, Tð Þ, ð23Þ

and the integral condition of the second kind

∂u
1, tð Þ
∂x

=
ð1
0
u x, tð Þdx, t ∈ 0, Tð Þ: ð24Þ

4.2. Resolution of Problem (20) by the Variable Separation
Method. Let the following associated homogeneous linear
problem:

c
0D

σ
t u u, tð Þ − a

∂2u x, tð Þ
∂x2

+ bu x, tð Þ = 0, ∀ x, tð Þ ∈Q,
u x, 0ð Þ = φ xð Þ, ∀x ∈ 0, 1ð Þ,
u 0, tð Þ = 0, ∀t ∈ 0, Tð Þ,
∂u 1, tð Þ

∂x
=
ð1
0
u x, tð Þdx, ∀t ∈ 0, Tð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð25Þ

We can certainly show that problem (25) admits a
unique solution, for that we put

u x, tð Þ = X xð ÞY tð Þ: ð26Þ

Substituting (26) into (25), we obtain

c
0D

α
t Y :X − aX}Y + bXY = 0,

X xð ÞY 0ð Þ = φ xð Þ,
X 0ð ÞY tð Þ,

X ′ 1ð ÞY tð Þ =
ð1
0
X xð ÞY tð Þ:

8>>>>>>><
>>>>>>>:

ð27Þ

Therefore, we get for λ > 0

c
0D

α
t Y
Y

= a
X}

X
− b = −λ: ð28Þ
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We begin by showing a Sturm-Liouville problem:

X} xð Þ + μ

a
X xð Þ = 0,

X 0ð Þ = 0,

X ′ 1ð Þ =
ð1
0
X xð Þdx:

8>>>>><
>>>>>:

ð29Þ

With μ = b − λ, it has a solution which is given by

X xð Þ = A cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

a
x + B sin

ffiffiffi
μ

a

rs
x: ð30Þ

Or A and B are two real arbitrary.
Using the Dirichlet condition, we find

A = 0: ð31Þ

It follows that

X xð Þ = B sin
ffiffiffi
μ

a

r
x: ð32Þ

Now, we use the integral condition, and we get

X ′ 1ð Þ = B
ffiffiffi
μ

a

r
cos

ffiffiffi
μ

a

r
=
ð1
0
X xð Þdx =

ð1
0
B sin

ffiffiffi
μ

a

r
xdx

−
Bffiffiffiffiffiffiffi
μ/a

p cos
ffiffiffiffiffiffi
μ

a
x

r
1
0

				 = −
Bffiffiffiffiffiffiffi
μ/a

p cos
ffiffiffi
μ

a

r
+

Bffiffiffiffiffiffiffi
μ/a

p :

ð33Þ

Hence, we can assert that the eigenvalue is given by the
following equation:

ffiffiffi
μ

p =
ffiffiffi
a

p
 across

a
μ + a

: ð34Þ

Our next goal is to determine the explicit form of YðtÞ.
According to the superposition theorem, we pose

u x, tð Þ = 〠
n≥1

Xn xð Þ ⋅ Yn tð Þ: ð35Þ

Replacing (35) by (20) leads to

〠
n≥1

c
oD

a
tYn + b − μnð ÞYnð Þ ⋅ sin

ffiffiffiffiffi
μn
a

r
x = 〠

n≥1
sin

ffiffiffiffiffi
μn
a

r
x

 !
⋅ f n tð Þ, ∀n ∈ℕ,

ð36Þ

which implies

c
0D

α
t Yn tð Þ + b − μnð ÞYn tð Þ = f n tð Þ: ð37Þ

As

u x, 0ð Þ = 〠
n≥1

sin
ffiffiffiffiffi
μn
a

r
x

 !
Yn 0ð Þ = φ xð Þ = 〠

n≥0
φn ⋅ sin

ffiffiffiffiffi
μn
a

r
x

 !
,

ð38Þ

then

φn

ð1
0
φ xð Þ ⋅ sin

ffiffiffiffiffiffiffiffi
μn
a
x

r !
dx, ð39Þ

hence

Yn 0ð Þ = φn: ð40Þ

We can then solve in a simple way the fractional ordi-
nary differential problem (37)−(40) using the Laplace trans-
form method; so it comes

