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This paper is dedicated to proposing two numerical algorithms for solving the one- and two-dimensional heat partial differential
equations (PDEs). In these algorithms, generalized Lucas polynomials (GLPs) involving two parameters are utilized as basis
functions. The two proposed numerical schemes in one and two- dimensions are based on solving the corresponding integral
equation to the heat equation, and after that employing, respectively, the tau and collocation methods to convert the heat
equations subject to their underlying conditions into systems of linear algebraic equations that can be treated efficiently via
suitable numerical procedures. In this article, the convergence analysis is examined for the proposed generalized Lucas
expansion. Five illustrative problems are numerically solved via the two proposed numerical schemes to show the applicability
and accuracy of the presented algorithms. Our obtained results compare favourably with the exact solutions.

1. Introduction

Many mathematical models of real-world problems give rise
to partial differential equations (PDEs) of initial and bound-
ary conditions. PDEs are frequently represented as mathe-
matical equations that connect various amounts and their
derivatives, e.g., heat transition, a particle’s movement in a
straight line, the movement of a rocket, a molecule’s vibra-
tion, and a change in a substance’s molecular composition,
etc. Every one of these issues is represented by hyperbolic,
elliptic, or parabolic partial differential equation (PPDE)
and might be homogeneous, in one, two, or three dimen-
sions, with non-local boundary conditions in addition to
the initial conditions found in the prose. A parabolic PDE
is used to solve a variety of scientific problems, including
ocean acoustic propagation as well as heat diffusion. The
hyperbolic PDE indicates the wave transformation and
sound waves of an elastic string, whereas the elliptic PDE
describes the Laplace equation.

Fibonacci and Lucas polynomial sequences are crucial
and they play vital roles in various disciplines. These
sequences are employed to find approximate solutions of

different types of DEs. For instance, Fibonacci polynomials
were used to treat multi-term fractional DEs in [1]. In [2],
Lucas polynomials are employed for the numerical treat-
ment of sinh-Gordon equation. The authors in [3] devel-
oped a matrix method using Fibonacci polynomials for the
treatment of the generalized pantograph equations with
functional arguments. Another approach based on mixed
Fibonacci and Lucas polynomials is followed in [4] to obtain
numerical solutions of Sobolev equation in two dimensions.
Lucas polynomials are employed in [5] to obtain numerical
solutions of multidimensional Burgers-type equations. Lucas
polynomials were also employed in [6] to solve the
fractional-order electro-hydrodynamics flow model.

The Fibonacci and Lucas sequences can be generalized.
For example, the authors in [7, 8] introduced two general-
ized families of Fibonacci and Lucas polynomials. In addi-
tion, they employed such generalized sequences to treat
some fractional differential equations.

It is well-known that the heat equation is a parabolic
PDE that describes the distribution of heat. There are two
types of heat equations: non-homogeneous and homoge-
neous. Non-homogeneous heat equations have source terms
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in the partial differential equations, whereas homogeneous
heat equations do not have source terms. Many authors have
researched theoretically and numerically the heat equations.
For example, the authors in [9] obtained a numerical solu-
tion of the one-dimensional heat equation by using the
Chebyshev wavelets method. In [10], the authors treated
the same equation using a high-order compact boundary
value method. The authors in [11] treated the heat equation
using radial basis functions. In [12] a modified Crank-
Nicolson scheme Richardson extrapolation is followed to
treat the one-dimensional heat equation. Recently, the
Chebyshev collocation algorithm is followed in [13] to treat
the same equation.

A PDE governs the temperature of a rod that is fre-
quently defined as [14]:

ut ξ, tð Þ = K uξξ ξ, tð Þ, 0 ≤ ξ ≤ L, t ≥ 0, ð1Þ

where uðξ, tÞ is the temperature of a rod at position ξ at time
t and K is the thermal conductivity of the material, which
measures the rod’s ability to conduct heat.

The solution’s domain is a semi-infinite wire of length L
that extends endlessly in time. In practice, the result is found
only for a limited time. The solution with equation (1)
necessitates the requirements of an initial condition at t = 0
as well as boundary conditions at ξ = 0, and ξ = L.

Initial condition:

u ξ, 0ð Þ = g ξð Þ, 0 ≤ ξ ≤ L: ð2Þ

Boundary conditions:

u 0, tð Þ = S1 tð Þ, t ≥ 0, ð3Þ

u L, tð Þ = S2 tð Þ, t ≥ 0: ð4Þ
It is essential to refer here that (1) is called the homoge-

neous heat equation, whereas the non-homogeneous heat
equation is given as:

ut ξ, tð Þ = K uξξ ξ, tð Þ + g ξ, tð Þ, 0 ≤ ξ ≤ L, t ≥ 0, ð5Þ

where gðξ, tÞ is referred to as the heat source.
It is worth mentioning that the heat equation (1) gov-

erned by (2)-(4) can be extended to higher-dimensional heat
equations. These types of equations were treated analytically
and numerically by many authors. For example, the Ado-
mian decomposition method was utilized for handling the
two-dimensional heat equation in [14]. In addition, the
collocation method together with the finite differences was
employed to solve the same type of equations in [15]. Some
analytical and numerical studies of a two-dimensional non-
linear heat equation with a source term were presented in
[16]. Some other forms of the heat equations were handled
in other contributions. For example, the authors in [17]
applied the finite difference method of lines to treat the heat
equation in three space variables. An Adomian decomposi-
tion method is applied to the treatment of a non-linear heat

equation in [18]. For some other contributions relating to
the heat equation, on can be referred to [19–23].

