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Aiming at the initial boundary value problem of variable-order time-fractional wave equations in one-dimensional space, a
numerical method using second-order central difference in space and H2N2 approximation in time is proposed. A finite
difference scheme with second-order accuracy in space and 3 − γ∗ order accuracy in time is obtained. The stability and
convergence of the scheme are further discussed by using the discrete energy analysis method. A numerical example shows the
effectiveness of the results.

1. Introduction

In recent years, due to the non-locality of fractional calculus,
more and more problems in physical science, electromagne-
tism, electrochemistry, diffusion and general transport the-
ory can be described by the fractional calculus approach,
among which the Riemann-Liouville fractional derivative
and the Caputo fractional derivative are the most widely
used [1–4]. At the same time, more and more researchers
found that a variety of important dynamical problems
exhibit fractional-order behavior that may vary with time,
space, or other conditions. This phenomenon indicates that
variable-order fractional calculus is a natural choice to pro-
vide an effective mathematical framework for the description
of complex problems.

In 2020, Shen et al. proposed a new numerical approxima-
tion method—the H2N2 approximation [5] for the numerical
differential formula of the Caputo fractional derivative of γ
∈ ð1, 2Þ and applied it for the constant-order time-fractional
wave equations in the following multidimensional space

C
0D

γ
t u x, tð Þ = Δu + q x, tð Þ, x ∈Ω, t ∈ 0, Tð �,

u x, 0ð Þ = φ xð Þ, ut x, 0ð Þ = ψ xð Þ, x ∈Ω,
u x, tð Þ = 0, x ∈ ∂Ω, t ∈ 0, T½ �,

8>><
>>: ð1Þ

where qðx, tÞ, φðxÞ, ψðxÞ are given sufficiently smooth func-
tions, Ω =Qd

j=1ðlðjÞ, rðjÞÞ ⊂ Rd , ∂Ω is the boundary of Ω, x =
ðxð1Þ, xð2Þ,⋯, xðdÞÞ ∈Ω, Δu =∑d

j=1∂
2
xð jÞu. When x ∈ ∂Ω, φðxÞ

andψðxÞ satisfy consistency conditions φðxÞ = ψðxÞ = 0. It
was proved that the proposed scheme has the accuracy of
order of ð3 − γÞ in time and 2 in space, and it is clear that
its theoretical analysis is similar to the L1 method applied
in solving the constant-order time-fractional slow diffusion
equations.

Motivated by the above literature [6–9], in this work, we
consider the numerical solution of the following variable-
order time-fractional wave equations in one-dimensional
space

C
0D

γ tð Þ
t u x, tð Þ = uxx x, tð Þ + f x, tð Þ, x ∈ 0, Lð Þ, t ∈ 0, Tð �: ð2Þ

u x, 0ð Þ = φ xð Þ, ut x, 0ð Þ = ψ xð Þ, x ∈ 0, Lð Þ: ð3Þ

u 0, tð Þ = 0, u L, tð Þ = 0, t ∈ 0, T½ �: ð4Þ

where 1 < γðtÞ < 2,C0D
γðtÞ
t uðx, tÞ is the variable-order Caputo

fractional derivative, f ðx, tÞ, φðxÞ, ψðxÞ are given suffificiently
smooth functions and satisfy φð0Þ = ψð0Þ, φðLÞ = ψðLÞ.
Suppose its solution function u ∈ Cð4,3Þð½0, L� × ½0, T�Þ.
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The rest of this paper is organized as follows. In the next
section, some necessary notations are introduced. In Section
3, the H2N2-based finite difference scheme for the variable-
order time-fractional wave equations is derived. In Section 4,
the stability and convergence of the difference scheme are
studied. In Section 5, a numerical result is listed to verify
the theoretical prediction and the effectiveness of the differ-
ence scheme. Finally, a brief conclusion is provided.

2. Preliminary Knowledge and
Relevant Lemmas

Definition 1 (see [10]). Suppose the function f ðtÞ is defined
on the interval ½0, T�, 1 < γðtÞ < 2, then the variable-order
Caputo fractional derivative is defined as

C
0D

γ tð Þ
t f tð Þ = 1

Γ 2 − γ tð Þð Þ
ðt
0
f ′′ sð Þ t − sð Þ1−γ tð Þds: ð5Þ

Next, mesh the solution intervals ½0, L� and ½0, T�, take
integersM andN , denote h = L/M, τ = T/N, h and τ are called
space step and time step, respectively. Denote xi = ihð0 ≤ i ≤
MÞ, tk = kτð0 ≤ k ≤NÞ,Ωh = fxij0 ≤ i ≤Mg,Ωτ = ftkj0 ≤ k ≤
Ng. Define the following grid function spaces

Uh = u ∣ u = u0, u1,⋯, uMð Þf g,
Ûh = u u ∈Uh, u0 = uMj = 0f g:

ð6Þ

For grid function u = fuki ∣ 0 ≤ i ≤M, 0 ≤ k ≤Ng defined
on Ωh ×Ωτ, introduce the following notations

δxu
k
i−1/2 =

1
h

uki − uki−1
� �

,

δ2xu
k
i =

1
h2

uki+1 − 2uki + uki−1
� �

,

δtu
k+1/2
i = 1

τ
uk+1i − uk−1i

� �
,

δ2t u
k
i =

1
τ

δtu
k+1/2
i − δtu

k−1/2
i

� �
:

ð7Þ

For any grid functions u, v ∈ Ûh, denote the following
notations

u, vð Þ = h 〠
M−1

i=1
uivi,  uk k =

ffiffiffiffiffiffiffiffiffiffiffi
u, uð Þ

p
,

δxu, δxvð Þ = h 〠
M−1

i=0
δxui+1/2ð Þ δxvi+1/2ð Þ,

uk k∞ = max
0≤i≤M

uij j,  δxuk k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δxu, δxuð Þ

p
:

ð8Þ

For any function f ðtÞ defined on the interval ½0, t1�, using
the data ðt0, f ðt0ÞÞ, ðt1, f ðt1ÞÞ, ðt0, f ′ðt0ÞÞ to make the qua-
dratic Hermite interpolation polynomial of f ðtÞ

H2,0 tð Þ = f t0ð Þ + f ′ t0ð Þ t − t0ð Þ + 1
τ

δt f
1/2 − f ′ t0ð Þ

� �
t − t0ð Þ2: ð9Þ

Taking the twice derivative arrives at

H2,0′′ tð Þ = 2
τ

δt f
1/2 − f ′ t0ð Þ

� �
: ð10Þ

For any function f ðtÞ defined on the interval ½tk−1, tk+1�
ð1 ≤ k ≤N − 1Þ, using three points ðtk−1, f ðtk−1ÞÞ, ðtk, f ðtkÞÞ,
ðtk+1, f ðtk+1ÞÞ to make the quadratic Newton interpolation
polynomial of f ðtÞ

N2,k tð Þ = f tk−1ð Þ + δt f
k−1/2

� �
t − tk−1ð Þ

+ 1
2 δ2t f

k
� �

t − tk−1ð Þ t − tkð Þ:
ð11Þ

Taking the second-order derivative yields

N2,k′′ tð Þ = δ2t f
k: ð12Þ

On the basis of the above interpolation polynomial, we
next discuss the high-precision approximation formula of
the variable-order Caputo fractional derivative.

Here, we denote f l = f ðtlÞ, γn−1/2 = γðtn−1/2Þ, tn−1/2 = tn
− τ/2. Suppose f ðtÞ ∈ C3½t0, tn� and 1 < γðtÞ < 2, then at the
half-grid point tn−1/2, we have

C
0D

γn−1/2
t f tn−1/2ð Þ = 1

Γ 2 − γn−1/2ð Þ
ðt1/2
t0

f ′′ tð Þ tn−1/2 − tð Þ1−γn−1/2dt
"

+ 〠
n−1

k=1

ðtk+1/2
tk−1/2

f ′′ tð Þ tn−1/2 − tð Þ1−γn−1/2dt
#

≈
1

Γ 2 − γn−1/2ð Þ
ðt1/2
t0

H2,0′′ tð Þ tn−1/2 − tð Þ1−γn−1/2dt
"

+ 〠
n−1

k=1

ðtk+1/2
tk−1/2

N2,k′′ tð Þ tn−1/2 − tð Þ1−γn−1/2dt
#
= 1
Γ 2 − γn−1/2ð Þ

�
ðt1/2
t0

2
τ

δt f
1/2 − f ′ t0ð Þ

� �
tn−1/2 − tð Þ1−γn−1/2dt

"

+ 〠
n−1

k=1

ðtk+1/2
tk−1/2

δ2t f
k

� �
tn−1/2 − tð Þ1−γn−1/2dt

#
= 1
Γ 2 − γn−1/2ð Þ

� 2
τ

ðt1/2
t0

tn−1/2 − tð Þ1−γn−1/2dt ⋅ δt f
1/2 − f ′ t0ð Þ

� �"

+ 1
τ
〠
n−1

k=1

ðtk+1/2
tk−1/2

tn−1/2 − tð Þ1−γn−1/2dt ⋅ δt f
k+1/2 − δt f

k−1/2
� �#

= 1
Γ 2 − γn−1/2ð Þ b

n,γn−1/2ð Þ
n−1 δt f

1/2 − f ′ t0ð Þ
� �

+ 〠
n−1

k=1
b

n,γn−1/2ð Þ
n−k−1

"

