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To consolidate or adapt to many studies on meromorphic functions, we define a new subclass of meromorphic functions of
complex order involving a differential operator. The defined function class combines the concept of spiral-like functions with
other studies pertaining to subclasses of multivalent meromorphic functions. Inclusion relations, integral representation,
geometrical interpretation, coefficient estimates and solution to the Fekete-Szegö problem of the defined classes are the
highlights of this present study. Further to keep up with the present direction of research, we extend the study using quantum
calculus. Applications of our main results are given as corollaries.

1. Introduction

Let A be the class of function of the form

χ ξð Þ = ξ + 〠
∞

n=2
anξ

n, ð1Þ

which are analytic in the unit disc E = fξ : jξj < 1g. Also let
S denote the class of functions χ ∈A which are univalent
in E. The subclasses of S consisting of functions which
map unit disc onto a star-like and convex domain will be
symbolized by S∗ and C , respectively. Also let P denote
the class of functions h analytic in the unit disc, given by

h ξð Þ = 1 + 〠
∞

n=1
Rnξ

n, ξ ∈ E, R1 > 0, ð2Þ

and satisfies Re ðhðξÞÞ > 0, ξ ∈ E. For p ∈ℕ = f1, 2,⋯g, we
let Lp to denote the class of functions χ of the form

χ ξð Þ = ξ−p + 〠
∞

n=1
dn−pξ

n−p, ð3Þ

which are analytic in E∗ = fξ : ξ ∈ℂ and 0 < jξj < 1g. Shi
et al. [1] defined the class χðξÞ ∈MSpðσ, τÞ if and only if

−eiσ
ξχ′ ξð Þ
χ ξð Þ ≺

peiσ − 2τ − pe−iσ
� �

ξ

1 − ξ
χ ∈Lp

� �
, ð4Þ

where jσj < λ/2 and τ > p cos σ. Here, ≺ denotes the usual
subordination of analytic function. The class MSpðσ, τÞ is
the meromorphic analogue of the class of p-valent spiral-
like functions defined by Uyanik et al. in [2]. Similarly, we
let MCpðσ, τÞ to denote the class of function in Lp satisfy-
ing the condition

−eiσ 1 + ξχ′′ ξð Þ
χ′ ξð Þ

 !
≺
peiσ − 2τ − pe−iσ

� �
ξ

1 − ξ
: ð5Þ

Extending the class of Janowski function ([3]), Aouf [4]
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(Equation (4)) (also see [5]) defined the class hðξÞ ∈P ðX,
Y , p, τÞ if and only if

h ξð Þ = p + pY + X − Yð Þ p − τð Þ½ �w ξð Þ
1 + Yw ξð Þ½ � ,

−1 ≤ Y < X ≤ 1, 0 ≤ τ < 1ð Þ,
ð6Þ

where wðξÞ is the Schwartz function. Motivated by the
recent study of Breaz et al. [5] and in view generalizing the
superordinate function in (4), Cotîrlă and Karthikeyan in
[6] defined and studied the following relation

Δτ
σ ξð Þ = 1 + Xe−2iσ

� �
peiσ + τ Y − Xð Þ� �

h ξð Þ + 1 − Xe−2iσ
� �

peiσ − τ Y − Xð Þ� �
Y + 1ð Þh ξð Þ + 1 − Yð Þ½ � ,

ð7Þ

where −1 ≤ Y < X ≤ 1, −π/2 < σ < π/2, τ > p cos σ and hðξÞ
∈P .

It is well-known that the function hðξÞ = 1 + ξ/1 − ξ
maps the unit disc onto the right half plane. For an admissi-
ble choice of the parameter X = 0:5, Y = −0:5, p = 1, σ = π/3,
and τ = 0:6, Δτ

σðξÞ maps unit disc onto a domain which is
convex with respect to point 0:5 if hðξÞ = 1 + ξ/1 − ξ (see

Figure 1). Similarly, the function hðξÞ = ξ +
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + ξ33

p
which

is related to the class of functions associated with leaf-like
domain (see [7–9]) gets rotated and translated on the impact
of Δτ

σðξÞ (see Figure 2) for a choice of the parameter X =
0:5, Y = −0:5, p = 1, σ = π/3, and τ = 0:6.

Remark 1. The purpose to study Δτ
σðξÞ was mainly motivated

by the study of Karthikeyan et al. [10] and Noor and Malik
[11]. Here, we will list some recent studies.

(1) If we let σ = 0 in (7), then, Δτ
σðξÞ reduces to

ℵ ξð Þ = 1 + Xð Þp + τ Y − Xð Þ½ �h ξð Þ + 1 − Xð Þp − τ Y − Xð Þ½ �
Y + 1ð Þh ξð Þ + 1 − Yð Þ½ � :

ð8Þ

The function ℵðξÞ was defined and studied by Breaz
et al. in [5].