There are numerous methods that have a significant
impact on numerical analysis in general, see for example
[24–26]. Among these methods are the spectral methods,
which play important roles in dealing with PDEs [27, 28],
ordinary differential equations (ODEs) [29, 30], and frac-
tional differential equations (FDEs) [31–34]. The basic idea
behind spectral methods is that the proposed approximate
solution is written as linear combinations of many basic
functions, which may be orthogonal or otherwise. The
popular spectral approaches are Galerkin, collocation, and
tau. In the context of numerical DEs, each version has its
own significance. Several authors have made extensive use
of the latter methods. The Galerkin approach was followed
to treat some types of differential equations. For example,
the authors in [35] applied the Galerkin method to obtain
spectral solutions of BVPs of even-orders, where the authors
in [36] obtained approximate solutions of the fractional
telegraph equation via implementing a spectral Legendre-
Galerkin algorithm. Regarding the collocation method, it is
an advantageous method from its capability for treating
any type of differential equations governed by any underly-
ing conditions. For example, it is followed in [37] to treat
the initial value problems of any order with the aid of
the operational matrices of some orthogonal polynomials.
The tau method is different from the tau method in that
no restrictions on choosing the basis functions. This of
course makes its application to different types of DEs is
easier than the application of the Galerkin method. So,
as a result, it is used for solving several types of differen-
tial equations.

The structure of this paper is as follows: Section 2 pre-
sents an overview of generalized Lucas polynomials and
some of their fundamental properties. In Section 3, a numer-
ical method based on the spectral tau method is applied to
solve the one-dimensional partial differential heat equation.
An extension to solve the two-dimensional heat equation is
proposed in Section 4 based on the application of the collo-
cation method. Section 5 examines the convergence and
error analysis of the proposed GLPs expansion. Numerical
outcomes and comparisons are presented in Section 6 to
demonstrate the validity of our proposed methods. Section
7 is made up of a brief outline paper.

2. An Overview on Generalized
Lucas Polynomials

The purpose of this section is to give an overview of the
(GLPs). Furthermore, some of the basic formulas of these
polynomials are presented.

The GLPs may be constructed with the aid of the follow-
ing recursive formula:

ϕa,bj εð Þ = a ε ϕa,bj−1 εð Þ + b ϕa,bj−2 εð Þ, ϕa,b0 εð Þ = 2, ϕa,b1 εð Þ = a ε, j ≥ 2,
ð6Þ
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They also may be generated by the following Binet’s
formula:

ϕa,bj εð Þ =
a ε −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 ε2 + 4 b

p� �j
+ a ε +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 ε2 + 4 b

p� �j

2j
, j ≥ 0:

ð7Þ

The first few ones of the ϕa,bj ðεÞ are given as follows:

ϕa,b0 εð Þ = 2, ϕa,b1 εð Þ = a ε,

ϕa,b2 εð Þ = a2 ε2 + 2 b, ϕa,b3 εð Þ = a3 ε3 + 3 a b ε:
ð8Þ

It is important to point out that this kind of polynomials
was employed in [8] to deal with some types of fractional
DEs.

Some celebrated polynomials can be obtained as special
cases of the GLPs as a result of the existence of two param-
eters. In fact, the Lucas polynomials LiðεÞ, Fermat-Lucas
polynomials F iðεÞ, Pell-Lucas polynomials QiðεÞ, Cheby-
shev polynomials of the first kind TiðεÞ, and Dickson poly-
nomials of the first kind Dα

i ðεÞ are special ones of the GLPs
. Explicitly, we have

Li εð Þ = ϕ1,1i εð Þ, F i εð Þ = ϕ3,−2i εð Þ,
Qi εð Þ = ϕ2,1i εð Þ,
Dα
i εð Þ = ϕ1,−αi εð Þ:

ð9Þ

The GLPs have the following analytic formula ([8]):

ϕa,bj εð Þ = j 〠
j
2½ �

r=0

j − r

r

 !
br

j − r
a εð Þj−2r , j ≥ 1,

ð10Þ

where [z] denotes the well-known floor function, which can
also be written as:

ϕa,bj εð Þ = j 〠
j

k=0

2 δj+k
j + k/2
j − k/2

 !
bj−k/2

j + k
a εð Þk,

ð11Þ

where

δn =
0, if n odd,
1, if n even:

(
ð12Þ

3. Numerical Treatment of the
One-Dimensional Heat Equation

This section focuses on treating the one-dimensional partial
differential heat equation We will analyze a numerical

solution of the following one-dimensional linear non-
homogeneous heat equation ([14]):

ut ξ, tð Þ = K uξ ξ ξ, tð Þ + g ξ, tð Þ, 0 ≤ ξ ≤ L, t ≥ 0, ð13Þ

governed by the non-homogeneous boundary conditions:

u 0, tð Þ = S1 tð Þ, u L, tð Þ = S2 tð Þ, t ≥ 0, ð14Þ

and the initial conditions:

u ξ, 0ð Þ = f1 ξð Þ, 0 ≤ ξ ≤ L: ð15Þ

3.1. Integral Equation Corresponding to (13)-(15). Our strat-
egy to solve the one-dimensional heat equation (13) gov-
erned by the conditions (14) and (15) is to treat with its
corresponding integral equation.