L c
0D

α
t Yn tð Þð Þ = sF sð Þ − Yn 0ð Þð Þ

s1−α
, ð41Þ

then

φn =
sF sð Þ − Yn 0ð Þ

s1−α
+ bð Þ − μnF sð Þ = L f n tð Þð Þ: ð42Þ

Therefore,

F sð Þ = 1
sα + b − μn

sα−1φn + L f n tð Þð Þ� �
: ð43Þ

Finally, we obtain

Yn tð Þ = L−1
1

sα + b − μn
sα−1φn + L f n tð Þð Þ� �
 �

: ð44Þ

Hence, we obtain the solution of (25) in the following
explicit form:

〠
n≥0

Bn sin
ffiffiffiffiffiffiffiffi
μn
a
x

r ! !
⋅ L−1

1
sα + b − μn

sα−1φn + L f n tð Þð Þ� �
 �� �
:

ð45Þ

5. Solvability of the Weak Solution of the
Nonlinear Problem (18)

The key point to discuss in this section is to study the exis-
tence and uniqueness of the problem’s weak solution (18).
The key idea is to apply an iterative method and estimate a
priori.
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In this way, we define an auxiliary problem with a homo-
geneous equation:

c
OD

α
t u x, tð Þ − a

∂2u x, tð Þ
αx2

+ by x, tð Þ =G x, t, y, yxð Þ, ∀ x, tð Þ ∈Q,
u x, 0ð Þ = φ xð Þ, ∀x ∈ 0, 1ð Þ,
u 0, tð Þ = 0, ∀t ∈ 0, Tð Þ,
∂u 1, tð Þ

∂x
=
ð1
0
u x, tð Þdx, ∀t ∈ 0, Tð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð46Þ

If u is a solution of (18) and v is a solution to (46), then
y = u − v satisfies

Ly = c
0D

α
t y x, tð Þ − a

∂2y x, tð Þ
∂x2

+ by x, tð Þ = G x, t, y, yxð Þ,
ð47Þ

y x, 0ð Þ = 0, ∀x ∈ 0, 1ð Þ, ð48Þ

y 0, tð Þ = 0, ∀t ∈ 0, tð Þ, ð49Þ

∂y 1, tð Þ
∂

= 0, ∀t ∈ 0, tð Þ, ð50Þ

or Gðx, t, y, yxÞ = f ðx, t, u + v, ux + vxÞ. From now on, we
make the assumption: the function G is Lipschitz, that is,
there is a positive constant k as

G x, t, y1, y1ð Þx
� �

−G x, t, y2, y2ð Þx
� ��� ��

L2 Qð Þ

≤ k y1 − y2k kL2 Qð Þ + y1ð Þx − y2ð Þx
�� ��

L2 Qð Þ

� �
, ∀y1, y1ð Þx, y2, y2ð Þx ∈ L2 Qð Þ:

ð51Þ

In order to get the desired results, it is necessary to pro-
pose the concept of the studied solution.

Let ϑ = ϑðx, tÞ arbitrary function of V as

V = ϑ ∈ C1 Qð Þ, ϑ 0, tð Þ = ∂
∂x

ϑ 1, tð Þ = 0, t ∈ 0, T½ �
� �

: ð52Þ

Multiply 9 by ϑ and integrate it on Qτ; we find

ð
Qτ

c

0
Dα

t y x, tð Þ · ϑ x, tð Þdxdt −
ð
Qτ

a
∂2y
∂x2

x, tð Þ · ϑ x, tð Þdxdt

+
ð
Qτ

by x, tð Þ · ϑ x, tð Þdxdt =
ð
Qτ

G x, t, y, yxð Þ · ϑ x, tð Þdxdt:

ð53Þ

By the use of integration by parts and the conditions on y, ϑ,

we get

ð
Qτ

R

0
Dα
t y x, tð Þ · ϑ x, tð Þdxdt +

ð
Qτ

a
∂y
∂x

x, tð Þ · ∂ϑ∂x x, tð Þdxdt

+
ð
Qτ

by x, tð Þ · ϑ x, tð Þdxdt =
ð
Qτ

G x, t, y, yxð Þ · ϑ x, tð Þdxdt:

ð54Þ

Then, (54) establishes the following formula:

A y, ϑð Þ =
ð
Qτ

G x, t, y, yxð Þ · ϑ x, tð Þdxdt, ð55Þ

or

A y, ϑð Þ =
ð
Qτ

R

0
Dα
t y x, tð Þ · ϑ x, tð Þdxdt

+
ð
Qτ

a
∂y
∂x

x, tð Þ · ∂ϑ∂x x, tð Þdxdt

+
ð
Qτ

by x, tð Þ · ϑ x, tð Þdxdt:

ð56Þ

Definition 10. We say the solution to problems (47)–(50) is
weak; any function y ∈ L2ð0, T ;H1ð0, 1ÞÞ such as (33),
(49), and (50) are achieved.

