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In this manuscript, we use the concepts of continuous t-norms and continuous t-conorms to introduce some definitions, in which
intuitionistic fuzzy rectangular metric spaces, intuitionistic fuzzy rectangular metric-like spaces, intuitionistic fuzzy rectangular b-
metric spaces, intuitionistic fuzzy rectangular b-metric-like spaces, neutrosophic rectangular metric spaces, neutrosophic
rectangular metric-like spaces, neutrosophic rectangular b-metric spaces, and neutrosophic rectangular b-metric-like spaces are
included. Continuous t-norms and continuous t-conorms are used to generalize the probability distribution of triangular in-
equalities in metric space axioms. Nontrivial examples, some fixed point results, and an application to the integral equation are
imparted in this manuscript.

1. Introduction

Fuzzy set (FS) presented by Zadeh [1] is a useful tool for
those situations in which the data are imprecise and the idea
of degree of membership is involved in FS theory. Intui-
tionistic fuzzy sets (IFSs) introduced by Atanassov [2] are
the generalization of the FS, in which degrees of membership
and nonmembership are involved. Smarandache [3] pre-
sented the idea of neutrosophic sets (NSs) that are the
generalization of the IFS, in which degrees of membership,
nonmembership, and uncertainty are involved.

By combining the concepts of FS and metric spaces,
fuzzy metric spaces (FMSs) were presented by Kramosil and
Michalek [4]. Kaleva and Seikkala [5] coined FMS in which
they defined a distance between two points to be a non-
negative fuzzy number, and Garbiec [6] presented the fuzzy
interpretation of the Banach contraction principle in the
FMS. Park [7] presented the intuitionistic fuzzy metric space
(IFMS), in which he used George and Veeramani’s [8]
approach of applying continuous t-norm (CTN) and con-
tinuous t-conorm (CTCN) to the FMS. Kirişci and Şimşek
[9] presented the notion of neutrosophic metric space
(NMS), in which they used the idea of NS and probabilistic

metric spaces. FMS deals with membership functions, and
IFMS deals with membership and nonmembership func-
tions. NMS is a generalization of the IFMS that deals with
membership, nonmembership, and inconsistent functions.
Altun et al. [10] and Aslantas et al. [11] proved some in-
teresting results for cyclic p-contractions and KW-type
nonlinear contractions. Al-Omeri et al. [12, 13] proved
several neutrosophic fixed point results and generalized
theorems in the sense of neutrosophic cone metric spaces.

Javed et al. [14] presented the idea of fuzzy b-metric-like
spaces (FBMLSs) and proved several fixed point results.
Mehmood et al. [15] presented the concept of fuzzy rect-
angular b-metric spaces (FRBMSs) and proved the Banach
contraction principle in the sense of FRBMS. For some
necessary definitions and related fixed point results, see
[16–19].

In this manuscript, we generalized the concepts used in
[14, 15]. )e main objectives of this manuscript are as
follows:

(i) To present different notions in the intuitionistic
fuzzy and neutrosophic fixed point theory

(ii) To prove certain fixed point theorems
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(iii) To enhance the existing literature of the FMS and
fuzzy fixed point theory

)is study is organized with some basic notions of FRBMS,
FBMLS, IFMS, and NMS. )e notions of intuitionistic fuzzy
rectangular metric spaces (IFRMSs), intuitionistic fuzzy rect-
angular metric-like spaces (IFRMLSs), intuitionistic fuzzy
rectangular b-metric spaces (IFRBMSs), intuitionistic fuzzy
rectangular b-metric-like spaces (IFRBMLSs), neutrosophic
rectangular metric spaces (NRMSs), neutrosophic rectangular
metric-like spaces (NRMLSs), neutrosophic rectangular
b-metric spaces (NRBMSs), and neutrosophic rectangular
b-metric-like spaces (NRBMLSs) are discussed in detail, and
several fixed point results, nontrivial examples, and an appli-
cation to the integral equation are imparted. At the end,
conclusion is given for the examined results.

2. Preliminaries

In this section, some basic definitions are imparted that are
helpful to understand the main section.

Definition 1 (see [7]). A binary operation ∗ : [0, 1] × [0,
1]⟶ [0, 1] is called a CTN if it meets the following
assertions:

C1. ζ ∗ b � b∗ ζ, (∀) ζ, b ∈ [0, 1]

C2. ∗ is continuous
C3. ζ ∗ 1 � ζ, (∀) ζ ∈ [0, 1]

C4. (ζ ∗ b)∗ c � ζ ∗ (b∗ c), (∀) ζ, b, c ∈ [0, 1]

C5. If ζ ≤ c and b≤ σ, with ζ, b, c, σ ∈ [0, 1], then
ζ ∗ b≤ c∗ σ

Definition 2 (see [7]). A binary operation ○: [0, 1] × [0,
1]⟶ [0, 1] is called a CTCN if it meets the following
assertions:

T1. ζ○b � b○ζ, for all ζ, b ∈ [0, 1]

T2. ○ is continuous
T3. ζ○0 � 0, for all ζ ∈ [0, 1]

T4. (ζ○b)○c � ζ○(b○c), for all ζ, b, c ∈ [0, 1]

T5. If ζ ≤ c and b≤ σ, with ζ, b, c, σ ∈ [0, 1], then
ζ○b≤ c○σ

Definition 3 (see [19]). Let a set Ε≠∅ and ϑ ∈ Ε. A NS G in
Ε is categorized by a truth membership function BG(ϑ), an
indeterminacy membership function DG(ϑ), and a falsity
membership function QG(ϑ). )e functions BG(ϑ), DG(ϑ),
and QG(ϑ) are real standard or nonstandard subsets of
]0− , 1+[; that is, BG(ϑ): E⟶ 0− , 1+[, DG(ϑ): E⟶ 0− ,

1+[ and QG(ϑ): E⟶ 0− , 1+[. So,

0− ≤ supBG(ϑ) + supDG(ϑ) + supQG(ϑ)≤ 3+
. (1)

Definition 4 (see [14]). Let E be a nonempty set. A triplet
(E, Fb, ∗ ) is called a FBMLS if ∗ is a CTN and Fb is a FS on

E × E × (0,∞) and fulfills the following assertions for all
ϑ, δ, g ∈ E and τ, z> 0:

A1. Fb(ϑ, δ, τ)> 0
A2. Fb(ϑ, δ, τ) � 1; then, ϑ � δ
A3. Fb(ϑ, δ, τ) � Fb(δ, ϑ, τ)

A4. Fb(ϑ, g, b(τ + z))≥Fb(ϑ, δ, τ)∗Fb(δ, g, z)

A5. Fb(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Fb(ϑ, δ, τ) � 1

Definition 5 (see [15]). Let E be a nonempty set. A triplet
(E, Rb, ∗ ) is called a FRMS if ∗ is a CTN and Rb is a FS on
E × E × [0,∞) and fulfills the following assertions for all
ϑ, δ, g ∈ E and τ, z, w> 0:

(1) Rb(ϑ, δ, 0) � 0
(2) Rb(ϑ, δ, τ) � 1 if and only if ϑ � δ
(3) Rb(ϑ, δ, τ) � Rb(δ, ϑ, τ)

(4) Rb(ϑ, g, τ + z + w)≥Rb(ϑ, δ, τ)∗Rb(δ, u, z) +

Rb(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

(5) Rb(ϑ, δ, .): (0,∞)⟶ [0, 1] is left continuous, and
limτ⟶∞Rb(ϑ, δ, τ) � 1

Definition 6 (see [7]). Take Ε≠∅. Let ∗ be a CTN, ○ be a
CTCN, and F, V be FSs on E × E × (0,∞). If (E, F, V, ∗ ,○)
verifies the following assertions for all ϑ, δ ∈ E and z, τ > 0,

F1. F(ϑ, δ, τ) + V(ϑ, δ, τ)≤ 1
F2. F(ϑ, δ, τ)> 0
F3. F(ϑ, δ, τ) � 1⟺ϑ � δ
F4. F(ϑ, δ, τ) � F(δ, ϑ, τ)