Now, integrating Eq. (13) with respect to the variable t
taking into the consideration the initial condition in (15),
we get

u ξ, tð Þ = K
ðt
0
uξξ ξ, εð Þ dε +

ðt
0
g ξ, εð Þ dε + f1 ξð Þ, ð16Þ

governed by the non-homogeneous boundary conditions:

u 0, tð Þ = S1 tð Þ, u L, tð Þ = S2 tð Þ, t ≥ 0: ð17Þ

3.2. Spectral Tau Treatment for the Heat Equation. The
objective of the current section is to propose a spectral tau
algorithm for numerically solving the corresponding integral
form to the linear one-dimensional heat type equation. First,
we consider the two families of basis functions fϕa,bj ðξÞg

j≥0
and fϕa,bi ðtÞgi≥0. Consider the next two spaces:

P = ε ∈ θ2 Ωð Þ: ε 0, tð Þ = ε L, tð Þ = 0 ; 0 < t ≤ τ
� �

,

PM = span ϕa,bj ξð Þϕa,bi tð Þ: j, i = 0, 1,⋯,M
n o

,
ð18Þ

where θ2ðΩÞ; Ω = ð0, LÞ × ð0, τ� is the Sobolev space [38].
Now, the following approximation can be assumed for

uðξ, tÞ:

uM ξ, tð Þ = 〠
M

j=0
〠
M

i=0
cji ϕ

a,b
j ξð Þ ϕa,bi tð Þ: ð19Þ

To use the spectral tau approach to Eq. (16) implies that
we first compute the residual of Eq. (13). It is given by

R ξ, tð Þ = 〠
M

j=0
〠
M

i=0
cji ϕ

a,b
j ξð Þ ϕa,bi tð Þ

− 〠
M

j=0
〠
M

i=0
cji∂ξξ ϕ

a,b
j ξð Þ

ðt
0
ϕa,bi εð Þ dε − g2 ξ, tð Þ:

ð20Þ
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The analytic form of ϕa,bj ðξÞ in (11) allows us to express

explicitly D2ϕa,bj ðξÞ and Ð t0 ϕa,bi ðεÞ dε in the following forms:

D2ϕa,bj ξð Þ =

0, if j = 0,

〠
j

k=0

2 j k k − 1ð Þ ak bj−k/2 δj+k
j + k/2
j − k/2

 !

j + kð Þ ξk−2, if j ≥ 1,

8>>>><
>>>>:

ð21Þ

D−1
t ϕ

a,bð Þ
i tð Þ =

ðt
0
ϕa,bi εð Þdε

=

2t, if i = 0,

〠
i

k=0

2 i ak bi−k/2 δi+k
i + k/2

i − k/2

 !

i + kð Þ k + 1ð Þ tk+1, if i ≥ 1:

0
BBBBB@

ð22Þ
Based on the two Formulas (21) and (22), the residual in

(20) can be rewritten as

R ξ, tð Þ = 〠
M

j=0
〠
M

i=0
4 j i cji 〠

j

k=0
〠
i

k=0

�
a2k bj+i/2−k δj+k δi+k

j + k/2

j − k/2

 !
i + k/2

i − k/2

 !

j + kð Þ i + kð Þ

� ξ tð Þk − k k − 1ð Þ ξk−2 tk+1
k + 1

 !
− g2 ξ, tð Þ,

ð23Þ

and therefore, the following system of equations can be
acquired after the spectral tau technique is applied (see, [7]).

ðτ
0

ðL
0
R ξ, tð Þϕa,bj ξð Þϕa,bi tð Þ dξ dt = 0, 0 ≤ j, i ≤M − 1: ð24Þ

In addition, the boundary conditions (14) give:

〠
M

j=0
〠
M

i=0
cji ϕ

a,b
j 0ð Þϕa,bi

k + 1
M + 2 τ
� �

= S1
k + 1
M + 2 τ
� �

, 0 ≤ k ≤M − 1,
ð25Þ

〠
M

j=0
〠
M

i=0
cji ϕ

a,b
j Lð Þϕa,bi

k + 1
M + 2 τ
� �

= S2
k + 1
M + 2 τ
� �

, 0 ≤ k ≤M:

ð26Þ

Eqs. (24), (25), and (26) create a system of linear equa-
tions in the dimension ðM + 1Þ2 with unknown expansion

coefficients cji. The solution of this system can be found
via the Gaussian elimination method.

4. Treatment of the Two-Dimensional
Heat Equation

The distribution of heat flow in a two-dimensional space is
governed by the following initial boundary value problem
(see, [39, 40])

ut ξ, η, tð Þ = �K uξξ ξ, η, tð Þ + uηη ξ, η, tð Þ	 

; ξ, η, tð Þ ∈ ϑ,

ð27Þ

subject to the boundary conditions (BCs):

u 0, η, tð Þ = u L1, η, tð Þ = 0,
u ξ, 0, tð Þ = u ξ, L2, tð Þ = 0,

ð28Þ

and the initial condition (IC):

u ξ, η, 0ð Þ = g ξ, ηð Þ, ð29Þ

where u ≡ uðξ, η, tÞ is the temperature of any point located at
the position ðξ, ηÞ of a rectangular plate at any time t, �K is
the thermal diffusivity, and ϑ = ð0, L1Þ × ð0, L2Þ × ð0, TÞ.