� δt f
k+1/2 − δt f

k−1/2
� �#

= 1
Γ 2 − γn−1/2ð Þ

� b
n,γn−1/2ð Þ

0 δt f
n−1/2 − 〠

n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
δt f

k−1/2
"

− b
n,γn−1/2ð Þ

n−1 f ′ t0ð Þ
�
≡D

γn−1/2
t f tn−1/2ð Þ:

ð13Þ
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Here

b
n,γn−1/2ð Þ

n−1 = 2
τ

ðt1/2
t0

tn−1/2 − tð Þ1−γn−1/2dt, ð14Þ

b
n,γn−1/2ð Þ

n−k−1 = 1
τ

ðtk+1/2
tk−1/2

tn−1/2 − tð Þ1−γn−1/2dt, ð15Þ

where 1 ≤ k ≤ n − 1.
Then, it can be calculated that

b
n,γn−1/2ð Þ

k =

τ1−γn−1/2

2 − γn−1/2
k + 1ð Þ2−γn−1/2�

−k2−γn−1/2
	
, 0 ≤ k ≤ n − 2,

2 τ1−γn−1/2

2 − γn−1/2
n −

1
2

� �2−γn−1/2
− n − 1ð Þ2−γn−1/2

" #
, k = n − 1:

8>>>><
>>>>:

ð16Þ

Denote

rn= C
0D

γn−1/2
t f tn−1/2ð Þ −D

γn−1/2
t f tn−1/2ð Þ, ð17Þ

we have

rnj j ≤ C0 max
t0≤t≤tn

f ′′′ tð Þ

 

τ3−γn−1/2 : ð18Þ

Here,C0 = 1/8Γð2 − γn−1/2Þ + 1/12Γð3 − γn−1/2Þ + ðγn−1/2
− 1Þ/2Γð4 − γn−1/2Þ, the proof process is similar to Theorem
2.1 in Reference [5].

Lemma 2. For any n ≥ 2, according to b
ðn,γn−1/2Þ
k defined by

(14)–(15), we have

τ1−γn−1/2

n − 1/2ð Þγn−1/2−1 < b
n,γn−1/2ð Þ

n−1 < b
n,γn−1/2ð Þ

n−2 <⋯ < b
n,γn−1/2ð Þ

1

< b
n,γn−1/2ð Þ

0 = τ1−γn−1/2

2 − γn−1/2
:

ð19Þ

Proof. According to the formula (14)–(15), we have

b
n,γn−1/2ð Þ

n−1 = 2τ1−γn−1/2
2 − γn−1/2

n −
1
2

� �2−γn−1/2
− n − 1ð Þ2−γn−1/2

" #
,

ð20Þ

b
n,γn−1/2ð Þ

n−k−1 = τ1−γn−1/2

2 − γn−1/2
n − kð Þ2−γn−1/2 − n − k − 1ð Þ2−γn−1/2� 	

, 1 ≤ k ≤ n − 1:

ð21Þ
When k = n − 1, it can be obtained by calculation

b
n,γn−1/2ð Þ

0 = τ1−γn−1/2

2 − γn−1/2
: ð22Þ

From equations (20) and (21), we have

b
n,γn−1/2ð Þ

n−1 = 2τ1−γn−1/2
ðn−1/2
n−1

ξ1−γn−1/2dξ,

b
n,γn−1/2ð Þ

k = τ1−γn−1/2
ðk+1
k

ξ1−γn−1/2dξ,

0 ≤ k ≤ n − 2:

ð23Þ

Therefore, it can be obtained

b
n,γn−1/2ð Þ

n−1 < b
n,γn−1/2ð Þ

n−2 <⋯ < b
n,γn−1/2ð Þ

1 < b
n,γn−1/2ð Þ

0 = τ1−γn−1/2

2 − γn−1/2
:

ð24Þ

When n ≥ 2, we have

1 − 1
2n − 1

� �2−γn−1/2
= 1 − 2 − γn−1/2

2n − 1

+ 2 − γn−1/2ð Þ 1 − γn−1/2ð Þ
2! −

1
2n − 1

� �2

+ 2 − γn−1/2ð Þ 1 − γn−1/2ð Þ −γn−1/2ð Þ
3!