F5. F(ϑ, g, τ + z)≥F(ϑ, δ, τ)∗F(δ, g, z)

F6. F(ϑ, δ, z): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞F(ϑ, δ, τ) � 1 for all τ > 0
F7. V(ϑ, δ, τ)> 0
F8. V(ϑ, δ, τ) � 0⟺zϑ � δ
F9. V(ϑ, δ, τ) � V(δ, ϑ, τ)

F10. V(ϑ, g, τ + z)≤V(ϑ, δ, τ)○V(δ, g, z)

F11. V(ϑ, δ, z): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞V(ϑ, δ, τ) � 0 for all τ > 0
)en, (E, F, V, ∗ , ○) is an IFMS

Definition 7 (see [8]). Let E≠∅, ∗ be a CTN, and ○ be a
CTCN. L, W, andQ are NSs on E × E × (0,∞) which are
said to be a neutrosophic metric on E if for all ϑ, δ, g ∈ E, the
following circumstances fulfill:

S1. L(ϑ, δ, τ) + W(ϑ, δ, τ) + Q(ϑ, δ, τ)≤ 3 for all τ ∈ R+

S2. L(ϑ, δ, τ)> 0 for all τ > 0
S3. L(ϑ, δ, τ) � 1 for all τ > 0 if and only if ϑ � δ
S4. L(ϑ, δ, τ) � L(δ, ϑ, τ) for all τ > 0
S5. L(ϑ, g, τ + z)≥L(ϑ, δ, τ)∗L(δ, g, z) for all τ, z> 0

2 Journal of Function Spaces



S6. L(ϑ, δ, z): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞L(ϑ, δ, τ) � 1 for all τ > 0
S7. W(ϑ, δ, τ)< 1 for all τ > 0
S8. W(ϑ, δ, τ) � 0 for all τ > 0 if and only if ϑ � δ
S9. W(ϑ, δ, τ) � W(δ, ϑ, τ) for all τ > 0
S10. W(ϑ, g, τ + z)≤W(ϑ, δ, τ)○W(δ, g, z) for all
τ, z> 0
S11. W(ϑ, δ, z): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞W(ϑ, δ, τ) � 0 for all τ > 0
S12. Q(ϑ, δ, τ)< 1 for all τ > 0
S13. Q(ϑ, δ, τ) � 0 for all τ > 0 if and only if ϑ � δ
S14. Q(ϑ, δ, τ) � Q(δ, ϑ, τ) for all τ > 0
S15. Q(ϑ, g, τ + z)≤Q(ϑ, δ, τ)○Q(δ, g, z) for all
τ, z> 0
S16. Q(ϑ, δ, z): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Q(ϑ, δ, τ) � 0 for all τ > 0
)en, (E, L, W, Q, ∗ ,○) is called a NMS

3. Main Results

In this section, we present some new notions as general-
izations of intuitionistic fuzzy and neutrosophic metric
spaces; also, some fixed point results are proved.

Definition 8. Let Ε be a nonempty set. A five-tuple
(E,Bi,Di, ∗ ,○) is called an IFRMS if ∗ is a CTN, ○ is a
CTCN, and Bi andDi are two FSs on E × E × [0,∞) which
fulfill the following assertions for all ϑ, δ, g ∈ E and
τ, z, w> 0:

R1. Bi(ϑ, δ, τ) + Di(ϑ, δ, τ)≤ 1
R2. Bi(ϑ, δ, 0) � 0
R3. Bi(ϑ, δ, τ) � 1 if and only if ϑ � δ
R4. Bi(ϑ, δ, τ) � Bi(δ, ϑ, τ)

R5. Bi(ϑ, g, τ + z + w)≥Bi(ϑ, δ, τ)∗Bi(δ, u, z)+

Bi(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

R6. Bi(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Bi(ϑ, δ, τ) � 1
R7. Di(ϑ, δ, 0) � 1
R8. Di(ϑ, δ, τ) � 0 if and only if ϑ � δ
R9. Di(ϑ, δ, τ) � Di(δ, ϑ, τ)

R10. Di(ϑ, g, τ + z + w)≤Di(ϑ, δ, τ)○Di(δ, u, z)+

Di(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

R11. Di(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Di(ϑ, δ, τ) � 0

Example 1. Let (E, d) be a rectangular metric space, define
Bi,Di: E × E × [0,∞)⟶ [0, 1] by

Bi(ϑ, δ, τ) �
τ

τ + d(ϑ, δ)
,

Di(ϑ, δ, τ) � 1 −
τ

τ + d(ϑ, δ)
for all ϑ, δ ∈ E and τ > 0,

(2)

and let ∗ be a CTN and○ be a CTCN onE.)en, it is easy to
see that (E,Bi,Di, ∗ ,○) is an IRFMS.

Definition 9. Let E be a nonempty set. A five-tuple
(E,Bb,Db, ∗ ,○) is called an IFRBMS if there is b≥ 1, ∗ is a
CTN, ○ is a CTCN, and Bb andD are two FSs on E × E ×

[0,∞) verifying the following assertions for all ϑ, δ, g ∈ E

and τ, z, w> 0:

I. Bb(ϑ, δ, τ) + Db(ϑ, δ, τ)≤ 1
II. Bb(ϑ, δ, 0) � 0
III. Bb(ϑ, δ, τ) � 1 if and only if ϑ � δ
IV. Bb(ϑ, δ, τ) � Bb(δ, ϑ, τ)

V. Bb(ϑ, g, b(τ + z + w))≥Bb(ϑ, δ, τ)∗Bb(δ, u, z) +

Bb(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

VI. Bb(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Bb(ϑ, δ, τ) � 1
VII. Db(ϑ, δ, 0) � 1
VIII. Db(ϑ, δ, τ) � 0 if and only if ϑ � δ
IX. Db(ϑ, δ, τ) � Db(δ, ϑ, τ)

X. Db(ϑ, g, b(τ + z + w))≤Db(ϑ, δ, τ)○Db(δ, u, z) +

Db(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

XI. Db(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Db(ϑ, δ, τ) � 0

Example 2. Let (E, d) be a rectangular b-metric space, and
define Bb,Db: E × E × [0,∞)⟶ [0, 1] by

Bb(ϑ, δ, τ) �
τ

τ + d(ϑ, δ)
,

Db(ϑ, δ, τ) �
d(ϑ, δ)

τ + d(ϑ, δ)
for all ϑ, δ ∈ E and τ > 0,

(3)

with CTN ζ ∗ b � min ζ, b{ } and CTCN ζ○b � max ζ, b{ }.

)en, it is easy to see that (E,Bb,Db, ∗○) is an IFRBMS.

Example 3. Let (E, d) be a rectangular b-metric space, and
define Bb,Db: E × E × [0,∞)⟶ [0, 1] by

Bb(ϑ, δ, τ) � e
− d(ϑ,δ)/τ

,

Db(ϑ, δ, τ) � 1 − e
− d(ϑ,δ)/τ for all ϑ, δ ∈ E and τ > 0,

(4)

with CTN ζ ∗ b � min ζ, b{ } and CTCN ζ○b � max ζ, b{ }.

)en, it is easy to see that (E,Bb,Db, ∗○) is an IFRBMS.

Remark 1. )e above Examples 2 and 3 are also an IFRBMS
with CTN ζ ∗ b � ζ�b and CTCN ζ○b � max ζ, b{ }.

Remark 2. Every IFRMS is an IFRBMS, but the converse
may not be true.