We suggest the following approximate spectral solution

uM ξ, η, tð Þ = 〠
M

n=0
〠
M

m=0
〠
M

ℓ=0
cℓ,m,n ϕ

a,bð Þ
ℓ ξð Þϕ a,bð Þ

m ηð Þ ϕ a,bð Þ
n tð Þ:

ð30Þ

By integrating (27) with respect to the variable t and
making use of the IC (29), we get

u ξ, η, tð Þ = �K
ðt
0
uξξ ξ, η, tð Þ + uηη ξ, η, tð Þ	 


dτ + g ξ, ηð Þ: ð31Þ

Now, making use of (21) and (22), we can approximateÐ t
0 ðuξξðξ, η, tÞ + uηηðξ, η, tÞÞdτ in the form:

ðt
0

uξξ ξ, η, tð Þuηη ξ, η, tð Þ	 

dτ

≈ 〠
M

n=0
〠
M

m=0
〠
M

ℓ=0
cℓ,m,n D

2
ξ ϕ

a,bð Þ
ℓ ξð ÞD2

η ϕ
a,bð Þ
m ηð ÞD−1

t ϕ a,bð Þ
n tð Þ,

ð32Þ

where D2
ξ ϕ

ða,bÞ
ℓ ðξÞ, D2

η ϕ
ða,bÞ
m ðηÞ can be expressed by (21), and

D−1
t ϕða,bÞn ðtÞ can be expressed by (22).
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Our strategy to solve numerically (27)-(29) is to utilize
the spectral collocation method. For the residual of (31) is
given by

R ξ, η, tð Þ = 〠
M

n=0
〠
M

m=0
〠
M

ℓ=0
cℓ,m,nϕ

a,bð Þ
ℓ ξð Þϕ a,bð Þ

m ηð Þ ϕ a,bð Þ
n tð Þ

− �K 〠
M

n=0
〠
M

m=0
〠
M

ℓ=0
cℓ,m,nD

2
ξϕ

a,bð Þ
ℓ ξð ÞD2

ηϕ
a,bð Þ
m

� ηð ÞD−1
t ϕ a,bð Þ

n tð Þ − g ξ, ηð Þ

ð33Þ

We choose the following Riemann nodes Pijk = ðξi, ηj, tkÞ,
with

ξi =
i + 1
M + 2 L1,

η j =
j + 1
M + 2 L2,

tk =
k + 1
M + 2 T

ð34Þ

Hence, the application of the spectral collocation method
implies that ([41]),

R Pijk

	 

= 0 ; 0 ≤ i, j ≤M, 0 ≤ k ≤M − 4, ð35Þ

and the use of the BCs leads to the following constraints:

u 0, η j, tk
� �

= 0, 0 ≤ j, k ≤M,

u L1, ηj, tk
� �

= 0, 0 ≤ j, k ≤M,

u ξi, 0, tkð Þ = 0, 0 ≤ i, k ≤M,
u ξi, L2, tkð Þ = 0, 0 ≤ i, k ≤M:

ð36Þ

Now, the above-mentioned equations build a system
of algebraic equations of dimension d, where d = ðM + 1Þ2
ðM − 3Þ + 4 ðM + 1Þ2 = ðM + 1Þ3:

Thanks to the Gaussian elimination technique, we get
the proposed approximate solution uMðξ, η, tÞ.

5. Error Analysis and Convergence of the
Proposed GLPs Expansion

The goal of this section is to investigate the error analysis
and convergence of the GLPs expansion that is used to solve
the one-dimensional heat equation (13) governed by the
underlying conditions (14) and (15). In the sequel, the next
two lemmas are useful.

Lemma 1. Let L > 0 and ξ ∈ ½0, L�. For the GLPs, the following
inequity is valid:

ϕa,bj ξð Þ
��� ��� ≤ 2 a3 + 3 b L

	 
j−1, j ≥ 1: ð37Þ

where a and b are positive values.

Proof. We prove by mathematical induction. The inequality
is satisfied for j = 1, since

ϕa,b1 ξð Þ
��� ��� = a ξj j ≤ 2: ð38Þ

We now assume that (37) is satisfied for j = k

ϕa,bk ξð Þ
��� ��� ≤ 2 a3 + 3 b L

	 
k−1
: ð39Þ

Finally, we demonstrate that validity of (37) for j = k + 1.
Now, we have

ϕa,bk+1 ξð Þ
��� ��� = a ξ ϕa,bk ξð Þ + b ϕa,bk−1 ξð Þ

��� ���
≤ 2 ϕa,bk ξð Þ
��� ��� + bj j ϕa,bk−1 ξð Þ

��� ���
= 2 a3 + 3 b L
	 
k−1 + 2 bj j a3 + 3 b L

	 
k−2
= 2 a3 + 3 b L
	 
k

a3 + 3 b L
	 
−1 + bj j a3 + 3 b L

	 
−2h i
≤ 2 a3 + 3 b L
	 
k

:

ð40Þ

This ends the proof of Lemma 1.

