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In this paper, we prove common coupled fixed point theorems on complete C⋆-algebra-valued partial metric spaces. An example
and application to support our result are presented.

1. Introduction

In 1987, Guo and Lakshmikantham [1] introduced the con-
cept of a coupled fixed point. In 2006, Bhaskar and Lakshmi-
kantham [2] introduced the concept of a mixed monotone
property for the first time and investigated some coupled
fixed point theorems for mappings. As a result, many
authors obtained many coupled fixed point and coupled
coincidence theorems (see [3–21] and references therein).

In 2014, Ma et al. [22] introduced the notion of a C⋆

-algebra-valued metric space and proved fixed point theorem.
In 2015, Batul and Kamran [23] proved fixed theorems on C⋆

-algebra-valued metric space. In 2016, Alsulami et al. [24]
proved fixed point theorems on C∗-algebra-valued metric
space. In 2016, Cao and Xin [25] proved common coupled
fixed point theorems in C∗-algebra-valued metric spaces.
The details on C⋆-algebra are available in [26–29]. In 2011,

Aydi et al. [30] proved coupled fixed point theorems on
ordered partial metric space. The details on partial metric
space are available in [31–43]. In 2019, Chandok et al. [44]
proved fixed point theorems on C∗-algebra-valued partial
metric space. In this paper, we prove common coupled fixed
point theorems on C∗-algebra-valued partial metric space.

2. Preliminaries

First of all, we recall some basic definitions, notations, and
results of C⋆-algebra that can be found in [27]. An algebra
A, together with a conjugate linear involution map a↦ a⋆,
is called a ⋆-algebra if ðabÞ⋆ = b⋆a⋆ and ða⋆Þ⋆ = a for all a,
b ∈A. Moreover, the pair ðA, ⋆Þ is called a unital ⋆-algebra
if A contains the identity element 1A. By a Banach ⋆-alge-
bra, we mean a complete normed unital å-algebra ðA, ⋆Þ
such that the norm on A is submultiplicative and satisfies
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∥a⋆∥ = ∥a∥ for all a ∈A. Further, if for all a ∈A, we have ∥
a⋆a∥ = ∥a∥2 in a Banach ⋆-algebra ðA, ⋆Þ, then A is known
as a C⋆-algebra. A positive element of A is an element a ∈
A such that a = a⋆ and its spectrum σðaÞ ⊂ℝ+, where σðaÞ
= fυ ∈ℝ : υ1A − a is noninvertibleg. The set of all positive
elements will be denoted by A+. Such elements allow us to
define a parial ordering ⪰ on the elements of A. That is,

b ⪰ a if and only if b − a ∈A+: ð1Þ

If a ∈A is positive, then we write a ⪰ 0A, where 0A is the
zero element of A. Each positive element a of a C⋆-algebra
A has a unique positive square root. From now on, by A,
we mean a unital C⋆-algebra with identity element 1A. Fur-
ther, A+ = fa ∈A : a ± 0Ag and ða⋆aÞ1/2 =∣a ∣ .

Now, we recall the definition of C∗-algebra-valued par-
tial metric space introduced by Chandok et al. [44].

Definition 1. Let Γ be a nonvoid set and the mapping ρ : Γ
× Γ⟶A are defined, with the following properties:

(A1) 0A⪯ρðℵ, ϖÞ for all ℵ, ϖ ∈ Γ and ρðℵ,ℵÞ = ρðϖ, ϖÞ
= ρðℵ, ϖÞ if and only if ℵ = ϖ

(A2) ρðℵ,ℵÞ⪯ρðℵ, ϖÞ
(A3) ρðℵ, ϖÞ = ρðϖ,ℵÞ for all ℵ, ϖ ∈ Γ
(A4) ρðℵ, ϖÞ⪯ρðℵ, γÞ + ρðγ, ϖÞ − ρðγ, γÞ for all ℵ, ϖ, γ

∈ Γ

Then, ρ is said to be a C⋆-algebra-valued partial metric
on Γ, and ðΓ,A, ρÞ is said to be a C⋆-algebra-valued partial
metric space.

Definition 2. A sequence fℵαg in ðΓ,A, ρÞ is called conver-
gent (with respect to A) to a point ℵ ∈ Γ, if for given ε > 0, ∃
k ∈ℕ such that kρðℵα,ℵÞ − ρðℵ,ℵk < ε, ∀α > k.

Definition 3. A sequence fℵαg in ðΓ,A, ρÞ is called Cauchy
(with respect to A), if lim

α⟶∞
ρðℵα,ℵmÞ exists, and it is finite.