Definition 10. Let E be a nonempty set. A five-tuple
(E,Bl,Dl, ∗ ,○) is called an IFRBMLS if there is b≥ 1, ∗ is
a CTN, ○ is a CTCN, and Bl andDl are two FSs on E ×

E × [0,∞) fulfilling the following assertions for all
ϑ, δ, g ∈ E and τ, z, w> 0:
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A. Bl(ϑ, δ, τ) + Dl(ϑ, δ, τ)≤ 1
B. Bl(ϑ, δ, 0) � 0
C. Bl(ϑ, δ, τ) � 1 implies ϑ � δ
D. Bl(ϑ, δ, τ) � Bl(δ, ϑ, τ)

E. Bl(ϑ, g, b(τ + z + w))≥Bl(ϑ, δ, τ)∗Bl(δ, u, z) +

Bl(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

F. Bl(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Bl(ϑ, δ, τ) � 1
G. Dl(ϑ, δ, 0) � 1
H. Dl(ϑ, δ, τ) � 0 implies if ϑ � δ
I. Dl(ϑ, δ, τ) � Dl(δ, ϑ, τ)

J. Dl(ϑ, g, b(τ + z + w))≤Dl(ϑ, δ, τ)○Dl(δ, u, z) +

Dl(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

K. Dl(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Dl(ϑ, δ, τ) � 0

Definition 11. In the above Definition 10, if we take b � 1,
then it becomes an IFRMLS.

Example 4. Define Bl,Dl: E × E × [0,∞)⟶ [0, 1] by

Bl(ϑ, δ, τ) �
τ

τ + max ϑ, δ{ }
p,

Dl(ϑ, δ, τ) �
max ϑ, δ{ }

p

τ + max ϑ, δ{ }
p for all ϑ, δ ∈ E and τ > 0,

(5)

with CTN ζ ∗ b � min ζ, b{ } and CTCN ζ○b � max ζ, b{ }.

)en, it is easy to see that (E,Bl,Dl, ∗○) is an IFRBMLS,
and if we take p � 1, then it becomes an IFRMLS.

Example 5. Define Bl,Dl: E × E × [0,∞)⟶ [0, 1] by

Bl(ϑ, δ, τ) � e
− max ϑ,δ{ }

p/τ
,

Dl(ϑ, δ, τ) � 1 − e
− max ϑ,δ{ }

p/τ for all ϑ, δ ∈ E, p≥ 1, and τ > 0,

(6)

with CTN ζ ∗ b � min ζ, b{ } and CTCN ζ○b � max ζ, b{ }.

)en, it is easy to see that (E,Bl,Dl, ∗○) is an IFRBMLS.

Remark 3. )e above Examples 4 and 5 are also an
IFRBMLS with CTN ζ ∗ b � ζ�b and CTCN
ζ○b � max ζ, b{ }.

Remark 4. In an IFRBMLS, the self-distance may not be
equal to 1 and 0.

For this, consider the above Example 5; then, we have

Bl(ϑ, ϑ, τ) � e
− max ϑ,ϑ{ }p/τ

� e
− ϑp/τ ≠ 1,

Dl(ϑ, ϑ, τ) � 1 − e
− max ϑ,ϑ{ }p/τ

� 1 − e
− ϑp/τ ≠ 0.

(7)

Remark 5. Every IFRBMS is an IFRBMLS, but the converse
may not be true.

Remark 6. IFRBMLS may not be continuous.

Example 6. Let E � [0,∞), Bl(ϑ, δ, τ) � e− d(ϑ,δ)/τ , and
Dl(ϑ, δ, τ) � 1 − e− d(ϑ,δ)/τ for all ϑ, δ ∈ E, τ > 0, and

d(ϑ, δ) �

0, if ϑ � δ,

2(ϑ + δ)
2
, if ϑ, δ ∈ [0, 1],

1
2
(ϑ + δ)

2
, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

If we define CTN by ζ ∗ b � ζ�b and CTCN by ζ○b �

max ζ, b{ }, then (E,Bl,Dl, ∗ ,○) is an IFRBMLS. Now, to
illustrate continuity, we have

lim
n⟶∞

Bl 0, 1 −
1
n

, τ􏼒 􏼓 � lim
n⟶∞

e
− 2(1− (1/n))2/τ

� e
− 2/τ

� Bl(0, 1, τ),

lim
n⟶∞

Dl 0, 1 −
1
n

, τ􏼒 􏼓 � 1 − lim
n⟶∞

e
− 2(1− (1/n))2/τ

� 1 − e
− 2/τ

� Dl(0, 1, τ).

(9)

However,

lim
n⟶∞

Bl 1, 1 −
1
n

, τ􏼒 􏼓 � lim
n⟶∞

e
− 2(2− (1/n))2/τ

� e
− 8/τ ≠ 1 � Bl(1, 1, τ),

lim
n⟶∞

Dl 1, 1 −
1
n

, τ􏼒 􏼓 � 1 − lim
n⟶∞

e
− 2(2− (1/n))2/τ

� 1 − e
− 8/τ ≠ 0 � Dl(1, 1, τ).

(10)

Hence, (E,Bl,Dl,Q, ∗ ,○) is not continuous.

Definition 12. Let E be a nonempty set. A six-tuple
(E,Be,De,Qe, ∗ ,○) is called a NRMS if ∗ is a CTN, ○ is a
CTCN, andBe, De, andQe are three NSs on E × E × [0,∞)

fulfilling the following assertions for all ϑ, δ, g ∈ E and
τ, z, w> 0:

(i) Be(ϑ, δ, τ) + De(ϑ, δ, τ) + Q(ϑ, δ, τ)≤ 3
(ii) Be(ϑ, δ, 0) � 0
(iii) Be(ϑ, δ, τ) � 1 if and only if ϑ � δ
(iv) Be(ϑ, δ, τ) � Be(δ, ϑ, τ)

(v) Be(ϑ, g, τ + z + w)≥Be(ϑ, δ, τ)∗Be(δ, u, z) +

Be(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

(vi) Be(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Be(ϑ, δ, τ) � 1

(vii) De(ϑ, δ, 0) � 1
(viii) De(ϑ, δ, τ) � 0 if and only if ϑ � δ
(ix) De(ϑ, δ, τ) � De(δ, ϑ, τ)

(x) De(ϑ, g, τ + z + w)≤De(ϑ, δ, τ)○De(δ, u, z) +

De(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

(xi) De(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞De(ϑ, δ, τ) � 0
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(xii) Qe(ϑ, δ, 0) � 1
(xiii) Qe(ϑ, δ, τ) � 0 if and only if ϑ � δ
(xiv) Qe(ϑ, δ, τ) � Qe(δ, ϑ, τ)

(xv) Qe(ϑ, g, τ + z + w)≤Qe(ϑ, δ, τ)○Qe(δ, u, z) +

Qe(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

(xvi) Qe(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Qe(ϑ, δ, τ) � 0

Example 7. Let (E, d) be a rectangular metric space, and
define Be,D,Qe: E × E × [0,∞)⟶ [0, 1] by

Be(ϑ, δ, τ) �
τ

τ + d(ϑ, δ)
,

De(ϑ, δ, τ) � 1 −
τ

τ + d(ϑ, δ)
,

Qe(ϑ, δ, τ) �
d(ϑ, δ)

τ
,

(11)

for all ϑ, δ ∈ E and τ > 0, with CTN ζ ∗ b � min ζ, b{ } and
CTCN ζ○b � max ζ, b{ }. )en, it is easy to see that
(E,Be,De,Qe, ∗○) is a NRMS.

