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In this study, we propose a new iterative scheme (NIS) to investigate the approximate solution of the fourth-order parabolic partial
differential equations (PDEs) that arises in transverse vibration problems. We introduce the Mohand transform as a new operator
that is very easy to implement coupled with the homotopy perturbation method. This NIS is capable of reducing the linearization,
perturbation, and restrictive assumptions that ruin the nature of the numerical problems. Some numerical examples are
demonstrated to legitimate the accuracy and authenticity of this NIS. The computational results are obtained in the shape of a
series that converges only after a few iterations. The comparison of the graphical representations shows that NIS is a very
simple but also an effective approach for other numerical problems involving complex variables.

1. Introduction

Many physical phenomena of differential equations in complex
variables play an important role in science and engineering
such as physics, chemical energy, biology, medicine, and
engineering [1–3]. These physical phenomena are of great
interest in this modern era and are introduced by parabolic
PDEs. It is still very difficult to investigate the exact solution
of the PDEs in most numerical problems. Therefore, most of
the researchers introduced numerous analytical and numerical
approaches to provide the approximate solution for these PDEs
such as the quintic B-spline collocation method [4], q-HATM
[5], quintic B-spline [6], Legendre wavelet method [7], homo-
topy perturbation transform method [8], and so on [9–11].

Consider the fourth-order parabolic PDEs with variable
coefficients [12, 13]

∂2Ψ
∂η2

+ α ξ, §, θð Þ ∂
4Ψ

∂ξ4
+ 1
§ β ξ, §, θð Þ ∂

4Ψ

∂§4 + 1
θ
γ ξ, §, θð Þ ∂

4Ψ

∂θ4
= g ξ, §, θ, ηð Þ,

ð1Þ

where α, β, γ > 0, subjected to the following initial conditions

Ψ ξ, §, θ, 0ð Þ = f1 ξ, §, θð Þ,
∂Ψ
∂η

ξ, §, θ, 0ð Þ = f2 ξ, §, θð Þ,
ð2Þ

and boundary conditions

Ψ a, §, θ, ηð Þ = g0 §, θ, ηð Þ,
Ψ b, §, θ, ηð Þ = g1 §, θ, ηð Þ,
Ψ ξ, a, θ, ηð Þ = k0 ξ, θ, ηð Þ,
Ψ ξ, b, θ, ηð Þ = k1 ξ, θ, ηð Þ,
Ψ ξ, §, a, ηð Þ = h0 ξ, §, ηð Þ,
Ψ ξ, §, b, ηð Þ = h1 ξ, §, ηð Þ,
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∂2Ψ
∂ξ2

a, §, θ, ηð Þ = �g0 §, θ, ηð Þ,

∂2Ψ
∂ξ2

b, §, θ, ηð Þ = �g1 §, θ, ηð Þ,

∂2Ψ
∂§2 ξ, a, θ, ηð Þ = �k0 ξ, θ, ηð Þ,

∂2Ψ
∂§2 ξ, b, θ, ηð Þ = �k1 ξ, θ, ηð Þ,

∂2Ψ
∂θ2

ξ, §, a, ηð Þ = �h0 ξ, §, ηð Þ,

∂2Ψ
∂θ2

ξ, §, b, ηð Þ = �h1 ξ, §, ηð Þ, ð3Þ

where f j, gj, hj, kj, �gj,
�hj, and �kj are continuous functions and j

varies from 0 to 1.
Wazwaz [14] used the Adomian decomposition method

to examine the analytical solution of transverse vibrations of
a uniform flexible beam. Aziz et al. [15] studied the fourth-
order nonhomogeneous parabolic partial differential equa-
tions that govern the behavior of a vibrating beam by using
a new three-level method based on the parametric quintic
spline in space and finite difference discretization in time.
Biazar and Ghazvini [16] used the variational iteration
method for the analytical solution of the fourth-order para-
bolic equations. Dehghan and Manafian [17] applied HPM
for the solution of the fourth-order parabolic PDEs. El-
Gamel [18] used the sinc-Galerkin method to examine the
fourth-order PDEs in one space variable coefficient. Rashidi-
nia and Mohammadi [19] reported new three-level implicit
methods for the numerical solution of the fourth-order non-
homogeneous parabolic PDEs with variable coefficients.
Mittal and Jain [20] applied the quintic B-spline method,
and Birol [21] used the reduced differential transformation
method for the fourth-order nonhomogeneous parabolic
partial differential equation. Khan and Sultana [22] used
the parametric septic spline for the numerical solution of
the fourth-order parabolic PDEs.