Definition 4. The triplet ðΓ,A, ρÞ is called complete C∗ -alge-
bra-valued partial metric space if every Cauchy sequence in
Γ is convergent to some point ℵ in Γ such that

lim
α⟶∞

ρ ℵα,ℵmð Þ = lim
α⟶∞

ρ ℵα,ℵð Þ = ρ ℵ,ℵð Þ: ð2Þ

Definition 5 (see [18]). Let Γ be a nonvoid set. An element
ðℵ, ϖÞ ∈ Γ × Γ is said to be

(1) A couple fixed point of the mapping φ : Γ × Γ⟶ Γ
if φðℵ, ϖÞ =ℵ and φðϖ,ℵÞ = ϖ

(2) A coupled coincidence point of the mapping φ : Γ
× Γ⟶ Γ and g : Γ⟶ Γ if φðℵ, ϖÞ = gℵ and φð
ϖ,ℵÞ = gϖ. In this case, ðgℵ, gϖÞ is said to be
coupled point of coincidence

(3) A common coupled fixed point of the mapping φ
: Γ × Γ⟶ Γ and g : Γ⟶ Γ if φðℵ, ϖÞ = gℵ =ℵ
and φðϖ,ℵÞ = gϖ = ϖ

Note that Definition 5 (3) reduces to Definition 5 (1) if
the mapping g is the identity mapping.

Definition 6 (see [18]). The mappings φ : Γ × Γ⟶ Γ and
g : Γ⟶ Γ is said to be ω-compatible if gðφðℵ, ϖÞÞ = φðg
ℵ, gϖÞ whenever gℵ = φðℵ, ϖÞ and gϖ = φðϖ,ℵÞ.

3. Main Results

Now, we give our main results.

Theorem 7. Let ðΓ,A, ρÞ be a complete C⋆ -algebra-valued
partial metric space. Suppose that the mappings φ : Γ × Γ
⟶ Γ and g : Γ⟶ Γ such that

ρ φ ℵ, ϖð Þ, φ i, vð Þð Þ⪯ρ gℵ, gið Þr + r⋆ρ gϖ, gvð Þr, for anyℵ, ϖ, i, v ∈ Γ,
ð3Þ

where r ∈A with ∥r∥<ð1/ ffiffiffi
2

p Þ. If φðΓ × ΓÞ ⊆ gðΓÞ and gðΓÞ is
complete in Γ, then φ and g have a coupled coincidence point
and ρðgℵ, gℵÞ = 0A, ρðgϖ, gϖÞ = 0A. Moreover, if φ and g
are ω-compatible, then they have unique common coupled
fixed point in Γ.

Proof. Let ℵ0, ϖ0 ∈ Γ, then gðℵ1Þ = φðℵ0, ϖ0Þ, and gðϖ1Þ =
φðϖ0,ℵ0Þ. One can obtain two sequences fℵαg and fϖαg
by continuing this process such that gðℵα+1Þ = φðℵα, ϖαÞ,
and gðϖα+1Þ = φðϖα,ℵαÞ. Then,

ρ gℵα, gℵα+1ð Þ = ρ φ ℵα−1, ϖα−1ð Þ, φ ℵα, ϖαð Þð Þ
⪯r⋆ ρ gℵα−1, gℵαð Þð Þr + r⋆ ρ gϖα−1, gϖαð Þð Þr
⪯r⋆ ρ gℵα−1, gℵαð Þð Þ + ρ gϖα−1, gϖαð Þð Þr:

ð4Þ

Similarly,

ρ gϖα, gϖα+1ð Þ = ρ φ ϖα−1,ℵα−1ð Þ, φ ϖα,ℵαð Þð Þ
⪯r⋆ ρ gϖα−1, gϖαð Þð Þr + r⋆ ρ gℵα−1, gℵαð Þð Þr
⪯r⋆ ρ gϖα−1, gϖαð Þð Þ + ρ gℵα−1, gℵαð Þð Þr:

ð5Þ

Let

Iα = ρ gℵα, gℵα+1ð Þ + ρ gϖα, gϖα+1ð Þ: ð6Þ

Using (4) and (5), we have

Iα = ρ gℵα, gℵα+1ð Þ + ρ gϖα, gϖα+1ð Þ
⪯r⋆ ρ gℵα−1, gℵαð Þ + ρ gϖα−1, gϖαð Þð Þr

+ r⋆ ρ gϖα−1, gϖαð Þ + ρ gℵα−1, gℵαð Þð Þr
⪯

ffiffiffi
2

p
r

� �⋆
ρ gℵα−1, gℵαð Þ + ρ gϖα−1, gϖαð Þð Þ

ffiffiffi
2

p
r

� �
⪯

ffiffiffi
2

p
r

� �⋆
Iα−1

ffiffiffi
2

p
r

� �
:

ð7Þ

Let s, t ∈A�, then s⪯t implies r⋆sr⪯r⋆tr (Theorem 2.2.5
in [27]). Therefore, for each α ∈ℕ,
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0A⪯Iα⪯
ffiffiffi
2

p
r

� �⋆
Iα−1

ffiffiffi
2

p
r

� �
⪯⋯⪯

ffiffiffi
2

p
r

� �⋆h iα
I0

ffiffiffi
2

p
r

� �α
:

ð8Þ

If I0 = 0A, then φ and g have a coupled coincidence
point ðℵ0, ϖ0Þ. Now, letting 0A⪯I0, then for each α, ℘∈ℕ,

ρ gℵα+℘, gℵα

� �
⪯ρ gℵα+℘, gℵα+℘−1

� �
+ ρ gℵα+℘−1, gℵα+℘−2

� �
− ρ gℵα+℘−1, gℵα+℘−1

� �
+⋯

+ρ gℵα+2, gℵα+1ð Þ + ρ gℵα+1, gℵαð Þ
− ρ gℵα+1, gℵα+1ð Þ

⪯ρ gℵα+℘, gℵα+℘−1
� �

+ ρ gℵα+℘−1, gℵα+℘−2
� �

+⋯+ρ gℵα+2, gℵα+1ð Þ + ρ gℵα+1, gℵαð Þ,

ρ gϖα+℘, gϖα

� �
⪯ρ gϖα+℘, gϖα+℘−1

� �
+ ρ gϖα+℘−1, gϖα+℘−2

� �
− ρ gϖα+℘−1, gϖα+℘−1

� �
+⋯

+ρ gϖα+2, gϖα+1ð Þ + ρ gϖα+1, gϖαð Þ
− ρ gϖα+1, gϖα+1ð Þ⪯ρ gϖα+℘, gϖα+℘−1

� �
+ ρ gϖα+℘−1, gϖα+℘−2

� �
+⋯

+ρ gϖα+2, gϖα+1ð Þ + ρ gϖα+1, gϖαð Þ:
ð9Þ

Consequently,

ρ gℵα+℘, gℵα

� �
+ ρ gϖα+℘, gϖα

� �
⪯Iα+℘−1 +Iα+wp−2+⋯+Iα

⪯ 〠
α+℘−1

k=α

ffiffiffi
2

p
r

� �⋆h ik
I0

ffiffiffi
2

p
r

h ik
,

ð10Þ

which implies that

ρ gℵα+℘, gℵα

� �
+ ρ gϖα+℘, gϖα

� ��� ��⪯ 〠
α+℘−1

k=α

ffiffiffi
2

p
r

��� ���2kI0

⪯〠
∞

k=α

ffiffiffi
2

p
r

��� ���2kI0

=
ffiffiffi
2

p
r

��� ���2α
1 −

ffiffiffi
2

p
r

��� ���2 I0:

ð11Þ

Since ∥r∥⋖ð1/√2Þ, we have

ρ gℵα+℘, gℵα

� �
+ ρ gϖα+℘, gϖα

� ��� ��⪯
ffiffiffi
2

p
r

��� ���2α
1 −

ffiffiffi
2

p
r

��� ���2 I0 ⟶ 0,

ð12Þ

which is together with

ρ gℵα+℘, gℵα

� �
⪯ρ gℵα+℘, gℵα

� �
+ ρ gϖα+℘, gϖα

� �
, ð13Þ

and

ρ gϖα+℘, gϖα

� �
⪯ρ gℵα+℘, gℵα

� �
+ ρ gϖα+℘, gϖα

� �
: ð14Þ

Therefore, fgℵαg and fgϖαg are Cauchy sequences in
gðΓÞ. Since fgϖαg is complete, ∃ℵ, ϖ ∈ Γ such that limα⪯∞
gℵα = gℵ and

ρ gℵ, gℵð Þ = lim
n⟶∞

ρ gℵα, gℵð Þ = lim
n⟶∞

ρ gℵα, gℵαð Þ = 0A,

ð15Þ

limα⪯∞gϖα = gϖ, and

ρ gϖ, gϖð Þ = lim
n⟶∞

ρ gϖα, gϖð Þ = lim
n⟶∞

ρ gϖα, gϖαð Þ = 0A:

ð16Þ

Now, we show that φðℵ, ϖÞ = gℵ and φðϖ,ℵÞ = gϖ. For
this,

ρ φ ℵ, ϖð Þ, gℵð Þ⪯ρ φ ℵ, ϖð Þ, gℵα+1ð Þ + ρ gℵα+1, gℵð Þ
⪯ρ φ ℵ, ϖð Þ, φ ℵα, ϖαð Þð Þ + ρ gℵα+1, gℵð Þ
⪯r⋆ρ gℵα, gℵð Þr + r⋆ρ gϖα, gϖð Þr + ρ gℵα+1, gℵð Þ:

ð17Þ

As α⟶∞, we get ρðφðℵ, ϖÞ, gℵÞ = 0A, and hence, φð
ℵ, ϖÞ = gℵ. Similarly, φðϖ,ℵÞ = gϖ. Therefore, φ and g
have a coupled coincidence point ðℵ, ϖÞ.

Let ðℵ′, ϖ′Þ be another coupled coincidence point of φ
and g. Then,

ρ gℵ, gℵ′
� �

= ρ φ ℵ, ϖð Þ, φ ℵ′, ϖ′
� �� �

⪯r⋆ρ gℵ, gℵ′
� �

r + r⋆ρ gϖ, gϖ′
� �

r,

ρ gϖ, gϖ′
� �

= ρ φ ϖ,ℵð Þ, φ ϖ′,ℵ′
� �� �

⪯r⋆ρ gϖ, gϖ′
� �

r + r⋆ρ gℵ, gℵ′
� �

r:
ð18Þ

Consequently,

ρ gℵ, gℵ′
� �

+ ρ gϖ, gϖ′
� �

⪯

ffiffiffi
2

p
r

� �⋆
ρ gℵ, gℵ′
� �

+ ρ gϖ, gϖ′
� �� � ffiffiffi

2
p

r
� �

,
ð19Þ

which implies that

ρ gℵ, gℵ′
� �

+ ρ gϖ, gϖ′
� ���� ���

⪯

ffiffiffi
2

p
r

� ���� ���2 ρ gℵ, gℵ′
� �

+ ρ gϖ, gϖ′
� ���� ���: ð20Þ
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Since kð ffiffiffi
2

p
rÞk < 1, then kρðgℵ, gℵ′Þ + ρðgϖ, gϖ′Þk =

0: Hence, we get gℵ = gℵ′ and gϖ = gϖ′: Similarly, we
can prove that gℵ = gϖ′ and gϖ = gℵ′: Then, φ and g have
a unique coupled point of coincidence ðgℵ, gℵÞ. Moreover,
set v = gℵ, then v = gℵ = φðℵ,ℵÞ: Since φ and g are ω
-compatible,

gv = g gℵð Þ = g φ ℵ,ℵð Þð Þ = φ gℵ, gℵð Þ = φ v, vð Þ: ð21Þ

Therefore, φ and g have a coupled point of coincidence
ðgv, gvÞ. We know gv = gℵ, then v = gv = φðv, vÞ. There-
fore, φ and g have a unique common coupled fixed point ð
v, vÞ.

Example 1. Let Γ =R and A =M2ðℂÞ, and the map ρ : Γ
× Γ⟶A is defined by

ρ ℵ, ϖð Þ =
ℵ − ϖj j 0
0 k ℵ − ϖj j

" #
+

max ℵ, ϖf g 0
0 k max ℵ, ϖf g

" #
,

ð22Þ

where k ⋗ 0 is a constant. Then, ðΓ,A, ρÞ is a complete C⋆

-algebra-valued partial metric space. Consider the mappings
φ : Γ × Γ⟶ Γ with φðℵ, ϖÞ = ðℵ + ϖÞ/2 and g : Γ⟶ Γ

with gðℵÞ = 2ℵ. Set λ ∈ℂ with ∣λ ∣ <ð1/ ffiffiffi
2

p Þ, and r =

λ 0
0 λ

" #
, then r ∈A and ∥r∥∞ = ∣λ ∣ . Clearly, φ and g are

ω-compatible. Moreover, one can verify that φ satisfies the
contractive condition

ρ φ ℵ, ϖð Þ, φ u, vð Þð Þ⪯r⋆φ ℵ, uð Þr + r⋆φ ϖ, vð Þr, for anyℵ, ϖ, u, v ∈ Γ:
ð23Þ

In this case, ð0, 0Þ is coupled coincidence point of φ and
g. Moreover, ð0, 0Þ is a unique common coupled fixed point
of φ and g.