Definition 13. Let E be a nonempty set. A six-tuple
(E,B,D,Q, ∗ ,○) is called a NRBMS if there is b≥ 1, ∗ is a
CTN, ○ is a CTCN, and B, D, andQ are three NSs on E ×

E × [0,∞) fulfilling the following assertions for all
ϑ, δ, g ∈ E and τ, z, w> 0:

(a) B(ϑ, δ, τ) + D(ϑ, δ, τ) + Q(ϑ, δ, τ)≤ 3
(b) B(ϑ, δ, 0) � 0
(c) B(ϑ, δ, τ) � 1 if and only if ϑ � δ
(d) B(ϑ, δ, τ) � B(δ, ϑ, τ)

(e) B(ϑ, g, b(τ + z + w))≥B(ϑ, δ, τ)∗B(δ, u, z) +

B(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

(f ) B(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞B(ϑ, δ, τ) � 1

(g) D(ϑ, δ, 0) � 1
(h) D(ϑ, δ, τ) � 0 if and only if ϑ � δ
(i) D(ϑ, δ, τ) � D(δ, ϑ, τ)

(j) D(ϑ, g, b(τ + z + w))≤D(ϑ, δ, τ)○D(δ, u, z) +

D(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

(k) D(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞D(ϑ, δ, τ) � 0

(l) Q(ϑ, δ, 0) � 1
(m) Q(ϑ, δ, τ) � 0 if and only if ϑ � δ
(n) Q(ϑ, δ, τ) � Q(δ, ϑ, τ)

(o) Q(ϑ, g, b(τ + z + w))≤Q(ϑ, δ, τ)○Q(δ, u, z) +

Q(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

(p) Q(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Q(ϑ, δ, τ) � 0

Example 8. Let (E, d) be a rectangular b-metric space, and
define B,D,Q: E × E × [0,∞)⟶ [0, 1] by

B(ϑ, δ, τ) �
τ

τ + d(ϑ, δ)
,

D(ϑ, δ, τ) � 1 −
τ

τ + d(ϑ, δ)
,

Q(ϑ, δ, τ) �
d(ϑ, δ)

τ
,

(12)

for all ϑ, δ ∈ E and τ > 0, with CTN ζ ∗ b � min ζ, b{ } and
CTCN ζ○b � max ζ, b{ }. )en, it is easy to see that
(E,B,D,Q, ∗○) is a NRBMS.

Remark 7. )e above Example 6 is also a NRBMS with CTN
ζ ∗ b � ζ�b and CTCN ζ○b � max ζ, b{ }.

Remark 8. Every NRMS is a NRBMS, but the converse may
not be true.

Definition 14. Let (E,B,D,Q, ∗ ,○) be a NRBMS, and
assume ϑn􏼈 􏼉 to be a sequence in E. )en,

(i) ϑn􏼈 􏼉 is named to be a convergent sequence if there
exists ϑ ∈ E such that

lim
n⟶∞

B ϑn, ϑ, τ( 􏼁 � 1,

lim
n⟶∞

D ϑn, ϑ, τ( 􏼁 � 0 ,

lim
n⟶∞

Q ϑn, ϑ, τ( 􏼁 � 0 for all τ > 0.

(13)

(ii) ϑn􏼈 􏼉 is named to be a Cauchy sequence if

lim
n⟶∞

B ϑn, ϑn+q, τ􏼐 􏼑 � 1,

lim
n⟶∞

D ϑn, ϑn+q, τ􏼐 􏼑 � 0,

lim
n⟶∞

Q ϑn, ϑn+q, τ􏼐 􏼑 � 0.

(14)

(iii) If every Cauchy sequence is convergent in E, then
(E,B,D,Q, ∗ ,○) is said to be a complete NRBMS.

Definition 15. Let E be a nonempty set. A six-tuple
(E,Bh,Dh,Qh, ∗ ,○) is called a NRBMLS if there is b≥ 1, ∗
is a CTN,○ is a CTCN, andBh, Dh, andQh are three NSs on
E × E × [0,∞) fulfilling the following assertions for all
ϑ, δ, g ∈ E and τ, z, w> 0:

L1. Bh(ϑ, δ, τ) + Dh(ϑ, δ, τ) + Qh(ϑ, δ, τ)≤ 3
L2. Bh(ϑ, δ, 0) � 0
L3. Bh(ϑ, δ, τ) � 1 implies if ϑ � δ
L4. Bh(ϑ, δ, τ) � Bh(δ, ϑ, τ)

L5. Bh(ϑ, g, b(τ + z + w))≥Bh(ϑ, δ, τ)∗Bh(δ, u, z) +

Bh(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

L6. Bh(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Bh(ϑ, δ, τ) � 1
L7. Dh(ϑ, δ, 0) � 1
L8. Dh(ϑ, δ, τ) � 0 implies ϑ � δ
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L9. Dh(ϑ, δ, τ) � Dh(δ, ϑ, τ)

L10. Dh(ϑ,g,b(τ+ z + w))≤Dh(ϑ,δ,τ)○Dh(δ,u,z)+

Dh(u,g,w) for all distinct δ,u ∈E\ ϑ,g􏼈 􏼉

L11. Dh(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Dh(ϑ, δ, τ) � 0
L12. Qh(ϑ, δ, 0) � 1
L13. Qh(ϑ, δ, τ) � 0 implies ϑ � δ
L14. Qh(ϑ, δ, τ) � Qh(δ, ϑ, τ)

L15. Qh(ϑ, g, b(τ + z + w))≤Qh(ϑ, δ, τ)○Qh(δ, u, z) +

Qh(u, g, w) for all distinct δ, u ∈ E\ ϑ, g􏼈 􏼉

L16. Qh(ϑ, δ, .): (0,∞)⟶ [0, 1] is continuous, and
limτ⟶∞Qh(ϑ, δ, τ) � 0

Definition 16. In the above definition, if we take b � 1, then
it becomes a NRMLS.

Example 9. DefineBh,Dh,Qh: E × E × [0,∞)⟶ [0, 1] by

Bh(ϑ, δ, τ) �
τ

τ +(ϑ + δ)
p,

Dh(ϑ, δ, τ) � 1 −
τ

τ +(ϑ + δ)
p,

Qh(ϑ, δ, τ) �
(ϑ + δ)

p

τ
,

(15)

for all ϑ, δ ∈ E, p≥ 1, and τ > 0, with CTN ζ ∗ b � min ζ, b{ }

and CTCN ζ○b � max ζ, b{ }. )en, it is easy to see that
(E,Bh,Dh,Qh, ∗○) is a NRBMLS, and if we take p � 1,
then it becomes a NRMLS.

Remark 9. )e above Example 9 is also a NRBMLS with
CTN ζ ∗ b � ζ�b and CTCN ζ○b � max ζ, b{ }.

Remark 10. Every NRBMS is a NRBMLS, but the converse
may not be true.

Remark 11. From Remark 4 and Example 9, it is clear that,
in the NRBMLS, the self-distances Bh(ϑ, ϑ, τ)≠ 1,

Dh(ϑ, ϑ, τ)≠ 0, andQh(ϑ, ϑ, τ)≠ 0.

Remark 12. It is clear from Example 6 that the NRBMLS
may not be continuous.

Definition 17. Let (E,Bh,Dh,Qh, ∗ ,○) be a NRBMLS, and
assume ϑn􏼈 􏼉 to be a sequence in E. )en,

(i) ϑn􏼈 􏼉 is named to be a convergent sequence if there
exists ϑ ∈ E such that

lim
n⟶∞

Bh ϑn, ϑ, τ( 􏼁 � Bh(ϑ, ϑ, τ),

lim
n⟶∞

Dh ϑn, ϑ, τ( 􏼁 � Dh(ϑ, ϑ, τ),

lim
n⟶∞

Qh ϑn, ϑ, τ( 􏼁 � Qh(ϑ, ϑ, τ) for all τ > 0.

(16)

(ii) ϑn􏼈 􏼉 is named to be a Cauchy sequence if

lim
n⟶∞

Bh ϑn, ϑn+q, τ􏼐 􏼑,

lim
n⟶∞

Dh ϑn, ϑn+q, τ􏼐 􏼑,

lim
n⟶∞

Qh ϑn, ϑn+q, τ􏼐 􏼑,

(17)

exist and are finite for all τ > 0.

(iii) If every Cauchy sequence is convergent in E, then
(E,Bh,Dh,Qh, ∗ ,○) is said to be a complete
NRBMLS such that

lim
n⟶∞

Bh ϑn, ϑ, τ( 􏼁 � Bh(ϑ, ϑ, τ) � lim
n⟶∞

Bh ϑn, ϑn+q, τ􏼐 􏼑,

lim
n⟶∞

Dh ϑn, ϑ, τ( 􏼁 � Dh(ϑ, ϑ, τ) � lim
n⟶∞

Dh ϑn, ϑn+q, τ􏼐 􏼑,

lim
n⟶∞

Qh ϑn, ϑ, τ( 􏼁 � Qh(ϑ, ϑ, τ) � lim
n⟶∞

Qh ϑn, ϑn+q, τ􏼐 􏼑,

(18)

for all τ > 0 and q≥ 1.

