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This paper has applied a hybrid method called the homotopy perturbation transformation technique to solve fractional-order
Newell-Whitehead-Segel equations. First, we used the Yang transformation to the given problem, and then, the homotopy
perturbation technique was implemented to complete the procedure of the suggested method. The proposed method is
simplified and requires a small calculation to achieve the solution to the targeted problem. Moreover, the derived results are in
close contact with the exact results of the given models. Three examples are solved to confirm and show the feasibility of the
present scenario. The findings obtained from the proposed procedure have also been in excellent alignment with other
technique outcomes. It is shown that the proposed approach is effective, consistent, and straightforward to apply to various

relevant problems in engineering and science.

1. Introduction

Fractional calculus (FC) is the generic generalization of
integer-order calculus to arbitrary order integration and dif-
ferentiation with noninteger order. FC dates back to 1695,
when L'Hopital addressed Leibniz a letter regarding the
probable significance of (d'*®(9))/(d9"?), which represents
the semiderivative of @(9) with respect to 9. Due to its
advantageous qualities such as linearity, analyticity, and
nonlocality, FC has recently become a strong tool. Further-
more, several pioneering references for various definitions
of FC are accessible, laying the framework for FC. With
the rapid advancement of digital computer expertise, many
academics have begun to focus on the FC’s theory and appli-
cations. The idea of fractional-order calculus has been used
to signal processing, chaos theory, optics, noisy environ-
ments, and other disciplines [1, 2]. The numerical and ana-
Iytical solutions for differential equations of any order that
evolved as a result of the preceding processes are critical in

explaining the characteristics of nonlinear issues encoun-
tered in everyday life [3-6].

The investigation of fractional-order integrals and deriv-
atives is an exciting study of fractional calculus. It has
increased the broad consideration of scientists in the last
two decades. It has uncommon implementations in different
areas of engineering and the medical field. In this specific sit-
uation, Riemann-Liouville is the pioneer who gave the ideas
of fractional derivatives and integrals [7-11]. From these
definitions, the scientists began to think and characterize
fractional equations, which are expansions and speculations
of Riemann-Liouville ideas [12-14]. For instance, Caputo
[15] gave an improved formula in the area of fractional cal-
culus. The Caputo derivative helps display wonders that
assess collaborations inside the past and issues with nonlocal
properties [16, 17].

In recent decades, nonlinear differential equation solu-
tions have become increasingly important. Numerous
scholars have used different methods to solve a variety of
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problems [18-20]. To accomplish the objective of pro-
foundly exact solutions, numerous creators outline other
procedures, for example, finite difference technique [21],
Adomian decay method [22], finite element method [23],
generalized differential change method [24], fractional dif-
ferential change method [25], homotopy perturbation
method [26, 27], iterative procedure [28, 29], and homotopy
analysis strategy [30]. In the past few vyears, various
researchers used the variational iteration method (VIM),
the differential transform method, and the Adomian decom-
position method (ADM) [31-33]. One of the most signifi-
cant abundancy equations is the Newell-Whitehead-Segel
equation [34-36], which portrays the stripe design in two-
dimensional frameworks. Additionally, this equation was
implemented to various assortment frameworks, e.g., non-
linear optics, Faraday instability, chemical reactions,
Rayleigh-Benard convection, and organic frameworks. The
Newell-Whitehead Segel equation’s estimated solutions were
introduced by differential transformation method, Adomian
decomposition, and reduced differential transformation.

In this present work, the homotopy perturbation transfor-
mation method is used to analyze the result of fractional
Newell-Whitehead-Segel equations. The solutions to the pre-
sented problems demonstrate the accuracy of the proposed
technique. With the use of different fractional-order figures,
the solutions of the recommended methodology are analyzed
and shown. The technique presented here is useful in investi-
gating various fractional partial differential equations.