Corollary 8. Let ðΓ,A, ρÞ be a complete C⋆ -algebra-valued
partial metric space. Suppose that mapping φ : Γ × Γ⟶ Γ
such that

ρ φ ℵ, ϖð Þ, φ u, vð Þð Þ⪯r⋆ρ ℵ, uð Þr + r⋆ρ ϖ, vð Þr, for anyℵ, ϖ, u, v ∈ Γ,
ð24Þ

where r ∈A with ∥r∥<ð1/ ffiffiffi
2

p Þ. Then, φ has a unique coupled
fixed point.

We recall the following lemma of [27].

Lemma 9. Suppose that A is a unital C⋆ -algebra with a unit
1A.

(1) If r ∈A+ with ∥r∥<ð1/2Þ, then 1A − r is invertible

(2) If r, s ∈A+ and rs = sr, then 0A⪯rs

(3) If r, s ∈A� and t ∈A+′ then r⪯s deduces tr⪯ts, where
A+′ =A+ ∩A′

Theorem 10. Let ðΓ,A, ρÞ is a complete C⋆ -algebra-valued
partial metric space. Suppose that the mappings φ : Γ × Γ
⟶ Γ and g : Γ⟶ Γ such that

ρ φ ℵ, ϖð Þ, φ u, vð Þð Þ
⪯rρ φ ℵ, ϖð Þ, gℵð Þ + sρ φ u, vð Þ, guð Þ, for anyℵ, ϖ, u, v ∈ Γ,

ð25Þ

where r, s ∈A+′ with ∥r∥+∥s∥<1. If φðΓ × ΓÞ ⊆ gðΓÞ and gðΓÞ
is complete in Γ, then φ and g have a coupled coincidence
point and ρðgℵ, gℵÞ = 0A, ρðgϖ, gϖÞ = 0A. Moreover, if φ
and g are ω-compatible, then they have unique common
coupled fixed point in Γ.

Proof. Similar to Theorem 7, construct two sequences fℵαg
and fϖαg in Γ such that gℵα+1 = φðℵα, ϖαÞ and gϖα+1 = φð
ϖα,ℵαÞ. Then, by applying (25), we have

1A − sð Þρ gℵα, gℵα+1ð Þ⪯rρ gℵα, gℵα−1ð Þ,
1A − sð Þρ gϖα, gϖα+1ð Þ⪯rρ gϖα, gϖα−1ð Þ:

ð26Þ

Since r, s ∈A+′ with ∥r∥+∥s∥<1, we have 1A − s is invert-
ible and ð1A − sÞ−1r ∈A+′: Therefore,

ρ gℵα, gℵα+1ð Þ⪯ 1A − sð Þ−1rρ gℵα, gℵα−1ð Þ,
ρ gϖα, gϖα+1ð Þ⪯ 1A − sð Þ−1rρ gϖα, gϖα−1ð Þ:

ð27Þ

Then,

ρ gℵα, gℵα+1ð Þk k⪯ 1A − sð Þ−1r�� �� ρ gℵα, gℵα−1ð Þk k,
ρ gϖα, gϖα+1ð Þk k⪯ 1A − sð Þ−1r�� �� ρ gϖα, gϖα−1ð Þk k:

ð28Þ

Since,

1A − sð Þ−1r�� ��⪯ 1A − sð Þ−1�� �� rk k⪯〠
∞

k=0
sk kk rk k = rk k

1 − sk k : ⋖ 1:

ð29Þ

Therefore, fgℵαg and fgϖαg are Cauchy sequences in
gðΓÞ. By the completeness of gðΓÞ, ∃ℵ, ϖ ∈ Γ such that
limα°∞gℵα = gℵ and

ρ gℵ, gℵð Þ = lim
n⟶∞

ρ gℵα, gℵð Þ = lim
n⟶∞

ρ gℵα, gℵαð Þ = 0A,

ð30Þ

4 Journal of Function Spaces



limα⟶∞gϖα = gϖ, and

ρ gϖ, gϖð Þ = lim
n⟶∞

ρ gϖα, gϖð Þ = lim
n⟶∞

ρ gϖα, gϖαð Þ = 0A:

ð31Þ

Since,

ρ φ ℵ, ϖð Þ, gℵð Þ⪯ρ gℵα+1, φ ℵ, ϖð Þð Þ + ρ gℵα+1, gℵð Þ
= ρ φ ℵα, ϖαð Þ, φ ℵ, ϖð Þð Þ + ρ gℵα+1, gℵð Þ
⪯rρ φ ℵα, ϖαð Þ, gℵαð Þ + sρ φ ℵ, ϖð Þ, gℵð Þ