Definition 18. Let (E,Bh,Dh,Qh, ∗ ,○) be a NRBMLS. For,
ϑ ∈ E, θ ∈ (0, 1), and τ > 0, we define the open ball as

B(ϑ, x, τ) � δ ∈ E: Bh(ϑ, δ, τ)> 1 − x, Dh(ϑ, δ, τ)< x,􏼈

Qh(ϑ, δ, τ)<x􏼉

(center ϑ, radiusxwith respect to τ).

(19)

Lemma 1. Let (E,B,D,Q, ∗ ,○) be a NRBMS and

B(ϑ, δ, kτ)≥B(ϑ, δ, τ),

D(ϑ, δ, kτ)≤D(ϑ, δ, τ),

Q(ϑ, δ, kτ)≤Q(ϑ, δ, τ),

(20)

for all ϑ, δ ∈ E, 0< k< 1 , and τ > 0; then, ϑ � δ.

Proof. It is immediate from (f), (k), and (p). □

Theorem 1 (Banach contraction theorem in neutrosophic
rectangular b-metric spaces). Let (E,B,D,Q, ∗ ,○) be a
NRBMS with b≥ 1 such that

lim
τ⟶∞

B(ϑ, δ, τ) � 1,

lim
τ⟶∞

D(ϑ, δ, τ) � 0,

lim
τ⟶∞

Q(ϑ, δ, τ) � 0 for all ϑ, δ ∈ E.

(21)

Let Ψ: E⟶ E be a mapping satisfying

B(Ψϑ,Ψδ, kτ)≥B(ϑ, δ, τ),

D(Ψϑ,Ψδ, kτ)≤D(ϑ, δ, τ),

Q(Ψϑ,Ψδ, kτ)≤Q(ϑ, δ, τ),

(22)

for all ϑ, δ ∈ E and k ∈ [0, 1/b). )en, Ψ has a unique fixed
point.
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Proof. Fix an arbitrary point ζ0 ∈ E, and for n � 0, 1, 2, . . . ,

start an iterative process ζn+1 � Ψζn. Successively applying
inequality (22), we get for all n, τ > 0,

B ζn, ζn+1, τ( 􏼁≥B ζ0, ζ1,
τ
k

n􏼒 􏼓,

D ζn, ζn+1, τ( 􏼁≤D ζ0, ζ1,
τ
k

n􏼒 􏼓,

Q ζn, ζn+1, τ( 􏼁≤Q ζ0, ζ1,
τ
k

n􏼒 􏼓.

(23)

Since (E,B,D,Q, ∗ ,○) is a NRBMS for the sequence
ζn􏼈 􏼉, write τ � (τ/3) + (τ/3) + (τ/3) and use the rectangular
inequalities given in (e), (j), and (o) on B(ζn, ζn+p, τ),

D(ζn, ζn+p, τ), andQ(ζn, ζn+p, τ) in the following
cases. □

Case 1. If p is odd, then p � 2m + 1 where m ∈ 1, 2, 3, . . .{ },

and we have

B ζn, ζn+2m+1, τ( 􏼁≥B ζn, ζn+1,
τ
3b

􏼒 􏼓∗B ζn+1, ζn+2,
τ
3b

􏼒 􏼓∗B ζn+2, ζn+2m+1,
τ
3b

􏼒 􏼓

≥B ζn, ζn+1,
τ
3b

􏼒 􏼓∗B ζn+1, ζn+2,
τ
3b

􏼒 􏼓∗B ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

∗B ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡∗B ζn+4, ζn+2m+1,

τ
(3b)

2􏼠 􏼡

≥B ζn, ζn+1,
τ
3b

􏼒 􏼓∗B ζn+1, ζn+2,
τ
3b

􏼒 􏼓∗B ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

∗B ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡∗B ζn+4, ζn+5,

τ
(3b)

3􏼠 􏼡∗ · · · ∗B ζn+2m, ζn+2m+1,
τ

(3b)
m􏼠 􏼡,

D ζn, ζn+2m+1, τ( 􏼁≤D ζn, ζn+1,
τ
3b

􏼒 􏼓○D ζn+1, ζn+2,
τ
3b

􏼒 􏼓○D ζn+2, ζn+2m+1,
τ
3b

􏼒 􏼓

≤D ζn, ζn+1,
τ
3b

􏼒 􏼓○D ζn+1, ζn+2,
τ
3b

􏼒 􏼓○D ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

○D ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡○D ζn+4, ζn+2m+1,

τ
(3b)

2􏼠 􏼡

≤D ζn, ζn+1,
τ
3b

􏼒 􏼓○D ζn+1, ζn+2,
τ
3b

􏼒 􏼓○D ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

○D ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡○D ζn+4, ζn+5,

τ
(3b)

3􏼠 􏼡○ · · ·○D ζn+2m, ζn+2m+1,
τ

(3b)
m􏼠 􏼡,

Q ζn, ζn+2m+1, τ( 􏼁≤Q ζn, ζn+1,
τ
3b

􏼒 􏼓○Q ζn+1, ζn+2,
τ
3b

􏼒 􏼓○Q ζn+2, ζn+2m+1,
τ
3b

􏼒 􏼓

≤Q ζn, ζn+1,
τ
3b

􏼒 􏼓○Q ζn+1, ζn+2,
τ
3b

􏼒 􏼓○Q ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

○Q ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡○Q ζn+4, ζn+2m+1,

τ
(3b)

2􏼠 􏼡

≤Q ζn, ζn+1,
τ
3b

􏼒 􏼓○Q ζn+1, ζn+2,
τ
3b

􏼒 􏼓○Q ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

○Q ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡○Q ζn+4, ζn+5,

τ
(3b)

3􏼠 􏼡○ · · · ∗○ ζn+2m, ζn+2m+1,
τ

(3b)
m􏼠 􏼡.

(24)
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Using (23) in the above inequalities, we deduce