Lemma 2. For all L > 0, for every positive integer ν, and
ξ ∈ ½0, L�, the following inequity is valid for the GLPs:

Dνϕa,bj ξð Þ
��� ��� ≤ 13

4
a2 a3 + 3 b L
	 
 j−1ð Þ ν,  ð41Þ

Proof. By induction on j, we will get started. Assume that
the inequality (41) holds for ðj − 1Þ and ðj − 2Þ, and we
have to prove that (41) itself holds. Now, our assumption
implies that we have the following two inequalities:

Dνϕa,bj−1 ξð Þ
��� ��� ≤ 13

4 a2 a3 + 3 b L
	 
 j−2ð Þ ν, ð42Þ

Dνϕa,bj−2 ξð Þ
��� ��� ≤ 13

4 a2 a3 + 3 b L
	 
 j−3ð Þ ν

: ð43Þ
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In virtue of the recurrence relation (6) and the
Inequalities (42) and (43), we get

Dνϕa,bj ξð Þ
��� ��� = a ξ1−ν

Γ 2 − νð Þ ϕ
a,b
j−1 ξð Þ + a ξDνϕa,bj−1 ξð Þ + bDνϕa,bj−2 ξð Þ

�����
�����

≤
2 L−ν

Γ 2 − νð Þ 2 a3 + 3 b L
	 
 j−2ð Þ

+ 2 13
4 a2 a3 + 3 b L

	 
 j−2ð Þ ν
� �

+ bj j 13
4 a2 a3 + 3 b L

	 
 j−3ð Þ ν
� �

= 13 a2
4 a3 + 3 b L

	 
 j−1ð Þ ν

� 16 L−ν
13 a2 Γ 2 − νð Þ a3 + 3 b L

	 
 j−2− j ν+νð Þ
�

+ 2 a3 + 3 b L
	 
−ν + bj j a3 + 3 b L

	 
−2 ν

= 13 a2
4 a3 + 3 b L

	 
 j−1ð Þν

� 16
13 a2 Lν Γ 2 − νð Þ a3 + 3 b Lð Þj ν−ν−j+2
"

+ 2
a3 + 3 b Lð Þν + bj j

a3 + 3 b Lð Þ2 ν
#

≤
13 a2
4 a3 + 3 b L

	 
 j−1ð Þν
:

ð44Þ

Lemma 2 is now proved.

Theorem 3. let ϕa,bj ðξÞ and ϕa,bi ðtÞ belong to the space P,

and let jðϕa,bs ÞðkÞð0Þj ≤ ℓks , k ≥ 0, s = i, j. Let uðξ, tÞ be
expanded as

u ξ, tð Þ = 〠
∞

j=0
〠
∞

i=0
cji ϕ

a,b
j ξð Þϕa,bi tð Þ: ð45Þ

We have the following:

(1) jcjij ≤ jaj−j−jiℓjjℓii cosh ð2jaj−1jbj1/2ℓjÞ cosh ð2jaj−1
jbj1/2ℓiÞ/j!i!, which ℓj, ℓi are positive constants.

(2) The Series Comes to a Point of Absolute Convergence.

Proof. The first part of Theorem 3 can be demonstrated by
following the same steps that were used in [8]). Now, we

prove the remaining part of the theorem. Based on the first
part, we have

u ξ, tð Þj j = 〠
∞

i=0
〠
∞

j=0
cijϕ

a,b
j ξð Þϕa,bj tð Þ

��� ���
≤ 〠

∞

i=0
〠
∞

j=0

aj j−j−iℓjjℓii cosh 2 aj j−1 bj j1/2ℓj
� �

cosh 2 aj j−1 bj j1/2ℓj
� �

j!i!
ϕa,bj ξð Þϕa,bj tð Þ

������
������

ð46Þ

In virtue of Lemma 1, we get

u ξ, tð Þj j

≤ 〠
∞

i=0
〠
∞

j=0

aj j−j−i ℓjj ℓii cosh 2 aj j−1 bj j1/2 ℓj
� �

cosh 2 aj j−1 bj j1/2 ℓi
� �

j!i!

������
� 4 a3 + 3 b L

	 
j+i−2� ������
≤ 4 e a−1 ℓ j a3+3 b Lð Þj j+ a−1 ℓi a3+3 b Lð Þj j,

ð47Þ

then the series comes to a point of absolute convergence.

Theorem 4. Let uðξ, tÞ that belongs to the space P satisfy the
presumptions of Theorem 3, one obtains

eMj j ≤
4A eζ eβ ζM+1 + βM+1

h i
M + 1ð Þ! , ð48Þ

where the constants ζ and β are given as:

ζ = aj j−1 ℓj a3 + 3 b L
	 


, β = aj j−1 ℓi a3 + 3 b L
	 


, and

A = 2 aj j−1 bj j12 ℓj
� �3

2 aj j−1 bj j12 ℓi
� �2

:
ð49Þ

Proof. If we consider

eM ξ, tð Þj j = u ξ, tð Þ − uM ξ, tð Þj j, ð50Þ

then, we have

eM ξ, tð Þj j = 〠
∞

j=0
〠
∞

i=0
cji ϕ

a,b
j ξð Þ ϕa,bi tð Þ − 〠

M

j=0
〠
M

i=0
cji ϕ

a,b
j ξð Þ ϕa,bi tð Þ

�����
�����

≤ 〠
M

j=0
〠
∞

i=M+1
cji ϕ

a,b
j ξð Þϕa,bi tð Þ

�����
�����

+ 〠
∞

j=M+1
〠
∞

i=0
cji ϕ

a,b
j ξð Þϕa,bi tð Þ

�����
�����

≤ 〠
M

j=0
〠
∞

i=M+1
cji
�� �� ϕa,bj ξð Þ
��� ��� ϕa,bi tð Þ

��� ���
+ 〠

∞

j=M+1
〠
∞

i=0
cji
�� �� ϕa,bj ξð Þ
��� ��� ϕa,bi tð Þ

��� ���:
ð51Þ
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From Theorem 3, we get

eM ξ, tð Þj j ≤ 〠
M

j=0
〠
∞

i=M+1

�
aj j−j−i ℓ jj ℓii cosh 2 aj j−1 bj j1/2 ℓj

� �
cosh 2 aj j−1 bj j1/2 ℓi

� �
j!i!