Now, we build a recurring sequence defined as follows:
from yðn−1Þ we can define ðyðnÞÞn∈ℕ, where the first element
is given by yð0Þ = 0; then, for n = 1, 2, 3,⋯, the following
problem is solved:

R
0D

α
t y

nð Þ x, tð Þ − a
∂2y nð Þ x, tð Þ

∂x2
+ by nð Þ x, tð Þ =G x, t, y n−1ð Þ, yð Þ n−1ð Þ

x

� �
,

y nð Þ x, 0ð Þ = 0,

y nð Þ 0, tð Þ = 0,

∂y nð Þ 1, tð Þ
∂x

= 0:

8>>>>>>>>><
>>>>>>>>>:

ð57Þ

For any n fixed, thanks to the study of (20) which we
gave the solution explicitly using the variable separation
method; then, problem (57) has a unique solution yðnÞðx, tÞ.

Now, suppose zðnÞðx, tÞ = yðn+1Þðx, tÞ − yðnÞðx, tÞ; so we
get a new problem:

R
0D

α
t z

nð Þ x, tð Þ − a
∂2z nð Þ x, tð Þ

∂x2
+ bz nð Þ x, tð Þ = p n−1ð Þ x, tð Þ,

z nð Þ x:0ð Þ = 0,

z nð Þ 0, tð Þ = 0,

∂z nð Þ 1, tð Þ
∂x

= 0,

8>>>>>>>>><
>>>>>>>>>:

ð58Þ
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or

p n−1ð Þ x, tð Þ =G x, t, y nð Þ, y nð Þ
x

� �
−G x, t, y n−1ð Þ, y n−1ð Þ

x

� �
:

ð59Þ

Lemma 11.We assume that (51) be satisfied. So we obtain for
problem (58) the following a priori estimate:

z nð Þ
��� ���

L2 0,T ,H1 0,1ð Þð Þ ≤ c z n−1ð Þ
��� ���

L2 0,T ,H1 0,1ð Þð Þ, ð60Þ

or

c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2ε min a, b − ε/2ð Þð Þ

s
: ð61Þ

Proof. We multiply by zðnÞ this equation

R
0D

α
t z

nð Þ x, tð Þ − a
∂2z nð Þ x, tð Þ

∂x2
+ bz nð Þ x, tð Þ = p n−1ð Þ x, tð Þ,

ð62Þ

and we integrate it on Qτ; we get

ð
Qτ

R

0
Dα
t z

nð Þ x, tð Þ · z nð Þ x; ;tð Þdxdt

−
ð
Qτ

a
∂2z nð Þ x, tð Þ

∂x2
· z nð Þ x, tð Þdxdt

+
ð
Qτ

b z nð Þ x, tð Þ
� �2

dxdt =
ð
Qτ

p n−1ð Þ x, tð Þ · z nð Þ x, tð Þdxdt:

ð63Þ

Performing integration by part and using lemma 2, 3, 4,
and 5 by the same way in the articles [15–24], we obtain

ð1
0

R
0D

α/2
t z nð Þ x, τð Þ

� �2
dx +

ð
Qτ

a
∂z nð Þ

∂x
x, tð Þ

� �2

dxdt

+
ð
Qτ

b z nð Þ x, tð Þ
� �2

dxdt =
ð
Qτ

p n−1ð Þ x, tð Þ · z nð Þ x, tð Þdxdt:

ð64Þ

Using Cauchy with ε − inequality, we get

ð1
0

R
0D

α/2
t z nð Þ x, τð Þ

� �2
dx +

ð
Qt

a
∂z nð Þ

∂x
x, tð Þ

� �2

dxdt

+
ð
Qt

b z nð Þ x, tð Þ
� �2

dxdt ≤
1
2ε

ð
Qt

a p n−1ð Þ
� �2

dxdt

+
ð
Qt

z nð Þ x, tð Þ
� �2

dxdt:

ð65Þ

Exploiting the fact that

pn−1 x, tð Þ		 		2 = G x, t, y nð Þ, y nð Þ
x

� �
−G x, t, y n−1ð Þ, y n−1ð Þ

x

� �			 			2,
ð66Þ

we conclude from (51) that

ð
Qτ

pn−1 x, tð Þ		 		2 ≤ ð
Qτ

k2 y nð Þ − y n−1ð Þ
			 			 + y nð Þ

x − y n−1ð Þ
x

			 			� �2
=
ð
Qτ

k2 z n−1ð Þ
			 			2 + z n−1ð Þ

x

			 			2� �

≤ k2 z n−1ð Þ x, tð Þ
��� ���2

L2 0,T ;H1 0,1ð Þð Þ:

ð67Þ

Eliminating the first term from (64), we get

b
ð
Qτ

z nð Þ x, τð Þ
� �2

dx + a
ð
Qτ

∂z nð Þ

∂x
x, tð Þ

� �2

dxdt

≤
ð1
0

R
0D

α/2
t z nð Þ x, τð Þ

� �2
dx +

ð
Qτ

a
∂z nð Þ

∂x
x, tð Þ

� �2

dxdt

+
ð
Qτ

b z nð Þ x, tð Þ
� �2

dxdt ≤
1
2ε

ð
Qτ

p n−1ð Þ
� �2

dxdt,

ð68Þ

which enables us to deduce

z nð Þ x, tð Þ
��� ���2

L2 0,T ;H1 0,1ð Þð Þ

≤
k2

2ε min a, b − ε/2ð Þ%ð Þ z n−1ð Þ x, tð Þ
��� ���2

L2 0,T ;H1 0,1ð Þð Þ:

ð69Þ

Our next concern will be the convergence of the
sequence ðyðnÞÞn, so we are thus looking for the convergence
of the series ∑∞

n=1z
ðnÞ.

For this, we use the criterion of convergence of series
which gives us

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2ε min a, b − ε/2ð Þð Þ

s
< 1, ð70Þ

Then,

k <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε min a, b − ε/2ð Þð Þ

p
: ð71Þ

As zðnÞðx, tÞ = yðn+1Þðx, tÞ − yðnÞðx, tÞ and yð0Þðx, tÞ = 0,
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we have

〠
n−1

i=0
z ið Þ = 〠

n−1

i=0
y i+1ð Þ x, tð Þ − y ið Þ x, tð Þ
� �

= y 1ð Þ − y 0ð Þ + y 2ð Þ

− y 1ð Þ+⋯+y nð Þ − y n−1ð Þ = y nð Þ:

ð72Þ

Note that we have actually proved that the sequence
ðyðnÞÞn defined by

y nð Þ x, tð Þ = 〠
n−1

i=0
z ið Þ, ð73Þ

is convergent to an element y ∈ L2ð0, T ,H1ð0, 1ÞÞ. Having
disposed of this preliminary step, the task is now to show
that lim

n⟶∞
yðnÞðx, tÞ = yðx, tÞ is a solution of problems (47)–

(50).
In order to get this result, it will be necessary to check

that y satisfied

A y, ϑð Þ =
ð
Qτ

G x, t, y, yxð Þ · ϑ x, tð Þdxdt: ð74Þ

From (57), we get

A y nð Þ, ϑ
� �

=
ð
Qτ

R

0
Dα
t y

nð Þ x, tð Þ · ϑ x, tð Þdxdt

+
ð
Qτ

a
∂y nð Þ

∂x
x, tð Þ · ∂ϑ

∂x
x, tð Þdxdt

+
ð
Qτ

by nð Þ x, tð Þ · ϑ x, tð Þdxdt:

ð75Þ

As A is linear, we get

A y nð Þ, ϑ
� �

= A y nð Þ − y, ϑ
� �

+ A y, ϑð Þ

=
ð
Qτ

R

0
Dα
t y nð Þ − y
� �

x, tð Þ · ϑ x, tð Þdxdt

+
ð
Qτ

a
∂ y nð Þ − y
� �

∂x
x, tð Þ · ∂ϑ∂x x, tð Þdxdt

�
ð
Qτ

b y nð Þ − y
� �

x, tð Þ · ϑ x, tð Þdxdt

+
ð
Qτ

R

0
Dα

t y x, tð Þ · ϑ x, tð Þdxdt +
ð
Qτ

a
∂y
∂x

x, tð Þ

·
∂ϑ
∂x

x, tð Þdxdt +
ð
Qτ

by x, tð Þ · ϑ x, tð Þdxdt:

ð76Þ

Applying the Cauchy Schwartz inequality onAðyðnÞ − y, ϑÞ,
we get

ð
Qτ

R

0
Dα
t y nð Þ − y
� �

x, tð Þ · ϑ x, tð Þdxdt +
ð
Qτ

a
∂ y nð Þ − y
� �

∂x
x, tð Þ

·
∂ϑ
∂x

x, tð Þdxdt +
ð
Qτ

b y nð Þ − y
� �

x, tð Þ · ϑ x, tð Þdxdt

≤max 1, aγ, bð Þ ϑxk kL2 Qð Þ

� R
0D

α
t y nð Þ − y
� ���� ���

L2 0,T,H1 0,1ð Þð Þ + y nð Þ − y
� �

x

��� ���
L2 0,T ,H1 0,1ð Þð Þ

" #
,

ð77Þ

where γ is Poincare’s inequality constant. On the other hand, as

y nð Þ ⟶ y dans L2 0, T, H1 0, 1ð Þ� �
≊H1 Qð Þ: ð78Þ

So

y nð Þ ⟶ y dans L2 Qð Þ,
y nð Þ
x ⟶ yx in L2 Qð Þ:

ð79Þ

Letting n⟶ +∞, we find

lim
n⟶+∞

A y nð Þ − y, ϑ
� �

= 0: ð80Þ

From (80) and going to the limit in (76), we obtain

lim
n⟶+∞

A y nð Þ, ϑ
� �

= A y, ϑð Þ: ð81Þ

Theorem 12. If the condition (51) is satisfied and

k <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε min a, b − ε/2ð Þð Þ

p
: ð82Þ

So problems (47)–(50) admit a weak solution which belongs
to L2ð0, T ;H1ð0, 1ÞÞ.

It remains to be proven that problems (47)−(50) admit a
unique solution.

Theorem 13. According to (51), the solution of problems (47)
−(50) is unique.

Proof. Suppose that y1 and y2 in L2ð0, T ;%H1ð0, 1ÞÞ are two
solutions of (47)−(50), then Z = y1 − y2 satisfied Z ∈ L2ð0, T
;H1ð0, 1ÞÞ and

LZ = R
0D

α
t Z x, tð Þ − a

∂2Z x, tð Þ
∂x2

+ bZ x, tð Þ = ψ x, tð Þ, ∀ x, tð Þ ∈ �Q,

Z x, 0ð Þ = 0, ∀x ∈ 0, 1ð Þ,
Z 0, tð Þ = 0 ∀t ∈ 0, tð Þ,
∂Z 1, tð Þ
∂X

= 0 ∀t ∈ 0, tð Þ,
ð83Þ
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Or

ψ x, tð Þ =G x, t, y1, y1ð Þx
� �

−G x, t, y2, y2ð Þx
� �

: ð84Þ

Similar analysis to that in the proof of Lemma 11, it
shows that

Zk kL2 0,T ;H1 0,1ð Þð Þ ≤ Zk kL2 0,T ;H1 0,1ð Þð Þ: ð85Þ

Or c is the same constant of Lemma 11. As c < 1, so
according to (85), it comes that

1 − cð Þ Zk kL2 0,T ;H1 0,1ð Þð Þ ≤ 0: ð86Þ

We conclude that y1 = y2 in L2ð0, T ;H1ð0, 1ÞÞ is the
desired conclusion.

6. Conclusion

The study of fractional nonlinear parabolic problems is of
great theoretical interest, because of new modeling with frac-
tional derivatives which plays an important role in the
description in the part of modeling in mathematics. Also,
the use of the condition of Neumann in terms of integral
condition which means the flux of the solution is an average
gives a very good model of boundary condition. Then, there
remains the numerical part as perspective in the fractional
problem especially when there is a nonlinear term and inte-
gral condition of the second type.
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