B ζn, ζn+2m+1, τ( 􏼁≥B ζ0, ζ1,
τ

3bk
n􏼒 􏼓∗B ζ0, ζ1,

τ
3bk

n+1􏼠 􏼡∗B ζ0, ζ1,
τ

(3b)
2
k

n+2􏼠 􏼡

∗B ζ0, ζ1,
τ

(3b)
2
k

n+3􏼠 􏼡∗B ζn+4, ζn+5,
τ

(3b)
3
k

n+4􏼠 􏼡∗ · · · ∗B ζ0, ζ1,
τ

(3b)
m

k
n+m􏼠 􏼡

≥B ζ0, ζ1,
τ

3bk
n􏼒 􏼓∗B ζ0, ζ1,

τ
(3bk)k

n􏼠 􏼡∗B ζ0, ζ1,
τ

(3bk)
2
k

n􏼠 􏼡

∗B ζ0, ζ1,
τ

(3bk)
2
k

n+1􏼠 􏼡∗B ζn+4, ζn+5,
τ

(3bk)
3
k

n+1􏼠 􏼡∗ · · · ∗B ζ0, ζ1,
τ

(3bk)
m

k
n+m􏼠 􏼡,

D ζn, ζn+2m+1, τ( 􏼁≤D ζ0, ζ1,
τ

3bk
n􏼒 􏼓○D ζ0, ζ1,

τ
3bk

n+1􏼠 􏼡○D ζ0, ζ1,
τ

(3b)
2
k

n+2􏼠 􏼡

○D ζ0, ζ1,
τ

(3b)
2
k

n+3􏼠 􏼡○D ζn+4, ζn+5,
τ

(3b)
3
k

n+4􏼠 􏼡○ · · ·○D ζ0, ζ1,
τ

(3b)
m

k
n+m􏼠 􏼡

≤D ζ0, ζ1,
τ

3bk
n􏼒 􏼓○D ζ0, ζ1,

τ
(3bk)k

n􏼠 􏼡○D ζ0, ζ1,
τ

(3bk)
2
k

n􏼠 􏼡

○D ζ0, ζ1,
τ

(3bk)
2
k

n+1􏼠 􏼡○D ζn+4, ζn+5,
τ

(3bk)
3
k

n+1􏼠 􏼡○ · · ·○D ζ0, ζ1,
τ

(3bk)
m

k
n+m􏼠 􏼡,

Q ζn, ζn+2m+1, τ( 􏼁≤Q ζ0, ζ1,
τ

3bk
n􏼒 􏼓○Q ζ0, ζ1,

τ
3bk

n+1􏼠 􏼡○Q ζ0, ζ1,
τ

(3b)
2
k

n+2􏼠 􏼡

○Q ζ0, ζ1,
τ

(3b)
2
k

n+3􏼠 􏼡○Q ζn+4, ζn+5,
τ

(3b)
3
k

n+4􏼠 􏼡○ · · ·○Q ζ0, ζ1,
τ

(3b)
m

k
n+m􏼠 􏼡

≤Q ζ0, ζ1,
τ

3bk
n􏼒 􏼓○Q ζ0, ζ1,

τ
(3bk)k

n􏼠 􏼡○Q ζ0, ζ1,
τ

(3bk)
2
k

n􏼠 􏼡

○Q ζ0, ζ1,
τ

(3bk)
2
k

n+1􏼠 􏼡○Q ζn+4, ζn+5,
τ

(3bk)
3
k

n+1􏼠 􏼡○ · · ·○Q ζ0, ζ1,
τ

(3bk)
m

k
n+m􏼠 􏼡.

(25)

Case 2. If p is even, then p � 2m; m ∈ 1, 2, 3, . . .{ }; then, we
have

B ζn, ζn+2m, τ( 􏼁≥B ζn, ζn+1,
τ
3b

􏼒 􏼓∗B ζn+1, ζn+2,
τ
3b

􏼒 􏼓∗B ζn+2, ζn+2m,
τ
3b

􏼒 􏼓

≥B ζn, ζn+1,
τ
3b

􏼒 􏼓∗B ζn+1, ζn+2,
τ
3b

􏼒 􏼓∗B ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

∗B ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡∗B ζn+4, ζn+2m,

τ
(3b)

2􏼠 􏼡

≥B ζn, ζn+1,
τ
3b

􏼒 􏼓∗B ζn+1, ζn+2,
τ
3b

􏼒 􏼓∗B ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

∗B ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡∗B ζn+4, ζn+5,

τ
(3b)

3􏼠 􏼡∗ · · · ∗B ζn+2m− 4, ζn+2m− 3,
τ

(3b)
m− 1􏼠 􏼡

∗B ζn+2m− 3, ζn+2m− 2,
τ

(3b)
m− 1􏼠 􏼡∗B ζn+2m− 2, ζn+2m,

τ
(3b)

m− 1􏼠 􏼡,
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D ζn, ζn+2m, τ( 􏼁≤D ζn, ζn+1,
τ
3b

􏼒 􏼓○D ζn+1, ζn+2,
τ
3b

􏼒 􏼓○D ζn+2, ζn+2m,
τ
3b

􏼒 􏼓

≤D ζn, ζn+1,
τ
3b

􏼒 􏼓○D ζn+1, ζn+2,
τ
3b

􏼒 􏼓○D ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

○D ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡○D ζn+4, ζn+2m,

τ
(3b)

2􏼠 􏼡

≤D ζn, ζn+1,
τ
3b

􏼒 􏼓○D ζn+1, ζn+2,
τ
3b

􏼒 􏼓○D ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

○D ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡○D ζn+4, ζn+5,

τ
(3b)

3􏼠 􏼡○ · · ·○D ζn+2m− 4, ζn+2m− 3,
τ

(3b)
m− 1􏼠 􏼡

○D ζn+2m− 3, ζn+2m− 2,
τ

(3b)
m− 1􏼠 􏼡○D ζn+2m− 2, ζn+2m,

τ
(3b)

m− 1􏼠 􏼡,

Q ζn, ζn+2m, τ( 􏼁≤Q ζn, ζn+1,
τ
3b

􏼒 􏼓○Q ζn+1, ζn+2,
τ
3b

􏼒 􏼓○Q ζn+2, ζn+2m,
τ
3b

􏼒 􏼓

≤Q ζn, ζn+1,
τ
3b

􏼒 􏼓○Q ζn+1, ζn+2,
τ
3b

􏼒 􏼓○Q ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

○Q ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡○Q ζn+4, ζn+2m,

τ
(3b)

2􏼠 􏼡

≤Q ζn, ζn+1,
τ
3b

􏼒 􏼓○Q ζn+1, ζn+2,
τ
3b

􏼒 􏼓○Q ζn+2, ζn+3,
τ

(3b)
2􏼠 􏼡

○Q ζn+3, ζn+4,
τ

(3b)
2􏼠 􏼡○Q ζn+4, ζn+5,

τ
(3b)

3􏼠 􏼡○ · · ·○ ζn+2m− 4, ζn+2m− 3,
τ

(3b)
m− 1􏼠 􏼡

○Q ζn+2m− 3, ζn+2m− 2,
τ

(3b)
m− 1􏼠 􏼡○Q ζn+2m− 2, ζn+2m,

τ
(3b)

m− 1􏼠 􏼡.

(26)

Using (23) in the above inequalities, we deduce

B ζn, ζn+2m, τ( 􏼁≥B ζ0, ζ1,
τ

3bk
n􏼒 􏼓∗B ζ0, ζ1,

τ
3bk

n+1􏼠 􏼡∗B ζ0, ζ1,
τ

(3b)
2
k

n+2􏼠 􏼡

∗B ζ0, ζ1,
τ

(3b)
2
k

n+3􏼠 􏼡∗B ζn+4, ζn+5,
τ

(3b)
3
k

n+4􏼠 􏼡∗ · · · ∗B ζ0, ζ1,
τ

(3b)
m− 1

k
n+2m− 2􏼠 􏼡

≥B ζ0, ζ1,
τ

3bk
n􏼒 􏼓∗B ζ0, ζ1,

τ
(3bk)k

n􏼠 􏼡∗B ζ0, ζ1,
τ

(3bk)
2
k

n􏼠 􏼡

∗B ζ0, ζ1,
τ

(3bk)
2
k

n+1􏼠 􏼡∗B ζn+4, ζn+5,
τ

(3bk)
3
k

n+1􏼠 􏼡∗ · · · ∗B ζ0, ζ1,
τ

(3bk)
m− 1

k
n+m− 1􏼠 􏼡,
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D ζn, ζn+2m, τ( 􏼁≤D ζ0, ζ1,
τ