2. Preliminaries Concepts

Definition 1. If the Caputo-Fabrizio derivative is defined as
(37]

TD[P(7)] = TE J;P'(Q)K(t, Qden-1<B<n (1)

=

=

N(p) is the normalization function with N(0) = N(1) =1

Definition 2. The fractional Caputo-Fabrizio integral is
defined as [37]

P = P(Q)do, 720, B € (0, 1].

(3)

Definition 3. For N(f3) = 1, the following solution represents
the Laplace transform Caputo-Fabrizio derivative [37]:

o] -

(4)
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Definition 4. The Yang transformation of P(f) is given as
(38]

Y[P(7)] = x(s) = Jmlp(f)e*“d?, £>0. (5)

0

Remark 5. Yang transformation of few helpful functions is
defined as below.

Y[1]= S,
Y[t] = s, (6)
Y[E"] = I(i+1)s"

Lemma 6: Laplace-Yang duality. Let the Laplace transfor-

mation of P(t) be F(s); then, x(s) = F(1/s) [39].

Proof. From Equation (5), we can gain a different manifesta-
tion of the Yang transformation by putting ¢/s ={ as

LP()] =30 <[ PEOSAL0. ()
Since L[P(#)] = F(s), this implies that
F(s) = L[P()] = J:O]P(?)e“d?. (8)

Putting # = {/s in (8), we have

F(s) = EJ:OIP <§> &dg. (9)

N N

Thus, from Equation (7), we obtain

#-x(3) (10)

N

Also from Equations (5) and (8), we get

F(5) =x) (1)

The links (10) and (11) show the duality connection
among the Yang and Laplace transform. O

Lemma 6. Let P(f) be a continuous function; then, the Yang
transform Caputo-Fabrizio derivative of P(t) is given as [39]

Y[IP(f) - sIP(0)]
I+B(s-1) '

Proof. The fractional Laplace transform Caputo-Fabrizio is
defined as

Y[P(5)] = (12)

L[P(D)] = w. (13)
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Also, we have the link among Yang and Laplace proper-
ties, i.e., y(s) = F(1/s). To obtain the important solution, we
substitute s by 1/s in Equation (13), and we have

The proof is completed. O

3. General Implementation of the
Given Methodology

Consider the fractional partial differential equation

FDEV (9, )MV (9,7) + N[p] V(9. T) = h(9, D),
V(g,0) =g(9),

t>0,0<pB<1,

peR,
(15)

where Df = 98197 Caputo’s derivative, M[¢] and NJg] are
the linear and nonlinear operators, respectively, and h(, t)
is source function.

Implementing Yang transformation to (15), we have

Y[ DI (9,1) + M7 (9.7) + NIg)7 (9. 7)|

= Y[h(p, D)}, >0, 0<B<]1,

7 (o, t) =sg(p) + (1 + B(s—1))Y[h(p, 1)]
= (L+B(s— 1) YIMZ (¢, 1) + N[@]7 (¢, 1)].

Now, applying the inverse Yang transformation, we have

V(9. 1) =sg(9) = Y [(1+ B(s = 1)) Y[MZ (. 7) + N[g] 7 (9, 1)]],
(17)

where

F(g,£) =Y '[sg(@) + (1+ B(s = 1)) Y{h(p, 1)}] (18)
(@) + Y [(1+ B(s = 1)) Y {h(p, 1)}].

Now, perturbation method having parameter P is
defined as

V(D)= Y P (D), (19)
j=0

P €0, 1]; P is a parameter of perturbation. Then, nonlin-
ear terms can be expressed as

7(p0)= Y PHT), (20)
j=0

where He’s polynomials H,, of the form 7', 7', 7", -+, 7,
can be calculated as

VoV, = ﬁ% lN <§)Pi%i>L_o’ (21)

where DJ’;, = 9//0P!. Applying relations (19) and (20) in (16)

(16)  and constructing the homotopy, we have
Z(;Pjo(‘P, f)=F(p,f)-Px |Y! { (1+B(s- 1))Y{M2)Pj7j(§0, t) + Z(;Pij(%) } H . (22)
J= j= j=