� ϕa,bj ξð Þ
��� ��� ϕa,bi tð Þ

��� ��� + 〠
∞

j=M+1
〠
∞

i=0

�
aj j−j−i ℓ jj ℓii cosh 2 aj j−1 bj j1/2 ℓj

� �
cosh 2 aj j−1 bj j1/2 ℓi

� �
j!i!

� ϕa,bj ξð Þ
��� ��� ϕa,bi tð Þ

��� ���
≤ A 〠

M

j=0
〠
∞

i=M+1

aj j−j−i ℓjj ℓii
j!i!

ϕa,bj ξð Þ
��� ��� ϕa,bi tð Þ

��� ���
+ A 〠

∞

j=M+1
〠
∞

i=0

aj j−j−i ℓjj ℓii
j!i!

ϕa,bj ξð Þ
��� ��� ϕa,bi tð Þ

��� ���:
ð52Þ

Based on Lemma 1, we can write

eMj j ≤ A〠
M

j=0
〠
∞

i=M+1

4 aj j−j−i ℓjj ℓii
j!i!

a3 + 3 b L
	 
j+i−2

+ A 〠
∞

j=M+1
〠
∞

i=0

4 aj j−j−i ℓjj ℓii
j!i!

a3 + 3bL
	 
j+i−2

≤ A〠
M

j=0

2 aj j−j ℓjj
j!

a3 + 3bL
	 
j 〠

∞

i=M+1

2 aj j−i ℓii
i!

a3 + 3bL
	 
i

+ A 〠
∞

j=M+1

2 aj j−j ℓjj
j!

a3 + 3bL
	 
j

�〠
∞

i=0

2 aj j−i ℓii
i!

a3 + 3 b L
	 
i

≤ 4A 〠
M

j=0

aj j−1 ℓj a3 + 3 b L
	 
	 
j
j!

� 〠
∞

i=M+1

aj j−1 ℓi a3 + 3 b L
	 
	 
i
i!

+ 4A 〠
∞

j=M+1

aj j−1 ℓj a3 + 3 b L
	 
	 
j
j!

�〠
∞

i=0

aj j−1 ℓi a3 + 3 b L
	 
	 
i
i!

≤ 4A〠
M

j=0

ζð Þj
j!

〠
∞

i=M+1

βð Þi
i!

+ 4A 〠
∞

j=M+1

ζð Þj
j!

〠
∞

i=0

βð Þi
i!

≤ 4Aeζeβ Γ M + 1, ζð Þ
Γ M + 1ð Þ

γ M + 1, βð Þ
Γ M + 1ð Þ + γ M + 1, ζð Þ

Γ M + 1ð Þ
� 

≤ 4Aeζeβ γ M + 1, ζð Þ
Γ M + 1ð Þ + γ M + 1, βð Þ

Γ M + 1ð Þ
� 

≤
4A eζ eβ

Γ M + 1ð Þ
ðζ
0
xM e−x dx +

ðβ
0
xM e−x dx

" #
, ð53Þ

and consequently, this leads to

eMj j ≤
4A eζ eβ ζM+1 + βM+1

h i
M + 1ð Þ! , ð54Þ

Because of simple inequity: e−x ≤ 1; x ≥ 0.
Note: γð:, :Þ, Γð:, :Þ, and Γð:Þ denote, respectively, lower

incomplete gamma, upper incomplete gamma, and gamma
functions (see, [42]).

6. Numerical Outcomes and Comparisons

This section presents some examples to demonstrate the
accuracy and performance of the following two proposed
methods:

(i) The generalized Lucas tau method (GLTM) that
employed for treating the one-dimensional heat
equation.

(ii) The generalized Lucas collocation method (GLCM)
that employed for treating the two-dimensional heat
equation.

The error is represented by E in the maximum norm,
that is, in one dimension E is computed by the formula:

E =max uM ξ, tð Þ − u ξ, tð Þj j, 0 ≤ ξ ≤ L, t ≥ 0, ð55Þ

We refer here that Mathematica software was used to
perform all of the numerical data.

Example 5 (see [9, 12]). Consider the following heat equation:

ut ξ, tð Þ = uξξ ξ, tð Þ, 0 < ξ < 1, 0 < t < 1, ð56Þ

with the following initial boundary conditions:

u 0, tð Þ = 0, u 1, tð Þ = e−t sin 1ð Þ, u ξ, 0ð Þ = sin ξ: ð57Þ

The exact solution for Eq. (56) is: uðξ, tÞ = e−t sin ξ. In
Table 1, the maximum absolute errors (MAEs) obtained

Table 1: The MAEs for Example 5 using the GLTM:

t M = 2 M = 6
0.1 3.54 × 10−16 9.22 10−12

0.3 3.33 × 10−16 1.57 × 10−11

0.5 3.89 × 10−16 2.23 × 10−11

0.7 5.00 × 10−16 3.17 × 10−11

0.9 0 4.40 × 10−11

1 0 5.05 × 10−11
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from the application of the GLTM are listed for M = 2 and
M = 6, while in Table 2, we compare the errors resulted from
the application of the GLTM for the case corresponding to
M = 4 and a = b = 1 with the best errors resulted from the
application of the methods developed in [9, 12]. It is noticed
from the obtained results in Table 2 that GLTM is more
accurate than the two methods that developed in [9, 12].
Figure 1 displays the exact solution. Figure 2 shows the
approximate solution for the case corresponding to
a=b=1, whereas Figure 3 shows the resulting AEs if the
GLTM is applied.