(2) If we let X = 1, Y = −1 and hðξÞ = ð1 + ξÞ/ð1 − ξÞ in
(7), then, Δτ

σðξÞ reduces to 2τ − pe−iσ + ð2ðp cos σ −
τÞ/1 − ξÞ (see the superordinate function in (4)).

It is well-known that if χðξÞ given by (1) is in S , then,

the ℓ-symmetrical function ½χðξℓÞ�1/ℓ, (ℓ is a positive integer)
is also in S . Let ℓ be a positive integer and ε = exp ð2πi/ℓÞ.
For χ ∈A , let

χℓ ξð Þ = 1
ℓ
〠
ℓ−1

ν=0

χ ενξð Þ
εν

: ð9Þ

The function χ is said to be star-like with respect to ℓ
-symmetric points if it satisfies the condition

Re ξχ′ ξð Þ
χℓ ξð Þ > 0: ð10Þ

Here, we will let Ss
ℓ to denote the class of star-like func-

tions with respect to ℓ-symmetric points. The class S s
ℓ was

introduced by Sakaguchi [12] in which he showed that all
functions in S s

ℓ are univalent. Note that S
s
1 = S∗.

A function χ ∈Lp is said to be ℓ-symmetrical if for each
ξ ∈ E

χ εξð Þ = ε−pχ ξð Þ, ð11Þ

For χ ∈Lp, Equation (9) can be defined by the following
equality

χℓ ξð Þ = 1
ℓ
〠
ℓ−1

ν=0

χ ενξð Þ
ε−νp

, ℓ = 1, 2, 3,⋯ð Þ: ð12Þ

Now, we extend the operator defined by Selvaraj and
Karthikeyan in [13]. Using Hadamard product (or convolu-
tion), we define a operator for functions χ ∈Lp as follows:

Imμ a1, a2,⋯, ar , c1, c2,⋯, csð Þχ

= 1
ξp

+ 〠
∞

n=1

μ

n + μ

� �m a1ð Þn a2ð Þn ⋯ arð Þn
c1ð Þn c2ð Þn ⋯ csð Þn

dn−p
ξn−p

nð Þ! ,

ð13Þ

where ðxÞn is the Pochhammer symbol defined by

xð Þn =
1 if n = 0
x x + 1ð Þ x + 2ð Þ⋯ x + n − 1ð Þ if n ∈N0 = 1, 2; ;⋯f g:

(

ð14Þ

For convenience, we shall henceforth denote

Imμ a1, a2,⋯, ar , c1, c2,⋯, csð Þχ = Imμ a1, c1ð Þχ: ð15Þ

Note that in [13], Imμ ða1, c1Þχ was defined for χ ∈L1.
Here, we skip the discussion on the necessity of using differ-
ential or integral operator, refer to [13–17] and reference
provided therein for detailed properties of Imμ ða1, c1Þχ.

Throughout this paper, we assume that −1 ≤ Y < X ≤ 1,
−π/2 < jσj < π/2, τ > p cos σ, λ ≥ 1, ℓ ∈ℕ, ε = exp ð2πi/ℓÞ
and

χℓ m, μ, a1, c1 ; ξð Þ = 1
ℓ
〠
ℓ−1

ν=0
ενp Imμ a1, c1ð Þχ ενξð Þ
h i

= ξ−p+⋯,

ð16Þ

χ ∈Lp ; ℓ = 2, 3,⋯
� �

: ð17Þ
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1.1. Short Introduction to Quantum Calculus. For 0 < q < 1,
the Jacksons q-derivative operator is defined by (see [18, 19])

Dqχ ξð Þ≔
χ′ 0ð Þ, if ξ = 0,
χ ξð Þ − χ qξð Þ

1 − qð Þξ , if ξ ≠ 0:

8><
>: ð18Þ

From (18), if χ has the power series expansion (3), we
can easily see that DqχðξÞ = ½−p�qξ−p−1 +∑∞

n=1½n − p�qdn−p

ξn−p−1, for ξ ≠ 0, where the q -integer number ½n�q is defined by

n½ �q ≔
1 − qn

1 − q
, ð19Þ

and note that lim
q⟶1−

DqχðξÞ = χ′ðξÞ. Throughout this paper,
we let denote

n½ �q
	 


k
≔ n½ �q n + 1½ �q n + 2½ �q ⋯ n + k − 1½ �q: ð20Þ
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Figure 1: The image of the unit disc under the mapping of Δτ
σðξÞ, if hðξÞ = 1 + ξ/1 − ξ:
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Figure 2: The image of the unit disc under the mapping of Δτ
σðξÞ, if hðξÞ = ξ +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + ξ33

p
.
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The q-Jackson integral is defined by (see [20])

Iq χ ξð Þ½ �≔
ðξ
0
χ tð Þdqt = ξ 1 − qð Þ〠

∞

n=0
qnχ ξqnð Þ, ð21Þ

provided the q-series converges. Further observe that

DqIqχ ξð Þ = χ ξð Þ and IqDqχ ξð Þ = χ ξð Þ − χ 0ð Þ, ð22Þ

where the second equality holds if χ is continuous at ξ = 0. For
details pertaining to the significance of univalent function
theory in dual with quantum calculus, refer to [21, 22] (also
see [23–26]).