Both sides comparing coefficient of P, we have

PY 7 (9, 1) = F(, 1),
PLoZ (1) =Y (14 B(s = 1)) Y(MZ (9. 7) + Hy(7))],
P V(9. 6) =Y (1 + B(s= 1)) Y(MZ (¢, F) + H

P (9,1) = Y [(1+ (s = 1) Y(MZ iy (9. T) + Hiy (7)),
k>0,keN.
(23)

Easily calculating the component of 77;(¢, ), by taking
P—1, we get

7(p1)= lim } 7(,1). (24)
j=1

4, Test Problems

Four cases of nonlinear diffusion equations are presented to
demonstrate the suggested technique’s capability and reliability.

Case 1. Consider the fractional-order Newell-Whitehead-
Segel equation

CPpPy =7 427 -37%,0<B<1,  (25)



with initial conditions
7 (¢,0) = A. (26)
Taking Yang transform of (25), we have
Y[7 (9, 7)) =57 (9, 0) + (1+ (s~ W)Y (7, +27 - 377),

Y7 (9. )] =sh+ (1+ (s — 1)) [Y (7, + 27— 377)].
(27)

j=0 Jj=0

Comparing the same power coeflicient of P, we get
P’ V(9. 1) = A,
PV (9 t)=Y" (L+B(s=1))Y[Z g + 7~ 73])
=AM2=30){1+ Bt - B},
P (@) =Y (14 B(s = 1) Y[ gy + 7, = 27,7}

=2M(2-32)(1 —31){(1 - B)2pt+ (1 —ﬂ)z + %tz},

(30)
We get the convergence series type solution as
V(@) =T o+ YV + 7+ =LA+ A2-30){1+ Bt - B}
2

(31)

+21(2-30)(1 —3A){(1 - B)2pt+(1-B) + ﬁ2t2}+..._

The exact result of Equation (25) is given as

_ ~2/3)A exp?
7(pt)= (—2(/3) +)A — A exp?’ (32)
P

0 B 1 O
;PJ%j(¢, f) = e +P[Y {(1 +B(s— 1))Y(<
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Taking the inverse Yang transformation, we obtain

V(9 ) =A+ Y [(1+B(s = )){Y (7, +27 =377) }].
(28)

Now, applying the above-mentioned homotopy pertur-
bation method as in (8), we have

j=0 j=0

inWj(go,t):A+P{Y_l{(1+ﬁ(s—1))Y(<§Pj7/j((p,t)> +2§Pj‘7j(go,t)—3<§Pj%j(<p,t)>)}:|. (29)
(2%

Case 2. Consider the fractional-order Newell-Whitehead-
Segel equation

CFDIY =T+ V(1-7),0< <1, (33)

with initial conditions

1

G rr—

(34)

Taking Yang transform of (33), we have

Y7 (1) =570 (0, 0) + (1+ B(s = 1)Y (7 + V(1= 7)),

— N

Y7 (p.t)] = W +(1+p(s-1)) [Y(WW +7(1- 7))]
(35)
Taking the inverse Yang transformation, we obtain

_ 1

7 (9. t) = W +Y (14 Bs = D)){Y (7 + 7 (1-7)) }].

(36)

Now, applying the homotopy perturbation method, we
get

fP"%(w)) Y P70 (1 - Y P e f>>) H ~

Jj=0

rt Prd
op J
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Comparing the same power coeflicient of P, we get

0 . T\ — 1
P 7 (9. t) = (1+exp‘/’/\/g)2’
P () =Y (14 B(s=1)Y [0y + 7= 7))
5 exp?® _
= gm{ +pt-p}
72(90’) ((1"'5(5_1)) [%1@"'71_27071])

(exp‘/’/‘[( 1+2 exp‘P/‘f))

(1+ exp‘P/f)