Example 6 (see [9]). Consider the heat equation:

ut ξ, tð Þ = uξξ ξ, tð Þ + 2t + t2
	 


sin ξ, 0 < ξ < 1, 0 < t < 1,
ð58Þ

governed by the following conditions:

u 0, tð Þ = 0, u 1, tð Þ = t2 sin 1ð Þ, u ξ, 0ð Þ = 0: ð59Þ

The exact solution of Eq. (58) is: uðξ, tÞ = t2 sin ξ. A
comparison of the MAEs of Example (55) resulting from
the GLTM for the choices: M = 4, (a = 1/2, b = 1), and
(a= b=1) and the method applied in [9] is shown in

Table 3. From the results in Table 3, it is evident that
the GLTM is more accurate than the method developed
in [9]. Furthermore, the exact solution, approximate solu-
tion (for the case corresponding to M = 4, a = b = 1), and

4. x 10-13

2. x 10-13

0.5

1.0 0.0

0.5

1.0

0.0
0

Figure 3: Absolute error for Example 5.

0.8
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0.4
0.2
0.0
0.0

0.5

1.0 0.0

0.5

1.0

Figure 2: Approximate solution for Example 5.

Table 2: Comparison of the MAEs of Example 5.

M = 4
t GLTM Method in [9] Method in [12]

0.1 4.71 × 10−13 1.07 × 10−5 2.4079 × 10−7

0.3 4.55 × 10−13 3.45 × 10−6 3.0662 × 10−7

0.5 4.45 × 10−13 5.13 × 10−6 2.6652 × 10−7

0.7 4.33 × 10−13 7.45 × 10−6 2.2036 × 10−7

0.9 4.16 × 10−13 9.47 × 10−6 1.8072 × 10−7

1 4.08 × 10−13 1.02 × 10−5 1.6355 × 10−7

0.8
0.6
0.4
0.2
0.0
0.0

0.5

1.0 0.0

0.5

1.0

Figure 1: Exact solution for Example 5.

Table 3: Comparison of the MAEs of Example 6 for M = 4.

GLTM Method in [9]
t Error a = 1/2, b = 1ð Þ Error a = b = 1ð Þ Error

0.1 1.34 × 10−10 1.19 × 10−12 1.40 × 10−3

0.3 1.55 × 10−10 1.24 × 10−12 5.78 × 10−3

0.5 1.79 × 10−10 1.25 × 10−12 5.67 × 10−3

0.7 1.04 × 10−10 1.21 × 10−12 1.10 × 10−3

0.9 2.40 × 10−10 1.12 × 10−12 1.63 × 10−3

1 2.60 × 10−10 1.05 × 10−12 2.27 × 10−3
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absolute errors of the GLTM are displayed, respectively, in
Figures 4–6.

Example 7 (see [9, 10]. The following homogeneous heat
equation:

ut ξ, tð Þ = uξξ ξ, tð Þ, 0 < ξ < 1, 0 < t < 1, ð60Þ

governed by the following conditions:

u 0, tð Þ = u 1, tð Þ = 0, u ξ, 0ð Þ = sin πξð Þ: ð61Þ

Table 5: Comparison of MAEs of Example 7.

M GLTM CN [10] CBVM [10]

5 4.0 × 10−8 1.1 × 10−1 2.8 × 10−2

10 1.5 × 10−4 3.0 × 10−2 3.8 × 10−3

Table 6: The MAEs of Example 7 for M = 2.

t 0.1 0.3 0.5 0.7 0.9 1

9.49 × 10−14 0 0 0 5.68 × 10−14 8.53 × 10−14

200

-200
-400

0

0.0

0.5

1.0 0.0

0.5

1.0

Figure 7: Exact solution for Example 7.

Table 4: Comparison of the MAEs of Example 7 for M = 4.

t
GLTM

a = 1/2, b = 1ð Þ
GLTM
a = b = 1ð Þ

GLTM
a = 3, b = 1ð Þ Method in [9]

0.1 5.06 × 10−5 4.29 × 10−8 3.87 × 10−10 6.79 × 10−3

0.3 5.43 × 10−5 4.47 × 10−8 3.86 × 10−10 3.76 × 10−4

0.5 5.87 × 10−5 4.37 × 10−8 5.76 × 10−10 2.44 × 10−4

0.7 6.39 × 10−5 4.21 × 10−8 6.53 × 10−10 3.17 × 10−4

0.9 6.97 × 10−5 3.70 × 10−8 7.69 × 10−10 3.14 × 10−3

1 7.29 × 10−5 3.36 × 10−8 8.52 × 10−10 3.32 × 10−3

0.8
0.6
0.4
0.2

0.0
0.0

0.5

1.0 0.0

0.5

1.0

Figure 5: Approximate solution for Example 6.
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Figure 6: Absolute error for Example 6.
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Figure 4: Exact solution for Example 6.
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The exact solution of (60) is: uðξ, tÞ = e−π
2t sin ðπ ξÞ. For