The homotopy perturbation method (HPM) was devel-
oped by He [23, 24]. HPM gives the solution in the form
of a rapid and consecutive series toward the exact solution.
Dehghan and Manafian [17] used HPM to obtain the
numerical results for the linear and nonlinear boundary
value problems. The convergence rate of HPM can be stud-
ied through [25]. Nadeem et al. [13] applied the Laplace
transform coupled with the homotopy perturbation method
to solve the fourth-order parabolic PDEs with variable coef-
ficients. Luo et al. [26] introduced a combined form of the
Mohand transform and the homotopy perturbation method
to provide the analytical solution of the delay differential
equations. Recently, many integral transformations have
been introduced to find the approximate solution of ordi-
nary and partial differential equations such as the Elzaki
transform [27, 28], Sumudu transform [29], Aboodh trans-

formation [30], Mohand transform [31], and homotopy
perturbation method [24].

In this paper, we construct the idea of NIS with the help
of the Mohand transform and the homotopy perturbation
method for obtaining the approximate solution of partial
differential equations. This NIS provides the results in the
form of a series that converges to the exact solution very
rapidly. This scheme does not require any linearization,
variation, and limiting expectations. In particular, this study
is organized as follows. In Section (2), we recall some basic
definitions of the Mohand transform. In Sections (3) and
(4), first, we present the basic idea of HPM and then formu-
late the idea of NIS for finding the approximate solution of
PDEs. We illustrate three examples to present the accuracy
and validity of NIS in Section (5). We give a brief discussion
of the obtained results in Section (6), and finally, the conclu-
sion is presented in Section (7).

2. Fundamental Concepts of the
Mohand Transform

In this section, we introduce some basic definitions and pre-
liminary concepts of the Mohand transform, which reveals
the idea of its implementations to functions.

Definition 1. Mohand and Mahgoub [31] presented a new
scheme Mohand transform Mð:Þ in order to gain the results
of ordinary differential equations, which is defined as

M Ψ ηð Þf g = R wð Þ =w2
ð∞
0
Ψ ηð Þe−wηdη, k1 ≤w ≤ k2: ð4Þ

On the other hand, if RðwÞ is the Mohand transform of a
function ΨðηÞ, then ΨðηÞ is the inverse of RðwÞsuch that

M−1 R wð Þf g =Ψ ηð Þ, M−1 is the inverseMohand operator:
ð5Þ

Definition 2. If ΨðηÞ = ηn,

R wð Þ = n!
wn−1 : ð6Þ

Definition 3. If MfΨðηÞg = RðwÞ, then it has the following
differential properties:

(i) MfΨ′ðηÞg =wRðwÞ −w2Fð0Þ
(ii) MfΨ′′ðηÞg =w2RðwÞ −w3Fð0Þ −w2F ′ð0Þ
(iii) MfFunðηÞg =wnRðwÞ −wn+1Fð0Þ −wnF ′ð0Þ −⋯−

wnFn−1ð0Þ
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3. Basic Idea of HPM

In this segment, we illustrate a nonlinear functional equation
to explain the basic view of HPM [32, 33]. Consider

T Ψð Þ − g hð Þ = 0, h ∈Ω, ð7Þ

with conditions

S Ψ, ∂Ψ
∂n

� �
= 0, h ∈ Γ, ð8Þ

where T and S are known as the general functional operator
and boundary operator, respectively, and gðhÞ is a known
function with Γ as an interval of the domain Ω. We now
divide T into two units such thatT1 represents a linear
and T2 a nonlinear operator. As a result, we can express
Equation (8) such that