+ ρ gℵα+1, gℵð Þ
⪯rρ gℵα+1, gℵαð Þ + sρ φ ℵ, ϖð Þ, gℵð Þ

+ ρ gℵα+1, gℵð Þ,
ð32Þ

which implies that

ρ φ ℵ, ϖð Þ, gℵð Þ⪯ 1 − sð Þ−1rρ gℵα+1, gℵαð Þ + 1 − sð Þ−1ρ gℵα+1, gℵαð Þ:
ð33Þ

Then, ρðφðℵ, ϖÞ, gℵÞ = 0A or equivalently φðℵ, ϖÞ = gℵ
. Similarly, one can obtain φðϖ,ℵÞ = gϖ. Let ðℵ′, ϖ′Þ be
another coupled coincidence point of φ and g, then

ρ gℵ′, gℵ
� �

⪯ρ φ ℵ′, ϖ′
� �

, φ ℵ, ϖð Þ
� �

⪯rρ φ ℵ′, ϖ′
� �

, gℵ′
� �

+ sρ φ ℵ, ϖð Þ, gℵð Þ
= rρ gℵ′, gℵ′

� �
+ sρ gℵ, gℵð Þ = 0A,

ð34Þ

and

ρ gϖ′, gϖ
� �

⪯ρ φ ϖ′,ℵ′
� �

, φ ϖ,ℵð Þ
� �

⪯rρ φ ϖ′,ℵ′
� �

, gϖ′
� �

+ sρ φ ϖ,ℵð Þ, gϖð Þ
= rρ gϖ′, gϖ′

� �
+ sρ gϖ, gϖð Þ = 0A,

ð35Þ

which implies that gℵ′ = gℵ and gϖ′ = gϖ. Similarly, we
have gℵ′ = gϖ and gϖ′ = gℵ. Hence, φ and g have a unique
coupled point of coincidence ðgℵ, gℵÞ. Moreover, we can
show that φ and g have a unique common coupled fixed
point.

Theorem 11. Let ðΓ,A, ρÞ be a complete C⋆ -algebra-valued
partial metric space. Suppose that mappings φ : Γ × Γ⟶ Γ
and g : Γ⟶ Γ such that

ρ φ ℵ, ϖð Þ, φ u, vð Þð Þ
⪯rρ φ ℵ, ϖð Þ, guð Þ + sρ φ u, vð Þ, gℵð Þ, for anyℵ, ϖ, u, v ∈ Γ,

ð36Þ

where r, s ∈A+ ′ with ∥r∥+∥s∥<1. If φðΓ × ΓÞ ⊆ gðΓÞ and gðΓÞ
is complete in Γ, then φ and g have a coupled coincidence
point and ρðgℵ, gℵÞ = 0A, ρðgϖ, gϖÞ = 0A. Moreover, if φ
and g are ω-compatible, then they have unique common
coupled fixed point in Γ.

Proof. Following similar process given in Theorem 7, we
construct two sequences fℵαg and fϖαg in Γ such that gð
ℵα+1Þ = φðℵα, ϖαÞ and gðϖα+1Þ = φðϖα,ℵαÞ. From (36), we
have

ρ gℵα, gℵα+1ð Þ = ρ φ ℵα−1, ϖα−1ð Þ, φ ℵα, ϖαð Þð Þ
⪯rρ φ ℵα−1, ϖα−1ð Þ, gℵαð Þ

+ sρ φ ℵα, ϖαð Þ, gℵα−1ð Þ
⪯rρ gℵα, gℵαð Þ + sρ gℵα+1, gℵα−1ð Þ
⪯rρ gℵα+1, gℵαð Þ + sρ gℵα+1, gℵαð Þ

+ sρ gℵα, gℵα−1ð Þ − sρ ρ gℵα, gℵαð Þð
⪯rρ gℵα+1, gℵαð Þ + sρ gℵα+1, gℵαð Þ

+ sρ gℵα, gℵα−1ð Þ,
ð37Þ

which implies that

1A − r + sð Þð Þρ gℵα, gℵα+1ð Þ⪯sρ gℵα, gℵα−1ð Þ: ð38Þ

Because of the symmetry in (36),

ρ gℵα+1, gℵαð Þ = ρ φ ℵα, ϖαð Þ, φ ℵα−1, ϖα−1ð Þð Þ
⪯rρ φ ℵα, ϖαð Þ, gℵα−1ð Þ

+ sρ φ ℵα−1, ϖα−1ð Þ, gℵαð Þ
⪯rρ gℵα+1, gℵα−1ð Þ + sρ gℵα, gℵαð Þ
⪯rρ gℵα+1, gℵαð Þ + rρ gℵα, gℵα−1ð Þ