� −
1

2n − 1

� �3
+⋯:

ð25Þ

From the above formula

n −
1
2

� �2−γn−1/2
− n − 1ð Þ2−γn−1/2 − 2 − γn−1/2

2 n − 1/2ð Þγn−1/2−1

= n −
1
2

� �2−γn−1/2
1 − 2 − γn−1/2

2 n − 1/2ð Þ − 1 − 1
2n − 1

� �2−γn−1/2
" #

= n −
1
2

� �2−γn−1/2
−

2 − γn−1/2ð Þ 1 − γn−1/2ð Þ
2! −

1
2n − 1

� �2
"

−
2 − γn−1/2ð Þ 1 − γn−1/2ð Þ −γn−1/2ð Þ

3! −
1

2n − 1

� �3
−⋯

#
> 0:

ð26Þ

And when n = 1, we have

1
2

� �2−γn−1/2
−

2 − γn−1/2
2 ⋅ 1/2ð Þγn−1/2−1 = γn−1/2 − 1

22−γn−1/2 > 0: ð27Þ

Therefore, it can be seen that

b
n,γn−1/2ð Þ

n−1 > 2τ1−γn−1/2
2 − γn−1/2

⋅
2 − γn−1/2

2 n − 1/2ð Þγn−1/2−1 = τ1−γn−1/2

n − 1/2ð Þγn−1/2−1 :

ð28Þ

To sum up, Lemma 2 is proved.
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Lemma 3 (see [11]). If the function f ∈ C4½xi−1, xi+1�, λ ∈ ð
xi−1, xi+1Þ, there is

f ′′ xið Þ = f xi−1ð Þ − 2f xið Þ + f xi+1ð Þ
h2

−
h2

12
f 4ð Þ λð Þ: ð29Þ

Lemma 4. For any positive integer m and any ψ, V1, V2,⋯,
VN ∈ Ûh, when

tn+1/2 − tð Þγn+1/2−1 ≥ tn−1/2 − tð Þγn−1/2−1, t ∈ 0, tn−1/2ð Þ, tn+1/2 ≤ T ,
ð30Þ

we have

〠
m

n=1
b

n,γn−1/2ð Þ
0 Vn − 〠

n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
Vk − b

n,γn−1/2ð Þ
n−1 ψ, Vn

 !

≥
1
2

〠
m

k=1
b

m,γm−1/2ð Þ
m−k Vk

��� ���2 − 〠
m

n=1
b

n,γn−1/2ð Þ
n−1 ψk k2

 !
,

ð31Þ

where 1 ≤m ≤N.

Proof. On the basis of [12], it can be seen from the condition

〠
m

n=1
b

n,γn−1/2ð Þ
0 Vn − 〠

n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
Vk − b

n,γn−1/2ð Þ
n−1 ψ,Vn

 !

= 〠
m

n=1
b

n,γn−1/2ð Þ
0 Vnk k2 − 〠

n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
Vk, Vn
� � 

− b
n,γn−1/2ð Þ

n−1 ψ,Vnð Þ
!
≥ 〠

m

n=1
b

n,γn−1/2ð Þ
0 Vnk k2 − 1

2〠
n−1

k=1

"

· b
n,γn−1/2ð Þ

n−k−1 − b
n,γn−1/2ð Þ

n−k

� �
Vk
��� ���2 + Vnk k2
� �

−
1
2 b

n,γn−1/2ð Þ
n−1 ψk k2 + Vnk k2

� �#

= 1
2〠

m

n=1
2b n,γn−1/2ð Þ

0 − 〠
n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
− b

n,γn−1/2ð Þ
n−1

 !
Vnk k2

"

− 〠
n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
Vk
��� ���2 − b

n,γn−1/2ð Þ
n−1 ψk k2

#

= 1
2〠

m

n=1
b

n,γn−1/2ð Þ
0 Vnk k2 − 〠

n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 Vk

��� ���2 + 〠
n−1

k=1
b

n,γn−1/2ð Þ
n−k Vk

��� ���2
"

− b
n,γn−1/2ð Þ

n−1 ψk k2
#
= 1
2〠

m

n=1
〠
n

k=1
b

n,γn−1/2ð Þ
n−k Vk

��� ���2 − 〠
n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 Vk

��� ���2
"

− b
n,γn−1/2ð Þ

n−1 ψk k2
�
= 1
2 〠

m

k=1
〠
m

n=k
b

n,γn−1/2ð Þ
n−k Vk

��� ���2 − 〠
m−1

k=1
〠
m

n=k+1
b

n,γn−1/2ð Þ
n−k−1 Vk

��� ���2
"

− 〠
m

n=1
b

n,γn−1/2ð Þ
n−1 ψk k2

#
= 1
2 b

m,γm−1/2ð Þ
0 Vmk k2

�

+ 〠
m−1

k=1
〠
m

n=k
b

n,γn−1/2ð Þ
n−k − 〠

m

n=k+1
b

n,γn−1/2ð Þ
n−k−1

 !
Vk
��� ���2 − 〠

m

n=1
b

n,γn−1/2ð Þ
n−1 ψk k2

#

= 1
2 b

m,γm−1/2ð Þ
0 Vmk k2 + 〠

m−1

k=1
b

m,γm−1/2ð Þ
m−k Vk

��� ���2
"