T1 Ψð Þ + T2 Ψð Þ − g hð Þ = 0: ð9Þ

Assume a homotopy ϑðh, pÞ: Ω × ½0, 1�⟶ℍ in such a
way that it is appropriate for

H ϑ, pð Þ = 1 − pð Þ T1 ϑð Þ − T1 Ψ0ð Þ½ � + p T1 ϑð Þ − T2 ϑð Þ − g hð Þ½ �,
ð10Þ

or

H ϑ, pð Þ = T1 ϑð Þ − T1 Ψ0ð Þ + qL Ψ0ð Þ + p T2 ϑð Þ − g hð Þ½ � = 0,
ð11Þ

where p ∈ ½0, 1� is the embedding parameter and Ψ0 is an
initial guess of Equation (7), which is suitable for the
boundary conditions. The theory of HPM states that p is
considered a slight variable, and the solution of Equation
(7) in the resulting form of pis

ϑ = ϑ0 + pϑ1 + p2ϑ2 + p3ϑ3+⋯ = 〠
∞

i=0
piϑi: ð12Þ

Let p = 1, and then the particular solution of Equation
(8) is written as

Ψ = lim
p⟶1

ϑ = ϑ0 + ϑ1 + ϑ2 + ϑ3+⋯ = 〠
∞

i=0
ϑi: ð13Þ

The nonlinear terms can be calculated as

T2Ψ x, tð Þ = 〠
∞

n=0
pnHn Ψð Þ: ð14Þ

Then, He’s polynomials HnðΨÞ can be obtained using
the following expression:

Hn Ψ0 +Ψ1+⋯+Ψnð Þ = 1
n!

∂n

∂pn
T2 〠

∞

i=0
piΨi

 ! !
p=0

, n = 0, 1, 2,⋯:

ð15Þ

The series solution in Equation (14) is mostly conver-
gent due to the convergence rate of the series depending
on the nonlinear operator T2.

4. Formulation of NIS

This segment presents the formulation of a new iterative
scheme (NIS) for obtaining the approximate solution of
the fourth-order parabolic PDEs. Let us consider a second-
order differential equation of the form

Ψ′′ ξ, ηð Þ +Ψ ξ, ηð Þ + g Ψð Þ = g ξ, ηð Þ, ð16Þ

with the following conditions:

Ψ ξ, 0ð Þ = a,
Ψ′ ξ, 0ð Þ = b,

ð17Þ

where Ψ is a function in time domain η, gðΨÞ represents a
nonlinear term, and gðηÞ is a source term, whereas a and b
are constants. Rewrite Equation (16) again as

Ψ′′ ξ, ηð Þ = −Ψ ξ, ηð Þ − g Ψð Þ + g ξ, ηð Þ: ð18Þ

Now, taking MT on both sides of Equation (18), we
obtain

M Ψ′′ ξ, ηð Þ
h i

=M −Ψ ξ, ηð Þ − g Ψð Þ + g ξ, ηð Þ½ �: ð19Þ

Applying the differential properties of MT, we get

w2R w½ � −w3Ψ ξ, 0ð Þ −w2Ψ′ ξ, 0ð Þ =M −Ψ ξ, ηð Þ − g Ψð Þ + g ξ, ηð Þ½ �:
ð20Þ

Thus, RðwÞ can be obtained from Equation (20) such
that

R w½ � =wu ξ, 0ð Þ +Ψ′ ξ, 0ð Þ − 1
w2 M Ψ ξ, ηð Þ + g Ψð Þ − g ξ, ηð Þ½ �:

ð21Þ

Operating the inverse Mohand transform on Equation
(21), we get

Ψ ξ, ηð Þ =G ξ, ηð Þ −M−1 1
w2 M Ψ ξ, ηð Þ + g Ψð Þ½ �
� �

, ð22Þ

where Equation (22) is called the NIS and

G ξ, ηð Þ =M−1 wu 0ð Þ +Ψ′ 0ð Þ + 1
w2 g ξ, ηð Þ

� �
: ð23Þ
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Now, we apply HPM on Equation (22). Let

Ψ ηð Þ = 〠
∞

i=0
piΨi nð Þ =Ψ0 + p1Ψ1 + p2Ψ2+⋯, ð24Þ

and nonlinear terms gðΨÞ can be calculated by using the
following formula:

g Ψð Þ = 〠
∞

i=0
piHi Ψð Þ =H0 + p1H1 + p2H2+⋯, ð25Þ

where Hn ′s is He’s polynomial, which may be computed
using the following procedure:

Hn Ψ0 +Ψ1+⋯+Ψnð Þ = 1
n!