− rρ gℵα, gℵαð Þ + sρ gℵα+1, gℵαð Þ
⪯rρ gℵα+1, gℵαð Þ + rρ gℵα, gℵα−1ð Þ

+ sρ gℵα+1, gℵαð Þ,

ð39Þ

which implies that

1A − r + sð Þð Þρ gℵα, gℵα+1ð Þ⪯rρ gℵα, gℵα−1ð Þ: ð40Þ

From (38) and (40), we obtain

1A − r + sð Þð Þρ gℵα, gℵα+1ð Þ⪯ r + s
2 ρ gℵα, gℵα−1ð Þ: ð41Þ

Since r, s ∈A+ ′ with ∥r + s∥⪯∥r∥+∥s∥⋖1, then
ð1A − ðr + sÞÞ−1 ∈A+ ′, which together with Lemma 9 (3),
we obtain

ρ gℵα, gℵα+1ð Þ⪯ 1A − r + sð Þð Þ−1 r + s
2 ρ gℵα, gℵα−1ð Þ: ð42Þ

Let e = ð1A − ðr + sÞÞ−1ððr + sÞ/2Þ, then ∥e∥ = ∥
ð1A − ðr + sÞÞ−1ððr + sÞ/2Þ∥<1. The same argument in
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Theorem 10 tells that fgℵαg is a Cauchy sequence in gðΓÞ.
Similarly, we can derive that fgϖαg is also a Cauchy
sequence in gðΓÞ. By the completeness of gðΓÞ, ∃ℵ, ϖ ∈ Γ
such that limα⪯∞gℵα = gℵ and

ρ gℵ, gℵð Þ = lim
n⟶∞

ρ gℵα, gℵð Þ = lim
n⟶∞

ρ gℵα, gℵαð Þ = 0A,

ð43Þ

limα⪯∞gϖα = gϖ, and

ρ gϖ, gϖð Þ = lim
n⟶∞

ρ gϖα, gϖð Þ = lim
n⟶∞

ρ gϖα, gϖαð Þ = 0A:

ð44Þ

Now, we show that φðℵ, ϖÞ = gℵ and φðϖ,ℵÞ = gϖ: For
this,

ρ φ ℵ, ϖð Þ, gℵð Þ⪯ρ gℵα+1, φ ℵ, ϖð Þð Þ + ρ gℵα+1, gℵð Þ
= ρ φ ℵα, ϖαð Þ, φ ℵ, ϖð Þð Þ + ρ gℵα+1, gℵð Þ
⪯rρ φ ℵα, ϖαð Þ, gℵð Þ + sρ φ ℵ, ϖð Þ, gℵαð Þ

+ ρ gℵα+1, gℵð Þ
⪯rρ gℵα+1, gℵð Þ + sρ φ ℵ, ϖð Þ, gℵαð Þ

+ ρ gℵα+1, gℵð Þ,
ð45Þ

which implies that

ρ φ ℵ, ϖð Þ, gℵð Þk k⪯ rk k ρ gℵα+1, gℵð Þk k + sk k ρ φ ℵ, ϖð Þ, gℵαð Þk k
+ ρ gℵα+1, gℵð Þk k:

ð46Þ

By the continuity of the metric and the norm, we obtain

ρ φ ℵ, ϖð Þ, gℵð Þk k⪯ sk k ρ φ ℵ, ϖð Þ, gℵð Þk k: ð47Þ

Since ∥s∥<1; therefore, ∥ρðφðℵ, ϖÞ, gℵÞ∥ = 0. Thus, φðℵ
, ϖÞ = gℵ. Similarly, φðϖ,ℵÞ = gϖ. Hence, ðℵ, ϖÞ is a
coupled coincidence point of φ and g. The same reasoning
that Theorem 10 tells us that φ and g have unique common
coupled fixed point in Γ.

In 2015, Ma and Jiang [45] proved fixed point theorems
in C⋆-algebra-valued b-metric spaces with an application of
Fredholm integral equations. In 2016, Xin et al. [46] proved
common fixed point theorems in C∗-algebra-valued metric
spaces with an application of Fredholm integral equations.
In 2020, Mlaiki et al. [47] proved fixed point results on C⋆

-algebra valued partial b-metric spaces with an application
of Fredholm integral equations. In 2021, Tomar et al. [48]
proved fixed point theorems in C⋆-algebra valued partial
metric space with an application of Fredholm integral
equations.