3bk
n􏼒 􏼓○D ζ0, ζ1,

τ
3bk

n+1􏼠 􏼡○D ζ0, ζ1,
τ

(3b)
2
k

n+2􏼠 􏼡

○D ζ0, ζ1,
τ

(3b)
2
k

n+3􏼠 􏼡○D ζn+4, ζn+5,
τ

(3b)
3
k

n+4􏼠 􏼡○ · · ·○D ζ0, ζ1,
τ

(3b)
m− 1

k
n+2m− 2􏼠 􏼡

≤D ζ0, ζ1,
τ

3bk
n􏼒 􏼓○D ζ0, ζ1,

τ
(3bk)k

n􏼠 􏼡○D ζ0, ζ1,
τ

(3bk)
2
k

n􏼠 􏼡

○D ζ0, ζ1,
τ

(3bk)
2
k

n+1􏼠 􏼡○D ζn+4, ζn+5,
τ

(3bk)
3
k

n+1􏼠 􏼡○ · · ·○D ζ0, ζ1,
τ

(3bk)
m− 1

k
n+m− 1􏼠 􏼡,

Q ζn, ζn+2m, τ( 􏼁≤Q ζ0, ζ1,
τ

3bk
n􏼒 􏼓○Q ζ0, ζ1,

τ
3bk

n+1􏼠 􏼡○Q ζ0, ζ1,
τ

(3b)
2
k

n+2􏼠 􏼡

○Q ζ0, ζ1,
τ

(3b)
2
k

n+3􏼠 􏼡○Q ζn+4, ζn+5,
τ

(3b)
3
k

n+4􏼠 􏼡○ · · ·○Q ζ0, ζ1,
τ

(3b)
m− 1

k
n+2m− 2􏼠 􏼡

≤Q ζ0, ζ1,
τ

3bk
n􏼒 􏼓○Q ζ0, ζ1,

τ
(3bk)k

n􏼠 􏼡○Q ζ0, ζ1,
τ

(3bk)
2
k

n􏼠 􏼡

○Q ζ0, ζ1,
τ

(3bk)
2
k

n+1􏼠 􏼡○Q ζn+4, ζn+5,
τ

(3bk)
3
k

n+1􏼠 􏼡○ · · ·○Q ζ0, ζ1,
τ

(3bk)
m− 1

k
n+m− 1􏼠 􏼡.

(27)

)erefore, from Cases 1 and 2 and together with (21), it
follows that, for all p ∈ 1, 2, 3, . . .{ }, we have

lim
n⟶∞

B ζn, ζn+p, τ􏼐 􏼑 � 1∗ 1∗ · · · ∗ 1 � 1,

lim
n⟶∞

D ζn, ζn+p, τ􏼐 􏼑 � 0○0○ · · ·○0 � 0,

lim
n⟶∞

D ζn, ζn+p, τ􏼐 􏼑 � 0○0○ · · ·○0 � 0.

(28)

Hence, ζn􏼈 􏼉 is a Cauchy sequence. Since
(E,B,D,Q, ∗ ,○) is a complete NRBMS, there exists
u ∈ E such that limn⟶∞ζn � u.

Now, we examine that u is a fixed point of Ψ.

B(u,Ψu, τ)≥B u, ζn,
τ
3b

􏼒 􏼓∗B ζn, ζn+1,
τ
3b

􏼒 􏼓∗B ζn+1,Ψu,
τ
3b

􏼒 􏼓

≥B u, ζn,
τ
3b

􏼒 􏼓∗B Ψζn− 1,Ψζn,
τ
3b

􏼒 􏼓∗B Ψζn,Ψu,
τ
3b

􏼒 􏼓

≥B u, ζn,
τ
3b

􏼒 􏼓∗B ζn− 1, ζn,
τ
3bk

􏼒 􏼓∗B ζn, u,
τ
3bk

􏼒 􏼓

⟶ 1∗ 1∗ 1 � 1 as n⟶∞,

D(u,Ψu, τ)≤D u, ζn,
τ
3b

􏼒 􏼓○D ζn, ζn+1,
τ
3b

􏼒 􏼓○D ζn+1,Ψu,
τ
3b

􏼒 􏼓

≤D u, ζn,
τ
3b

􏼒 􏼓○D Ψζn− 1,Ψζn,
τ
3b

􏼒 􏼓○D Ψζn,Ψu,
τ
3b

􏼒 􏼓

≤D u, ζn,
τ
3b

􏼒 􏼓○D ζn− 1, ζn,
τ
3bk

􏼒 􏼓○D ζn, u,
τ
3bk

􏼒 􏼓

⟶ 0○0○0 � 0 as n⟶∞,
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Q(u,Ψu, τ)≤Q u, ζn,
τ
3b

􏼒 􏼓○Q ζn, ζn+1,
τ
3b

􏼒 􏼓○Q ζn+1,Ψu,
τ
3b

􏼒 􏼓

≤Q u, ζn,
τ
3b

􏼒 􏼓○Q Ψζn− 1,Ψζn,
τ
3b

􏼒 􏼓○Q Ψζn,Ψu,
τ
3b

􏼒 􏼓

≤Q u, ζn,
τ
3b

􏼒 􏼓○Q ζn− 1, ζn,
τ
3bk

􏼒 􏼓○Q ζn, u,
τ
3bk

􏼒 􏼓

⟶ 0○0○0 � 0 as n⟶∞,

(29)

which shows that u is a fixed point of Ψ.

Now, we show the uniqueness.
Assume v is another fixed point of Ψ for some v ∈ E;

then,

B(v, u, τ) � B(Ψv,Ψu, τ)≥B v, u,
τ
k

􏼒 􏼓 � B Ψv,Ψu,
τ
k

􏼒 􏼓

≥B v, u,
τ
k
2􏼠 􏼡≥ · · · ≥B v, u,

τ
k

n􏼒 􏼓⟶ 1 as n⟶∞,

D(v, u, τ) � D(Ψv,Ψu, τ)≤D v, u,
τ
k

􏼒 􏼓 � D Ψv,Ψu,
τ
k

􏼒 􏼓

≤D v, u,
τ
k
2􏼠 􏼡≤ · · · ≤D v, u,

τ
k

n􏼒 􏼓⟶ 0 as n⟶∞,

Q(v, u, τ) � Q(Ψv,Ψu, τ)≤Q v, u,
τ
k

􏼒 􏼓 � Q Ψv,Ψu,
τ
k

􏼒 􏼓

≤Q v, u,
τ
k
2􏼠 􏼡≤ · · · ≤Q v, u,

τ
k

n􏼒 􏼓⟶ 0 as n⟶∞.

(30)

)us, u � v. Hence, the fixed point is unique.

Remark 13. In )eorem 1, if we take b � 1, then it will
become a Banach contraction theorem in the sense of
NRMS.

Example 10. Let E � [0, 1], and define
B,D,Q: E × E × [0,∞)⟶ [0, 1] by

B(ϑ, δ, τ) �
τ

τ + |ϑ − δ|
2,

D(ϑ, δ, τ) � 1 −
τ

τ + |ϑ − δ|
2,

Q(ϑ, δ, τ) �
|ϑ − δ|

2

τ
,

(31)

for all ϑ, δ ∈ E and τ > 0, with CTN ζ ∗ b � ζ.b and CTCN
ζ○b � max ζ, b{ }. )en, it is easy to see that (E,B,D, ∗○) is
a complete NRBMS.
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Define Ψ: E⟶ E byΨ(ϑ) � 1 − 2− ϑ/3. )en,

B(Ψϑ, Ψδ, kτ) � B
1 − 2− ϑ

3
,
1 − 2− δ

3
, kτ􏼠 􏼡 �

kτ

kτ + 1 − 2− ϑ/3􏼐 􏼑 − 1 − 2− δ/3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

�
9kτ

9kτ + |2− ϑ
− 2− δ

|
2 ≥

9kτ
9kτ + |ϑ − δ|

2 ≥
τ

τ + |ϑ − δ|
2 � B(ϑ, δ, τ),

D(Ψϑ, Ψδ, kτ) � D
1 − 2− ϑ

3
,
1 − 2− δ

3
, kτ􏼠 􏼡 � 1 −

kτ

kτ + 1 − 2− ϑ/3􏼐 􏼑 − 1 − 2− δ/3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 1 −
9kτ

9kτ + |2− ϑ
− 2− δ

|
2 ≤ 1 −

9kτ
9kτ + |ϑ − δ|

2 ≤ 1 −
τ

τ + |ϑ − δ|
2 � D(ϑ, δ, τ),

Q(Ψϑ, Ψδ, kτ) � Q
1 − 2− ϑ

3
,
1 − 2− δ

3
, kτ􏼠 􏼡 �

1 − 2− ϑ/3􏼐 􏼑 − 1 − 2− δ/3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

kτ

�
2− ϑ

− 2− δ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

9kτ
≤

|ϑ − δ|
2

9kτ
≤

|ϑ − δ|
2

τ
� Q(ϑ, δ, τ),

(32)

for all ϑ, δ ∈ E, where k ∈ [1/2, 1). )us, all the conditions of
)eorem 1 are satisfied, and hence, 0 is a unique fixed point
of Ψ.