∂n

∂pn
g 〠

∞

i=0
piΨi

 ! !
p=0

, n = 0, 1, 2,⋯:

ð26Þ

Put Equations (24)–(26) in Equation (22), and com-
paring the similar factors of p, we get the following
consecutive elements:

p0 : Ψ0 ξ, ηð Þ = G ξ, ηð Þ,

p1 : Ψ1 ξ, ηð Þ = −M−1 1
w2 M Ψ0 ξ, ηð Þ +H0 Ψð Þf g
� �

,

p2 : Ψ2 ξ, ηð Þ = −M−1 1
w2 M Ψ1 ξ, ηð Þ +H1 Ψð Þf g
� �

,

p3 : Ψ3 ξ, ηð Þ = −M−1 1
w2 M Ψ2 ξ, ηð Þ +H2 Ψð Þf g
� �

,

⋮:

ð27Þ

In continuing the similar process, we can summarize
this series to get the approximate solution such that

Ψ ξ, ηð Þ =Ψ0 +Ψ1 +Ψ2+⋯ = 〠
∞

i=0
Ψi: ð28Þ

Thus, Equation (28) is to be considered an approxi-
mate solution of differential equations of Equation (16).

5. Numerical Examples

In this part, we consider three numerical problems to check
the authenticity and validity of NIS. We also demonstrate
the solution surface of the illustrated problems for the
behavior and a better understanding of this strategy where
we see that the solution graphs of the approximate solution
and the particular solution coincide with each other only
after a few iterations.

5.1. Example 1. Consider the one-dimensional fourth-order
parabolic PDEs

∂2Ψ
∂η2

+ 1
ξ
+ ξ4

120

 !
∂4Ψ
∂ξ4

= 0, ð29Þ

with the initial conditions

Ψ ξ, 0ð Þ = 0,

Ψη ξ, 0ð Þ = 1 + ξ5

120 :
ð30Þ

Applying MT on Equation (29) together with the differ-
ential property as defined in Equation (6), we get

w2R wð Þ −w3Ψ ξ, 0ð Þ −w2Ψη ξ, 0ð Þ = −M 1
ξ
+ ξ4

120

 !
∂4Ψ
∂ξ4

" #
:

ð31Þ

Thus, RðwÞ yields

R wð Þ =wΨ ξ, 0ð Þ −Ψη ξ, 0ð Þ − 1
w2 M

1
ξ
+ ξ4

120

 !
∂4Ψ
∂ξ4

" #
:

ð32Þ

Using the inverse Mohand transform, we get

Ψ ξ, ηð Þ =Ψ ξ, 0ð Þ − ηΨη ξ, 0ð Þ −M−1 1
w2M

1
ξ
+ ξ4

120

 !
∂4Ψ
∂ξ4

( )" #
:

ð33Þ

Applying MHPTM to get He’s polynomials, we get

〠
∞

i=0
piΨi nð Þ =Ψ ξ, 0ð Þ − ηΨη ξ, 0ð Þ −M−1 1

w2 M
1
ξ
+ ξ4

120

 !
〠
∞

i=0
pi
∂4Ψi

∂ξ4

( )" #
:

ð34Þ

Observing the similar powers of p, we get

p0 : Ψ0 ξ, ηð Þ = 1
ξ
+ ξ4

120

 !
η,

p1 : Ψ1 ξ, ηð Þ = −M−1 1
w2 M

1
ξ
+ ξ4

120

 !
∂4Ψ0
∂ξ4

( )" #
= −

1
ξ
+ ξ4

120

 !
η3

3! ,

p2 : Ψ2 ξ, ηð Þ = −M−1 1
w2M

1
ξ
+ ξ4

120

 !
∂4Ψ1
∂ξ4

( )" #
= 1

ξ
+ ξ4

120

 !
η5

5! ,

p3 : Ψ3 ξ, ηð Þ = −M−1 1
w2 M

1
ξ
+ ξ4

120

 !
∂4Ψ2
∂ξ4

( )" #
= −

1
ξ
+ ξ4

120

 !
η7

7! ,

p4 : Ψ4 ξ, ηð Þ = −M−1 1
w2M

1
ξ
+ ξ4

120

 !
∂4Ψ3
∂ξ4

( )" #
= 1

ξ
+ ξ4

120

 !
η9

9! ,

⋮:

ð35Þ
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In continuing this process, the approximate solution
results can be summarized as

Ψ ξ, ηð Þ =Ψ0 ξ, ηð Þ +Ψ1 ξ, ηð Þ +Ψ2 ξ, ηð Þ +Ψ3 ξ, ηð Þ +Ψ4 ξ, ηð Þ+⋯

= 1 + ξ5

120

 !
η −

η3

3! +
η5

5! −
η7

7! +
η9

9!

� �
+⋯:

ð36Þ

This series converges to the particular solution

Ψ ξ, ηð Þ = 1 + ξ5

120

 !
sin η: ð37Þ

5.2. Example 2. Consider the two-dimensional fourth-order
parabolic PDEs

∂2Ψ
∂η2

+ 2 1
ξ2

+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4 = 0, ð38Þ

with the initial conditions

Ψ ξ, §, 0ð Þ = 0,

Ψη ξ, §, 0ð Þ = 2 + ξ6

6! +
§6
6! :

ð39Þ

Applying NIM, we get

Ψ ξ, §, ηð Þ =Ψ ξ, §, 0ð Þ − ηΨη ξ, §, 0ð Þ −M−1

� 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #
:

ð40Þ

This equation provides He’s polynomials

〠
∞

i=0
piΨi nð Þ =Ψ ξ, §, 0ð Þ − ηΨη ξ, §, 0ð Þ −M−1

� 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
〠
∞

i=0
pi
∂4Ψi

∂ξ4
+ 2 1

§2 + §4
6!

� �
〠
∞

i=0
pi
∂4Ψi

∂§4

( )" #
:

ð41Þ

Observing the similar powers of p, we get

p0 : Ψ0 ξ, §, ηð Þ = 2 + ξ6

6! +
§6
6!

 !
η,

p1 : Ψ1 ξ, §, ηð Þ = −M−1 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #

= − 2 + ξ6

6! +
§6
6!

 !
η3

3! ,

p2 : Ψ2 ξ, §, ηð Þ = −M−1 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #

= 2 + ξ6

6! +
§6
6!

 !
η5

5! ,

p3 : Ψ3 ξ, §, ηð Þ = −M−1 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #

= − 2 + ξ6

6! +
§6
6!

 !
η7

7! ,

p4 : Ψ4 ξ, §, ηð Þ = −M−1 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #

= 2 + ξ6

6! +
§6
6!

 !
η9

9! ,

⋮: ð42Þ

In continuing this process, the approximate solution
results can be summarized as

Ψ ξ, §, ηð Þ =Ψ0 ξ, §, ηð Þ +Ψ1 ξ, §, ηð Þ +Ψ2 ξ, §, ηð Þ
+Ψ3 ξ, §, ηð Þ +Ψ4 ξ, §, ηð Þ+⋯

= 2 + ξ6

6! +
§6
6!

 !
η −

η3

3! +
η5

5! −
η7

7! +
η9

9!

� �
+⋯:

ð43Þ

This series converges to the particular solution

Ψ ξ, §, ηð Þ = 2 + ξ6

6! +
§6
6!

 !
sin η: ð44Þ

5.3. Example 3. Consider the three-dimensional fourth-order
parabolic PDEs

∂2Ψ
∂η2

+ 2 §+θ
cos ξð Þ − 1

� �
∂4Ψ
∂ξ4

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4

+ §+ξ
2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

= 0,
ð45Þ

with the initial conditions

Ψ ξ, §, θ, 0ð Þ = ξ + § + θ − cos ξð Þ + cos §ð Þ + cos θð Þð Þ,
Ψ ξ, §, θ, 0ð Þ = cos ξð Þ + cos §ð Þ + cos θð Þð Þ − ξ + § + θð Þ:

ð46Þ
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Applying NIM, we get

Ψ ξ, §, θ, ηð Þ =Ψ ξ, §, 0ð Þ − ηΨη ξ, §, 0ð Þ −M−1

� 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4

("

+ §+ξ
2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
:

ð47Þ

This equation provides He’s polynomials

p0 : Ψ0 ξ, §, θ, ηð Þ =wΨ ξ, §, 0ð Þ −Ψη ξ, §, 0ð Þ 1 − ηð Þ,

p1 : Ψ1 ξ, §, θ, ηð Þ = −M−1 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

("

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4 + §+ξ

2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
,

p2 : Ψ2 ξ, §, θ, ηð Þ = −M−1 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

("

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4 + §+ξ

2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
,

p3 : Ψ3 ξ, §, θ, ηð Þ = −M−1 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

("

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4 + §+ξ

2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
,

p4 : Ψ4 ξ, §, θ, ηð Þ = −M−1 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

("

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4 + §+ξ

2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
,

ð48Þ

which gives

Ψ0 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ 1 − ηð Þ,

Ψ1 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ η2

2! −
η3

3!

� �
,

Ψ2 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ η4

4! −
η5

5!

� ��
,

Ψ3 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ η6

6! −
η7

7!

� �
,

Ψ4 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ η8

8! −
η9

9!

� �
,

⋮:

ð49Þ

In continuing this process, the approximate solution
results can be summarized as

Ψ ξ, ηð Þ =Ψ0 ξ, ηð Þ +Ψ1 ξ, ηð Þ +Ψ2 ξ, ηð Þ +Ψ3 ξ, ηð Þ +Ψ4 ξ, ηð Þ+⋯
= ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ

� 1 − η + η2

2! −
η3

3! +
η4

4! −
η5

5! +
η6

6! −
η7

7! +
η8

8! −
η9

9! +⋯
� �

:

ð50Þ

This series converges to the particular solution

Ψ ξ, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þe−η: ð51Þ

6. Results and Discussion

In this segment, we present the discussion of some graphical
representations in Figures 1–3. It can be seen that the formu-
lated series converges to the particular solution only after a
few iterations very rapidly. Figures 1(a) and 1(b) represent
the comparison between the approximate solution and the
exact solution of Equations (36) and (37) at 0 ≤ η ≤ 1 and 0
≤ ξ ≤ 10, respectively. Figures 2(a) and 2(b) show the com-
parison between the approximate solution and the particular
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(a) Approximate solution of Ψðξ, ηÞ for Equation (29)
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(b) Particular solution of Ψðξ, ηÞ for Equation (29)

Figure 1: Surface solutions for the one-dimensional parabolic differential equation.
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solution of Equations (43) and (44) at 0 ≤ η ≤ 3 and 0 ≤ ξ ≤
10, respectively, and similarly, Figures 3(a) and 3(b) repre-
sent the comparison between the approximate solution and
the particular solution of Equations (50) and (51) at 0 ≤ η
≤ 1 and 0 ≤ ξ ≤ 10, respectively. This comparison shows that
NIS is easy to implement and does not require any heavy
calculation for the computation of the approximate solution
of the fourth-order parabolic PDEs with variable coefficients.

7. Conclusion and Future Work

In this analysis, we successfully employed the NIS to exam-
ine the approximate solution of the fourth-order parabolic
partial differential equations with variable coefficients. The
Mohand transform coupled with HPM has been used to
construct the idea of this scheme. This NIS approach is
applicable for both the linear and nonlinear partial differen-
tial equations. This approach does not require the recurrence
relation for the assumption of a variable. This NIS formu-
lates the obtained results of the illustrated problems in the
form of a series that converges to the particular solution very
rapidly. This approach has an advantage of direct implemen-
tation to the numerical problems and confirms the accuracy

with full agreement. This NIS is also applicable for the other
partial differential equations with fractional derivatives in
science and engineering.
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(a) Approximate solution of Ψðξ, §, ηÞ for Equation (38)
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Figure 2: Surface solutions for the two-dimensional parabolic differential equation.
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Figure 3: Surface solutions for the three-dimensional parabolic differential equation.
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