4. Application

As an application of Corollary 8, we find an existence and
uniqueness result for a type of following system of Fredholm
integral equations:

ℵ μð Þ =
ð
E

G μ, p,ℵ pð Þ, ϖ pð Þð Þdp + δ μð Þ, μ, p ∈E, ð48Þ

ϖ μð Þ =
ð
E

G μ, p, ϖ pð Þ,ℵ pð Þð Þdp + δ μð Þ, μ, p ∈E, ð49Þ

where E is a measurable, G : E ×E ×ℝ ×ℝ⟶ℝ and δ
∈L∞ðEÞ. Let Γ =L∞ðEÞ, K =L2ðEÞ, and LðKÞ =A.
Define ρ : Γ × Γ⟶A by (for all δ, θ, I ∈ Γ and kτk = θ
< 1):

ρ δ, θð Þ = π∣δ−θ∣ + I, ð50Þ

where πq : K ⟶K is the multiplicative operator, which
is defined by:

πq ψð Þ = q:ψ: ð51Þ

Now, we state and prove our result, as follows:

Theorem 12. Suppose that (for all ℵ, ϖ ∈ Γ)
(S1) There exists a continuous function κ : E ×E⟶ℝ

and θ ∈ ð0, 1Þ, such that

∣G μ, p,ℵ pð Þ, ϖ pð Þð Þ −G μ, p, u pð Þ, u pð Þð Þ∣
≤ θ∣κ μ, pð Þ∣ ∣ℵ pð Þ − u pð Þ∣+∣ϖ pð Þ − v pð Þ∣+I − θ−1I

� �
,
ð52Þ

for all μ, p ∈E.
(S2) supμ∈E

Ð
E
∣ κðμ, pÞ ∣ dp ≤ 1.

Subsequently, the integral Equation (49) has a unique
solution in Γ.

Proof. Define φ : Γ × Γ⟶ Γ by:

φ ℵ, ϖð Þ μð Þ =
ð
E

G μ, p,ℵ pð Þ, ϖ pð Þð Þdp + δ μð Þ,∀μ, p ∈E,

ð53Þ

6 Journal of Function Spaces



Set τ = θI, then τ ∈A. For any z ∈K , we have

ρ φ ℵ, ϖð Þ, φ u, vð Þð Þk k = sup
zk k=1

π∣φ ℵ,ϖð Þ−φ u,vð Þ∣+Iz, z
� �

= sup
zk k=1

ð
E

∣φ ℵ, ϖð Þ − φ u, vð Þ∣+Ið Þz μð Þ �z μð Þdμ

≤ sup
zk k=1

ð
E

ð
E

∣G μ, p,ℵ pð Þ, ϖ pð Þð Þ

− G μ, p,ℵ pð Þ, ϖ pð Þð Þ∣dp z μð Þj j2dμ
+ sup

zk k=1

ð
E

ð
E

dp z μð Þj j2dμI

≤ sup
zk k=1

ð
E

ð
E

θ ∣ κ μ, pð Þ ∣ ∣ℵ pð Þ − u pð Þ∣+∣ϖ pð Þð
�

− v pð Þ∣+I − θ−1I
�
dp� z μð Þj j2dμ + I

≤ θ sup
zk k=1

ð
E

ð
E

∣ κ μ, pð Þ ∣ dp
� 	

z μð Þj j2dμ

� ℵ − uk k∞ + ϖ − vk k∞
� �

≤ θ sup
μ∈E

ð
E

∣κ μ, pð Þ∣dp sup
zk k=1

ð
E

z μð Þj j2dμ

� ℵ − uk k∞ + ϖ − vk k∞
� �

≤ θ ℵ − uk k∞ + ϖ − vk k∞

 �

= τk k ρ ℵ, uð Þk k + ρ ϖ, vð Þk k½ �:
ð54Þ

Hence, all the hypotheses of Corollary 8 are verified, and
consequently, the integral Equation (49) has a unique solu-
tion.

5. Conclusion

In this paper, we proved common coupled fixed point theo-
rems on C∗-algebra-valued partial metric space using ω
-compatible mappings. An illustrative example is provided
that shows the validity of the hypothesis and the degree of
usefulness of our findings. Moreover, we introduced an
application to show that the useful of C⋆-algebra-valued
metric space to study the existence and uniqueness of system
of Fredholm integral equations. Recently, Mutlu et al. [49]
proved coupled fixed point theorems on bipolar metric
spaces. It is an interesting open problem to study the C⋆

-algebra-valued bipolar metric space instead of C⋆-algebra-
valued metric space and obtain common coupled fixed point
results on C⋆-algebra-valued bipolar metric spaces.
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