Y™
25
18
{ B)2pt + 1—[3) /322?2},

(38)
We get the convergence series type solution as
V() =T s+ YV + Tyt
1 5 91V .
= 5+ = xp {1+ pt-p}
(1+exp?¥8)" 3 (1+exp?/s)
25 (exp?e(—1+2 exp?*)
+ —
18 (1+ exp‘f’/ﬁ)4
272
_ t
: {(1 - B)2Bt+ (1-B)* + ﬁT}+
(39)

Y PV (9.7)

[oe] . _ 1 1
2 j( t :W+P{Y‘ {(1+[3(s—1)Y<<

Comparing the same power coeflicient of P, we get

0 . N _ 1
PV o(pt) = ‘<1 +exp3‘/”‘/ﬁ)2/3 >
P V(9. F) = ’1((1+/3(s—1))Y[70W+70—7§])

5/3 {l +:8t :B}

(1 + exp3‘PN_)

Then, 3 = 1; we obtain the exact result of Equation (33):

1 2
79 0= (1 " exP<so/¢6><<5/6>r>> ' (40)

Case 3. Consider the fractional-order Newell-Whitehead-
Segel equation

FDEY =V g+ V-7, 0< p<1, (41)

with initial conditions

1
T gy 2

Taking Yang transform of (41), we have

Y[ (9, 5)] =57 (9, 0) + (1+ B(s = 1))Y(Z pp + 7 = 7),
Y% (0, )= — >
(7 (9, 1)] (1 N eXme)m (13)

+(1+B(s =) [Y(Z o+ 7 - 7)].
Taking the inverse Yang transform, we get

_ 1
%((P) t) = —(1 N exp3<p/\/ﬁ)2/3

+Y (L4 Bs=)){Y(Z o + 7 - 7) }].
(44)

Now, applying the HPM, we get

Y PV (g, t)) +§Pj‘“7j(q), f) - (inWj((p, t)) )H (45)

j=0

gp 70 J=0

p? . 7, (p, 1) = y! ((1 +B(s - 1))Y[%1¢‘P +7,
_49(2 expVI0P 3) exp3VI0)?
~ 50 (1+ exp3¢/m)8/3

. {(1—/3)2/31‘+(1 -p)*+ ﬁzj}

—4737])

(46)

We get the convergence series type solution as



V() =V g+ TV + Tyt
1 7 (3/V/10)p _
- s =L 51+ pt- B}
(1 + expe/Vi0) 3 (1+ exp3®/vio)
49 (2 expCV)9 — 3) exp(3Vi09
50 (1+ exp3‘/’/\/ﬁ)8/3
222
_ t
. {(1 - B)2Bt+(1-B)* + ’32}+

(47)

Then, 8 =1; we get the exact result:

V(9,F) = (; tanh <_2\jm <<p— \/71_0t>)) (48)

Case 4. Consider the fractional-order Newell-Whitehead-
Segel equation

CPpfy — 9, 437 -477,0<B<1,  (49)

j=0

Comparing the same power coeflicient of P, we get

- 3 expVe?
0. = —
P %0 ((P) t) \/;exp\/g‘? N exp(‘/a2>‘/) >

P () =Y (14 B(s = 1)Y [V gy + 7= 7))
9 [3 exp/" expV¥)e _
2\/4 {1+ i~ B},

(expV®® + expe/2¢)
P79 0) =Y (14 B(s = 1) Y [7 10 + 71— 4737',])
_ 81 \/gexp‘/gq’ exp(\/g/z)q’ <_eXp\/E(P + eXp(\/E/Z)(p>
4 V4 (exper + exp(\/5/2></>)3

‘ {(1 - B2+ (1= )+ ﬁ;}

(54)
We get the convergence series type solution as

V() =T g+ Y+ Tyt
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with initial conditions

3 expve?
7(9.0)= \/;expﬁ‘/’ +exp(vei2)e (50)

Taking Yang transform of (36), we have

Y7 (9, 0)] =57 (9, 0) + (14 B(s = 1)) Y (7, + 37 - 477),

_ 3 expV?
Y[V (¢, t)] =54/~
7 (e 0)] S\/; expV®? + exp(Ve/2)e (51)

+(1+B(s = 1)) [Y(7y, + 37 - 477)].