+ 〠
m−1

k=1
〠
m−1

n=k
b

n,γn−1/2ð Þ
n−k − b

n+1,γn+1/2ð Þ
n−k

� �
Vk
��� ���2 − 〠

m

n=1
b

n,γn−1/2ð Þ
n−1 ψk k2

#
:

ð32Þ

When γðtÞ satisfies the following condition

b
n,γn−1/2ð Þ

n−k − b
n+1,γn+1/2ð Þ

n−k

= 1
τ

ðtk−1/2
tk−3/2

tn−1/2 − tð Þ1−γn−1/2 − tn+1/2 − tð Þ1−γn+1/2� 	
dt,

ð33Þ

namely

tn+1/2 − tð Þγn+1/2−1 ≥ tn−1/2 − tð Þγn−1/2−1: ð34Þ

Then, we have

〠
m

n=1
b

n,γn−1/2ð Þ
0 Vn − 〠

n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
⋅Vk − b

n,γn−1/2ð Þ
n−1 ψ,Vn

 !

≥
1
2 〠

m

k=1
b

m,γm−1/2ð Þ
m−k Vk

��� ���2 − 〠
m

n=1
b

n,γn−1/2ð Þ
n−1 ψk k2

 !
:

ð35Þ

Remark 5. Consider the function

g x, yð Þ = xy, x > 0, y > 0: ð36Þ

We have

∂g x, yð Þ
∂x

= yxy−1 > 0,

∂g x, yð Þ
∂y

= xyInx =
<0, x ∈ 0, 1ð Þ,
>0, x > 1:

( ð37Þ

If T ≤ 1 and γðtÞ is an non-increasing function on ½0, T�,
then tn+1/2 − t ∈ ð0, 1Þ, tn−1/2 − t ∈ ð0, 1Þ and γn+1/2 ≤ γn−1/2,
consequently

tn+1/2 − tð Þγn+1/2−1 ≥ tn−1/2 − tð Þγn−1/2−1, t ∈ 0, tn−1/2ð Þ, tn+1/2 ≤ T:

ð38Þ

(30) is valid.
If T > 1, γðtÞ is an non-increasing function on the inter-

val ½0, 1� and γðtÞ is a constant on the interval ½1, T�, (30) is
also valid.

Lemma 6 (see [11]). For any ε > 0, a, b ≥ 0, there is

ab ≤ εa2 + 1
4ε

b2: ð39Þ

Lemma 7 (see [11]). For any grid function u ∈ Ûh, there is

uk k∞ ≤
ffiffiffi
L

p

2
δxuk k: ð40Þ
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Lemma 8 (see [13]). Suppose fFk ∣ k ≥ 0g, fGk ∣ k ≥ 1g are
two non-negative sequences, fGkg does not decrease with k, if

Fk ≤ Cτ〠
k

l=0
Fl +Gk, k = 1, 2,⋯, ð41Þ

where C is an non-negative constant, when τ ≤ 2/3C, then

Fk ≤ exp 3Ckτð Þ CτF0 + 3Gk
� �

, k = 1, 2,⋯: ð42Þ

3. Establishment of the Difference Scheme

Denote Ui
n = uðxi, tnÞ, 0 ≤ i ≤M, 0 ≤ n ≤N ; φi = φðxiÞ, ψi =

ψðxiÞ, consider (2) at the point ðxi, tn−1/2Þ, we have

C
0D

γn−1/2
t u xi, tn−1/2ð Þ = uxx xi, tn−1/2ð Þ + f xi, tn−1/2ð Þ, 1 ≤ i

≤M − 1, 1 ≤ n ≤N:

ð43Þ

Applying (13) to approximate the temporal fractional
derivative and central difference quotient (29) to approxi-
mate the spatial derivative, we can obtain

1
Γ 2 − γn−1/2ð Þ b

n,γn−1/2ð Þ
0 δtU

n−1/2
i − 〠

n−1

k=1

"

· b
n,γn−1/2ð Þ

n−k−1 − b
n,γn−1/2ð Þ

n−k

� �
δtU

k−1/2
i − b

n,γn−1/2ð Þ
n−1 ψi

#

= δ2xU
n−1/2
i + f n−1/2i + Rn−1/2

i , 1 ≤ i ≤M − 1, 1 ≤ n ≤N:

ð44Þ

There exists a positive constant C1 such that

Rn−1/2
i



 

 ≤ C1 τ3−γn−1/2 + h2
 �

, 1 ≤ i ≤M − 1, 1 ≤ n ≤N:

ð45Þ

Noticing the initial and boundary value conditions (3)
and (4), we have

U0
i = φi, 1 ≤ i ≤M − 1:

Un
0 = 0, Un

M = 0, 0 ≤ n ≤N:

(
ð46Þ

Omitting the small term Rn−1/2
i in the equation and

replacing the grid function Ui
n by its numerical approxima-

tion uni , we construct the difference scheme for solving the
problems (2)–(4) as follows