Corollary 1. Let (E,Bb,Db, ∗ ,○) be a IFRBMS with b≥ 1
such that

lim
τ⟶∞

Bb(ϑ, δ, τ) � 1,

lim
τ⟶∞

Db(ϑ, δ, τ) � 0, for all ϑ, δ ∈ E.
(33)

Let Ψ: E⟶ E be a mapping satisfying

Bb(Ψϑ,Ψδ, kτ)≥Bb(ϑ, δ, τ),

Db(Ψϑ,Ψδ, kτ)≤Db(ϑ, δ, τ),
(34)

for all ϑ, δ ∈ E and k ∈ [0, 1/b). )en, Ψ has a unique fixed
point.

Proof. It is clear from )eorem 1. □

Theorem 2. Let (E,Bh,Dh,Qh, ∗ ,○) be a NRBMLS with
b≥ 1 such that

lim
τ⟶∞

Bh(ϑ, δ, τ) � 1,

lim
τ⟶∞

Dh(ϑ, δ, τ) � 0,

lim
τ⟶∞

Qh(ϑ, δ, τ) � 0 for all ϑ, δ ∈ E.

(35)

Let Ψ: E⟶ E be a mapping satisfying

Bh(Ψϑ,Ψδ, kτ)≥Bh(ϑ, δ, τ),

Dh(Ψϑ,Ψδ, kτ)≤Dh(ϑ, δ, τ),

Qh(Ψϑ,Ψδ, kτ)≤Qh(ϑ, δ, τ),

(36)

for all ϑ, δ ∈ E and k ∈ [0, 1/b). )en, Ψ has a unique fixed
point.

Proof. It is easy to show on the lines of )eorems 1 and 2 in
[14]. □

4. Application

In this section, we present an application to the integral
equation of )eorem 1. In particular, we show the existence
of the solution of an integral equation of the form

ϑ(j) � g(j) + 􏽚
j

0
F(j, r, ϑ(r))dr, (37)

for all j ∈ [0, l] where l> 0. Let C([0, l],R) be the space of all
continuous functions defined on [0, l] with CTN ζ ∗ b � ζ.b

and CTCN ζ○b � max ζ, b{ } for all ζ, b ∈ [0, 1], and define a
complete NRBMS by

B(ϑ, δ, τ) � sup
j∈[0,l]

τ
τ +|ϑ(j) − δ(j)|

2,

D(ϑ, δ, τ) � sup
j∈[0,l]

|ϑ(j) − δ(j)|
2

τ +|ϑ(j) − δ(j)|
2 ,

Q(ϑ, δ, τ) � sup
j∈[0,l]

|ϑ(j) − δ(j)|
2

τ
for all ϑ, δ ∈ C([0, l],R) and τ > 0.

(38)
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Theorem 3. Let Ψ: C([0, l],R)⟶ C([0, l],R) be the in-
tegral operator given by

Ψ(ϑ(j)) � g(j) + 􏽚
j

0
F(j, r, ϑ(r))dr, g ∈ C([0, l],R),

(39)

where F ∈ C([0, l] × [0, l] × R, R) satisfies the following
conditions:

(i) Bere exists f: [0, l] × [0, l]⟶ [0, +∞] such that,
for all r, j ∈ [0, l], f(j, r) ∈ L1([0, l], R) and for all
ϑ, δ ∈ C([0, l],R), we have

|F(j, r, ϑ(r)) − F(j, r, δ(r))|
2 ≤f

2
(j, r)|ϑ(r) − δ(r)|

2
.

(40)

(ii) Also,

sup
j∈[0,l]

􏽚
j

0
f
2
(j, r)dr≤ k< 1. (41)

Then, the integral equation has the solution
ϑ∗ ∈ C([0, l],R).

Proof. For all ϑ, δ ∈ C([0, l],R), we have

B Ψ( )(ϑ(j),Ψ(δ(j)), kτ) � sup
j∈[0,l]

kτ
kτ +|Ψ(ϑ(j)) − Ψ(δ(j))|

2

≥ sup
j∈[0,l]

kτ

kτ + 􏽒
j

0 |F(j, r, ϑ(r)) − F(j, r, δ(r))|
2dr

≥ sup
j∈[0,l]

kτ

kτ + 􏽒
j

0 f
2
(j, r)|ϑ(r) − δ(r)|

2dr

≥
kτ

kτ +|ϑ(r) − δ(r)|
2supj∈[0,l] 􏽒

j

0 f
2
(j, r)dr

≥
kτ

kτ +|ϑ(r) − δ(r)|
2 ≥

τ
τ +|ϑ(r) − δ(r)|

2 � B(ϑ, δ, τ),

D Ψ( )(ϑ(j),Ψ(δ(j)), kτ) � sup
j∈[0,l]

|Ψ(ϑ(j)) − Ψ(δ(j))|
2

kτ +|Ψ(ϑ(j)) − Ψ(δ(j))|
2

≤ sup
j∈[0,l]

􏽒
j

0 |F(j, r, ϑ(r)) − F(j, r, δ(r))|
2dr

kτ + 􏽒
j

0 |F(j, r, ϑ(r)) − F(j, r, δ(r))|
2dr

≤ sup
j∈[0,l]

􏽒
j

0 f
2
(j, r)|ϑ(r) − δ(r)|

2dr

kτ + 􏽒
j

0 f
2
(j, r)|ϑ(r) − δ(r)|

2dr

≤
|ϑ(r) − δ(r)|

2supj∈[0,l] 􏽒
j

0 f
2
(j, r)dr

kτ +|ϑ(r) − δ(r)|
2supj∈[0,l] 􏽒

j

0 f
2
(j, r)dr

≤
|ϑ(r) − δ(r)|

2

kτ +|ϑ(r) − δ(r)|
2 ≤

|ϑ(r) − δ(r)|
2

τ +|ϑ(r) − δ(r)|
2 � D(ϑ, δ, τ),
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Q Ψ( )(ϑ(j),Ψ(δ(j)), kτ) � sup
j∈[0,l]

|Ψ(ϑ(j)) − Ψ(δ(j))|
2

kτ

≤ sup
j∈[0,l]

􏽒
j

0 |F(j, r, ϑ(r)) − F(j, r, δ(r))|
2dr

kτ

≤ sup
j∈[0,l]

􏽒
j

0 f
2
(j, r)|ϑ(r) − δ(r)|

2dr

kτ

≤
|ϑ(r) − δ(r)|

2supj∈[0,l] 􏽒
j

0 f
2
(j, r)dr

kτ

≤
|ϑ(r) − δ(r)|

2

kτ
≤

|ϑ(r) − δ(r)|
2

τ
� Q(ϑ, δ, τ). (42)

Hence, ϑ∗ is a fixed point of Ψ, which is the solution of
integral equation (37). □

5. Conclusion

)e aim of this study is to present the notions of intui-
tionistic fuzzy rectangular metric spaces, intuitionistic fuzzy
rectangular metric-like spaces, intuitionistic fuzzy rectan-
gular b-metric spaces, intuitionistic fuzzy rectangular b-
metric-like spaces, neutrosophic rectangular metric spaces,
neutrosophic rectangular metric-like spaces, neutrosophic
rectangular b-metric spaces, and neutrosophic rectangular
b-metric-like spaces and prove the Banach contraction
theorem in these spaces, and nontrivial examples and an
application to the integral equation are also given to support
our results. Due to a diverse range of applications of the
metric fixed point theory in mathematics, science, and
economics, it is researched widely. Different types of fixed
point results for single- and multivalued mappings can be
proven in the sense of the above-defined notions in this
manuscript. Also, presented notions can be extended in
different mathematical structures, i.e., intuitionistic fuzzy
controlled rectangular metric spaces, intuitionistic fuzzy
triple controlled rectangular metric spaces, neutrosophic
extended rectangular metric spaces, etc.
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