M = 4, and the three choices: ða = 1/2, b = 1Þ, (a = b=1), and
(a= 3, b=1), we compare the solutions behavior for GLTM
and method in [9] as shown in Table 4. In Table 5, the
MAE for various values of M and a=b=1 is listed, which
illustrates that the GLTM is more accurate than the method

Table 7: Comparison of the MAEs of Example 8 for M = 4.

t
GLTM

a = 1/2, b = 1ð Þ
GLTM
a = b = 1ð Þ

GLTM
a = 3, b = 1ð Þ Method in [9]

0.1 1.96 × 10−13 1.73 × 10−13 2.89 × 10−14 8.44 × 10−3

0.3 1.94 × 10−13 1.73 × 10−13 9.24 × 10−15 8.10 × 10−3

0.5 1.98 × 10−13 1.74 × 10−13 4.07 × 10−14 7.43 × 10−3

0.7 2.00 × 10−13 1.74 × 10−13 4.51 × 10−14 9.81 × 10−3

0.9 1.87 × 10−13 1.74 × 10−13 1.94 × 10−14 1.07 × 10−3

1 1.89 × 10−13 1.74 × 10−13 0 1.15 × 10−3

1.0

0.5

0.0
0.0

0.5

1.0 0.0

0.5

1.0

Figure 11: Approximate solution for Example 8.

1.5 x 10-13

1. x 10-13

5. x 10-14

0.5

1.0 0.0

0.5

1.0

0.0

Figure 12: Absolute error for Example 8.
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Figure 10: Exact solution for Example 8.
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Figure 9: Absolute error for Example 7.
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Figure 8: Approximate solution for Example 7.
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developed in [9]. Moreover, the approximate solution closes
to the exact solution for M = 2 and a=b=1 as shown in
Table 6. For the three cases correspond to a= b=1,
Figures 7 and 8 show the difference between the exact and
the approximate solutions. Finally, Figure 9 plotted the abso-
lute error when M = 4.

Example 8 (see [9]). Consider the following homogeneous
heat equation:

ut ξ, tð Þ = uξξ ξ, tð Þ, 0 < ξ < 1, 0 < t < 1, ð62Þ

governed by the following conditions:

u 0, tð Þ = 0, u 1, tð Þ = sinh 1ð Þ e−t , u ξ, 0ð Þ = sinh ξ: ð63Þ

The exact solution of Eq. (62) is given by: uðξ, tÞ =
e−t sinh ðξÞ. We present in Table 7 a comparison between
the resulting error from the application of the GLTM for
the case corresponding to M = 4, and for the three choices:
ða = 1/2, b = 1Þ, (a = b=1), and ða = 3, b = 1Þ with those
obtained by the application of the method presented in [9].
In Figures 10–12, the exact solution, approximate solution,

Table 8: The maximum pointwise error at different times of Example 9.

ξ = η t = 1 t = 2 t = 3 t = 4
π/4 6.94097 × 10−6 1.88675 × 10−5 2.63317 × 10−5 3.11073 × 10−5

π/2 1.22752 × 10−3 3.33673 × 10−3 4.65679 × 10−3 5.50135 × 10−3

3π/4 1.49306 × 10−2 4.05855 × 10−2 5.66416 × 10−2 6.69141 × 10−2

0

1

2

3

ξ

0

1

2

3

η

0.00

0.05

0.10
t=1

Figure 13: Approximate solution for Example 9 at t =1.
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Figure 14: Approximate solution for Example 9 at t = 2.
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Figure 15: Approximate error for Example 9 at t = 3.
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Figure 16: Approximate error for Example 9 at t = 4.
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and absolute errors for the case corresponding to a = b = 1,
resulted from the GLTM are, respectively, displayed.

Example 9 (see [39, 40]). Consider the following two-
dimensional heat equation:

ut ξ, η, tð Þ = uξξ ξ, η, tð Þ + uηη ξ, η, tð Þ, 0 < ξ, η < π, 0 < t < T ,
ð64Þ

with the boundary conditions:

u 0, η, tð Þ = u π, η, tð Þ = 0, u ξ, 0, tð Þ = u ξ, π, tð Þ = 0, ð65Þ

and the initial condition:

u ξ, η, 0ð Þ = sin ξð Þ sin ηð Þ: ð66Þ

The exact solution of Eq. (64) is uðξ, η, tÞ = e−2t sin ðξÞ
sin ðηÞ. For different times (t =1, t = 2, t = 3, and t = 4), we
show the maximum pointwise error in Table 8 and the
approximate solution in Figures 13, 14, 15, and 16,
respectively.

7. Conclusions

In this paper, the generalized Lucas polynomials were uti-
lized along with certain suitable spectral methods for obtain-
ing numerical solutions of one- and two-dimensional heat
equations. Two numerical approaches are followed for solv-
ing such equations. We showed that the proposed methods
are superior if compared to some other methods. We have
obtained more precise errors if the retained modes of the
approximate expansions are small. Some estimations con-
cerned with the generalized Lucas polynomials were proved
and they served to investigate the convergence analysis of
the suggested approximate expansion in one dimension. As
future work, we plan to use the generalized Lucas polyno-
mials to solve some other types of differential equations. In
addition, we plan to use the generalized Lucas polynomials
to solve some other types of heat equations.
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