1
Γ 2 − γn−1/2ð Þ b

n,γn−1/2ð Þ
0 δtu

n−1/2
i − 〠

n−1

k=1

"

· b
n,γn−1/2ð Þ

n−k−1 − b
n,γn−1/2ð Þ

n−k

� �
δtu

k−1/2
i − b

n,γn−1/2ð Þ
n−1 ψi

#

= δ2xu
n−1/2
i + f n−1/2i , 1 ≤ i ≤M − 1, 1 ≤ n ≤N:

ð47Þ

u0i = φi, 1 ≤ i ≤M − 1: ð48Þ

un0 = 0, unM = 0, 0 ≤ n ≤N: ð49Þ

4. Stability and Convergence of the
Difference Scheme

Theorem 9. Suppose funi ∣ 0 ≤ i ≤M, 0 ≤ n ≤Ng is the solu-
tion of the following difference scheme

1
Γ 2 − γn−1/2ð Þ b

n,γn−1/2ð Þ
0 δtu

n−1/2
i − 〠

n−1

k=1

"

· b
n,γn−1/2ð Þ

n−k−1 − b
n,γn−1/2ð Þ

n−k

� �
δtu

k−1/2
i − b

n,γn−1/2ð Þ
n−1 ψi

#

= δ2xu
n−1/2
i + pn−1/2i , 1 ≤ i ≤M − 1, 1 ≤ n ≤N ,

ð50Þ

u0i = φi, 1 ≤ i ≤M − 1, ð51Þ

un0 = 0, unM = 0, 0 ≤ n ≤N , ð52Þ

where pn−1/2i is a given perturbation term, when τ < 2/3c0, it
holds that

δxu
nk k2 ≤ exp 3c0Tð Þ c0τ δxu

0�� ��2 + 3Qn
� �

, 1 ≤ n ≤N:

ð53Þ

c0 and Qn are given in (56) and (64), respectively.

Proof. Taking an inner product (50) with Γð2 − γn−1/2Þδt
un−1/2 and summing n from 1 to m, we have

〠
m

n=1
b

n,γn−1/2ð Þ
0 δtu

n−1/2�� ��2 − 〠
n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
δtu

k−1/2, δtun−1/2
� �"

− b
n,γn−1/2ð Þ

n−1 ψ, δtun−1/2
 �#

= 〠
m

n=1
Γ 2 − γn−1/2ð Þ δ2xu

n−1/2, δtun−1/2
 �

+ 〠
m

n=1
Γ 2 − γn−1/2ð Þ pn−1/2, δtun−1/2

 �
, 1 ≤m ≤N:

ð54Þ
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Noticing that

〠
m

n=1
Γ 2 − γn−1/2ð Þ δ2xu

n−1/2, δtun−1/2
 �

= −
1
2τ〠

m

n=1
Γ 2 − γn−1/2ð Þ δxu

nk k2 − δxu
n−1�� ��2� �

= −
1
2τ〠

m

n=1
Γ 2 − γnð Þ δxu

nk k2 − Γ 2 − γn−1ð Þ δxu
n−1�� ��2n

− Γ 2 − γnð Þ − Γ 2 − γn−1/2ð Þ½ � δxu
nk k2 − Γ 2 − γn−1/2ð Þ½

− Γ 2 − γn−1ð Þ� δxu
n−1�� ��2o ≤ −

1
2τ〠

m

n=1

· Γ 2 − γnð Þ δxu
nk k2 − Γ 2 − γn−1ð Þ δxu

n−1�� ��2� �
+ 1
2τ〠

m

n=1
Γ 2 − γnð Þ − Γ 2 − γn−1/2ð Þ½ � δxu

nk k2

+ 1
2τ〠

m

n=1
Γ 2 − γn−1/2ð Þ − Γ 2 − γn−1ð Þ½ � δxu

n−1�� ��2
≤ −

1
2τ〠

m

n=1
Γ 2 − γnð Þ δxu

nk k2 − Γ 2 − γn−1ð Þ δxu
n−1�� ��2� �

+ 1
4 c0 〠

m

n=1
δxu

nk k2 + δxu
n−1�� ��2� �

,

ð55Þ

where

c0 = max
0≤t≤T

d
dt

Γ 2 − γ tð Þð Þ










: ð56Þ

Applying Lemma 4, we have

1
2 〠

m

k=1
b

m,γm−1/2ð Þ
m−k δtu

k−1/2
��� ���2 − 〠

m

n=1
b

n,γn−1/2ð Þ
n−1 ψk k2

 !