Taking the inverse Yang transform, we get

~_ /3 expVe?
7(90= \/; expV% + exp(V¥2)e
+Y (14 B(s =) {Y (7, +37 - 477)}].
(52)

Now, applying the HPM, we get

Jj=0 Jj=0 Jj=0

o ex V6 o B o0 B o N 3
Y PV (¢, 1) = \/iw +P {Yl{(l +B(s— 1))Y((pr%j(¢, t)> +3) PIY (¢, f) —4(2})1%(9;, t)> > H :
L2

—~_ /3 expV®
7o) = \/;exp\/?"/’ + exp(V62)p

9 [3 exp*? exp(V¥i2)e _
+\/;( 2{1+ﬁt_ﬁ}

2 expV®? + exp(V¥12)?)
81 [3exp¥® exp(¥¥2)9 (~exp'™ + exp(V¥12)9)
4 V4 (expe# + expwélz)w)3

/52?2
. {(1 - B)2Bt+(1-B)* + T}+
(55)
Then, 8 =1; we get the exact result as

-3 expve?
7ip = \/;expﬁw + exp((V62)9)=((912)1)) * (56)

5. Graphical Discussion

Using an effective analytic approach, the article was aimed at
an analytical solution to the time-fractional Newell-
Whitehead-Segel equation. The relevant problems are solved
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FIGURE 1: (a) Graph of approximate and exact result and (b) the second graph of various fractional order of 3 of Case 1.
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FIGURE 2: (a) The first figure shows the actual and analytical solution, and (b) the second graph is various fractional order of  of Case 1.
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FIGURE 3: (a) The first graph of actual and analytical solution and (b) different fractional order of  of Case 2.
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FIGURE 4: (a) The first figure of actual and analytic result and (b) and the second figure of various fractional order of f3 of Case 3.
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FI1GURE 5: (a) The first graph of actual and analytical solution and (b) the second graph of different fractional order of 3 of Case 4.

using the homotopy perturbation Yang transformation
methodology. The solution to certain illustrative problems
is offered to test the validity of the proposed strategy. For
both fractional and integer-order issues, solution graphs
are displayed. Figure 1(a) depicts the precise and approxi-
mate solutions of example 1 at y =1, and Figure 1(b) depicts
the analytical solutions of several fractional orders of f=1
,0.8,0.6, and 0.4. Figure 2(a) depicts the precise and approx-
imate solutions of example 1 at =1, and Figure 2(b)
depicts the analytical solutions of several fractional orders
of $=0.4,0.6,0.8, and 1 with regard to #. The precise
HPETM solution is quite close to the precise result of the
given problems. Figure 3 also shows the exact and HPETM
solutions plots from example 2 (a) and (b) calculated at dif-
ferent fractional order 3=0.8, 0.6, and 0.4. Figures 4 and 5
illustrate a similar graphical examination and discussion of
Cases 3 and 4. It has been demonstrated that the proposed

strategies have the same accuracy. As fractional-order analy-
sis to integer-order is examined, it is discovered that
fractional-order problems are convergent to an integer-
order result. A similar phenomenon of fractional-order solu-
tions convergent to integral-order solutions is observed.

6. Conclusion

This article implements the HPTM to solve fractional-order
Newell-Whitehead-Segel equations and obtain an analytical
result. The HPTM has been an efficient approach to partial
differential equations with Caputo operators due to the
signed agreement between the approximate and actual
results. A comparison was performed to demonstrate that
the technique has a small computation size compared to
other techniques’ computational size. And its rapid conver-
gence indicates that the procedure is accurate and
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dramatically improves linear and nonlinear partial differen-
tial equations.
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