≤ −
1
2τ〠

m

n=1
Γ 2 − γnð Þ δxu

nk k2 − Γ 2 − γn−1ð Þ δxu
n−1�� ��2� �

+ 1
4 c0 〠

m

n=1
δxu

nk k2 + δxu
n−1�� ��2� �

+ 〠
m

n=1
Γ 2 − γn−1/2ð Þ

� pn−1/2, δtun−1/2
 �

, 1 ≤m ≤N:

ð57Þ

Then, we have

1
2〠

m

k=1
b

m,γm−1/2ð Þ
m−k δtu

k−1/2
��� ���2 + 1

2τ Γ 2 − γmð Þ δxu
mk k2 − δxu

0�� ��2� �

≤
1
2〠

m

n=1
b

n,γn−1/2ð Þ
n−1 ψk k2 + 〠

m

n=1
Γ 2 − γn−1/2ð Þ pn−1/2, δtun−1/2

 �

+ 1
2 c0 〠

m

n=0
δxu

nk k2, 1 ≤m ≤N:

ð58Þ

By Lemma 2, noticing that

b
m,γm−1/2ð Þ

m−k > τ1−γm−1/2

m − 1/2ð Þγm−1/2−1
= t

1−γm−1/2
m−1/2 , b n,γn−1/2ð Þ

n−1 < τ1−γn−1/2

2 − γn−1/2
:

ð59Þ

Then

1
2 t

1−γm−1/2
m−1/2 〠

m

k=1
δtu

k−1/2
��� ���2 + Γ 2 − γmð Þ

2τ δxu
mk k2

≤
1
2τ δxu

0�� ��2 + 1
2〠

m

n=1

τ1−γn−1/2

2 − γn−1/2
ψk k2 + 〠

m

n=1
Γ 2 − γn−1/2ð Þ

· t
1−γm−1/2
m−1/2

2Γ 2 − γn−1/2ð Þ δtu
n−1/2�� ��2 + Γ 2 − γn−1/2ð Þ

2t1−γm−1/2
m−1/2

pn−1/2
�� ��2 !

+ 1
2 c0 〠

m

n=0
δxu

nk k2:

ð60Þ

We use the Cauchy inequality for the inner product
ðpn−1/2, δtun−1/2Þ, the above equation can be simplified

Γ 2 − γmð Þ
2τ δxu

mk k2 ≤ 1
2τ δxu

0�� ��2 + 1
2〠

m

n=1

τ1−γn−1/2

2 − γn−1/2
ψk k2

+ 〠
m

n=1

Γ2 2 − γn−1/2ð Þ
2t1−γm−1/2

m−1/2
pn−1/2
�� ��2

+ 1
2 c0 〠

m

n=0
δxu

nk k2:

ð61Þ

Multiplying by 2τ/Γð2 − γmÞ, then we have

δxu
mk k2 ≤ 1

Γ 2 − γmð Þ δxu
0�� ��2 + τ〠

m

n=1

τ1−γn−1/2

2 − γn−1/2
ψk k2

 

+ τt
γm−1/2−1
m−1/2 〠

m

n=1
Γ2 2 − γn−1/2ð Þ pn−1/2

�� ��2 + τc0 〠
m

n=0
δxu

nk k2
!
:

ð62Þ

Note that Γ is decreasing on the interval ð0, 1�. Since 0
< 2 − γðtÞ ≤ 1, Γð2 − γðtÞÞ−1 ≤ 1. Then

δxu
mk k2 ≤ δxu

0�� ��2 + τ〠
m

n=1

τ1−γn−1/2

2 − γn−1/2
ψk k2

+ τt
γm−1/2−1
m−1/2 〠

m

n=1
Γ2 2 − γn−1/2ð Þ pn−1/2

�� ��2
+ τc0 〠

m

n=0
δxu

nk k2:

ð63Þ
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Let

Qm = δxu
0�� ��2 + τ〠

m

n=1

τ1−γn−1/2

2 − γn−1/2
ψk k2 + τt

γm−1/2−1
m−1/2 〠

m

n=1
Γ2

� 2 − γn−1/2ð Þ pn−1/2
�� ��2, 1 ≤m ≤N:

ð64Þ

Then

δxu
mk k2 ≤ τc0 〠

m

n=0
δxu

nk k2 +Qm: ð65Þ

It is easy to know Qm does not decrease with m. Accord-
ing to Lemma 8, when τ < 2/3c0, we have

δxu
mk k2 ≤ exp 3c0Tð Þ c0τ δxu

0�� ��2 + 3Qm
� �

, 1 ≤m ≤N:

ð66Þ

Theorem 9 is proved. We can say that the difference
scheme is stable.

Theorem 10. Assume fuðxi, tnÞg and funi g are solutions of
problems (2)–(4) and difference scheme (47)–(49), respec-
tively. Denote

eni = u xi, tnð Þ − uni , 0 ≤ i ≤M, 0 ≤ n ≤N: ð67Þ

Then, there exists a positive constant C2, when τ < 2/3c0,

nτ ≤ T , such that

enk k∞ ≤
ffiffiffi
L

p

2
C2 τ3−γ

∗ + h2
� �

, 0 ≤ n ≤N , ð68Þ

where C2 =
ffiffiffiffiffiffiffiffi
3TL

p
C1 exp ð3c0T/2Þ and γ∗ = max

0≤t≤T
γðtÞ.

Proof. Subtracting (44) and (46) from (47)–(49), we obtain
the system of error equations

Applying Theorem 9 and (45), it yields

δxe
nk k2 ≤ C2

2 τ3−γ
∗ + h2

� �2
, ð70Þ

where γ∗ = max
0≤t≤T

γðtÞ.
Applying Lemma 7, it yields

enk k∞ ≤
ffiffiffi
L

p

2 δxe
nk k ≤

ffiffiffi
L

p

2 C2 τ3−γ
∗ + h2

� �
: ð71Þ

The proof is ended.

5. Numerical Example

In order to verify the accuracy of the finite difference
scheme, several different types of variable-order index γðtÞ
∈ ð1, 2Þ are used to solve the variable-order fractional wave
equations (2)–(4) in 1D case. The scheme is implemented
in MATLAB (R2019a).

Here, we take L = π, T = 1. The source term of equa-
tion (2)

f x, tð Þ = 6
Γ 4 − γ tð Þð Þ t

3−γ tð Þ + 6
Γ 3 − γ tð Þð Þ t

2−γ tð Þ + t3 + 3t2 + 1
� �

sin x,

ð72Þ

Table 1: Errors and temporal convergence orders, M = 1000.

γ tð Þ τ E h, τð Þ Orderτ

2 − t2

1/512 8:7295e − 4 0

1/1024 4:2265e − 4 1.05

1/2048 2:0502e − 4 1.04

1/4096 9:9746e − 5 1.04

1 + e−t

1/512 4:0772e − 4 0

1/1024 1:8602e − 4 1.13

1/2048 8:5528e − 5 1.12

1/4096 3:9764e − 5 1.10

6 + cos t
4

1/512 3:8173e − 4 0

1/1024 1:5945e − 4 1.26

1/2048 6:6746e − 5 1.26

1/4096 2:8186e − 5 1.24

1
Γ 2 − γn−1/2ð Þ b

n,γn−1/2ð Þ
0 δte

n−1/2
i − 〠

n−1

k=1
b

n,γn−1/2ð Þ
n−k−1 − b

n,γn−1/2ð Þ
n−k

� �
δte

k−1/2
i

" #
= δ2xe

n−1/2
i + Rn−1/2

i ,

1 ≤ i ≤M − 1, 1 ≤ n ≤N ,
e0i = 0, 1 ≤ i ≤M − 1,
en0 = 0, enM = 0, 0 ≤ n ≤N:

8>>>>>>>><
>>>>>>>>:

ð69Þ
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the initial value

u x, 0ð Þ = sin x, x ∈ 0, π½ �, ð73Þ

the boundary value

u 0, tð Þ = u π, tð Þ = 0, t ∈ 0, 1½ �, ð74Þ

the exact solution is given by

u x, tð Þ = t3 + 3t2 + 1
 �

sin x: ð75Þ

Define the error of the numerical solution

E h, τð Þ = max
0≤k≤N

Uk − uk
��� ���

∞
, ð76Þ

the temporal convergence order

Orderτ = log2
E h, 2τð Þ
E h, τð Þ

� �
, ð77Þ

the spatial convergence order

Orderh = log2
E 2h, τð Þ
E h, τð Þ

� �
: ð78Þ

Denote M = 1000, for different γðtÞ = 2 − t2, 1 + e−t , ð6
+ costÞ/4. The time step τ is varied from 1/512 to 1/
4096, where N = 512, 1024, 2048, 4096. Table 1 shows
the errors and temporal convergence orders of the differ-
ence scheme (47)–(49). It can be seen from Table 1 that
the difference scheme (47)–(49) has a precision of approx-
imately 3 − γ∗ order in time. The computational results are
in good agreement with theoretical results.

Take a fixed and sufficiently small time step τ = 1/20000,
for different γðtÞ = 2 − t2, 1 + e−t , ð6 + cos tÞ/4, verify space
step h from π/5 to π/40, where N = 20000, M = 5, 10, 20, 40
. Table 2 shows the errors and spatial convergence orders

of the difference scheme (47)–(49). It can be seen from
Table 2 that the difference scheme (47)–(49) in the space
has an accuracy of approximately 2 order, which is consis-
tent with the theoretical results.

6. Conclusions

In this paper, we consider a numerical approximation
method for the variable-order Caputo fractional derivati-
ve—H2N2 approximation, and give the corresponding cal-
culation formula. Secondly, we use this formula to solve
the one-dimensional variable-order time-fractional wave
equations and discuss the stability and convergence of the
equations by the discrete energy analysis method. Finally, a
numerical example verifies the effectiveness of the scheme.
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