Meromorphic multivalent functions have been exten-
sively studied by various authors, but motivation and refer-
ences of this study are [1, 13, 27–36].

Definition 2. For −π/2 < σ < π/2, λ ≥ 1, τ ≥ p cos σ, b ∈ℂ \
f0g and Imμ ða1, c1Þχ defined as in (13), a function χ belongs

to the class MSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ if it satisfies

eiσ p −
1
b

ξ p+1ð Þλ−p Imμ a1, c1ð Þχ′ ξð Þ
h iλ

χℓ m, μ, a1, c1 ; ξð Þ − −pð Þλ
8><
>:

9>=
>;

2
64

3
75 ≺ Δτ

σ ξð Þ,

ð23Þ

where ≺ denotes subordination and hðζÞ is defined as in (2).

Now, we will define a class replacing ordinary derivative
with a quantum derivative in MSm,λ

ℓ ða1, c1 ; b ; h ; X, YÞ.

Definition 3. For −π/3 < σ < π/2, 0 ≤ η ≤ 1, τ ≥ p cos σ, b ∈
ℂ \ f0g and Imμ ða1, c1Þχ defined as in (13), a function χ

belongs to the class QMSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ if

eiσ p½ �q −
1
b

ξ p+1ð Þλ−p DqI
m
μ a1, c1ð Þχ ξð Þ

h iλ
χℓ m, μ, a1, c1 ; ξð Þ − − p½ �q

	 
λ8><
>:

9>=
>;

0
B@

1
CA

≺ Yq σ, τ ; ξð Þ,
ð24Þ

where Yqðσ, τ ; ξÞ is the q − analogue of Δτ
σðξÞ, which is

defined by

Yq σ, τ ; ξð Þ =
1 + Xe−2iσ
� �

p½ �qeiσ + τ Y − Xð Þ
h i

h ξð Þ + 1 − Xe−2iσ
� �

p½ �qeiσ − τ Y − Xð Þ
h i

Y + 1ð Þh ξð Þ + 1 − Yð Þ½ � :

ð25Þ

Remark 4. We note that in the definition of QMSm,λ
ℓ ða1, c1 ;

b ; h ; X, YÞ, the operator Imμ ða1, c1Þχ and χℓðm, μ, a1, c1 ; ξÞ
are the same as used in MSm,λ

ℓ ða1, c1 ; b ; h ; X, YÞ. We have
not used the q-analogue operator as it would require the
reader to contend with additional set of parameters.

2. Preliminaries and some
Supplementary Results

Here, we will discuss the results which would help us to
obtain our main results.

We note that everything in classical calculus cannot be
generalized to quantum calculus, notably the chain rule
needs adaptation. Hence, logarithmic differentiation needs
some application of analysis. In [37], Agrawal and Sahoo
obtained the following result on logarithmic differentiation.
For χ ∈A and 0 < q < 1, we have

Iq
Dqχ ξð Þ
χ ξð Þ = q − 1

ln q
log χ ξð Þ, ð26Þ

where Iqχ is the Jackson q-integral, defined as in (21). Sim-
ilarly, we can see that

Dq χ ξð Þf gλ−1/λ
h i

= λ − 1
λ

Dq χ ξð Þ½ � χ ξð Þf g−1/λ: ð27Þ

If ν is an integer, then the following identities follow
directly from (16):

χℓ m, μ, a1, c1 ; ενξð Þ = ε−νpχℓ m, μ, a1, c1 ; ξð Þ: ð28Þ

χℓ
′ m, μ, a1, c1 ; ενξð Þ = ε−νp−νχℓ

′ m, μ, a1, c1 ; ξð Þ

= 1
ℓ
〠
ℓ−1

ν=0
εν+νpImμ a1, c1ð Þχ′ ενξð Þ:

ð29Þ

Since q-derivative satisfies the linearity condition, (29)
holds if the classical derivative is replaced with quantum
derivative. That is,

Dq χℓ m, μ, a1, c1 ; ενξð Þ½ � = ε−νp−νDq χℓ m, μ, a1, c1 ; ξð Þ½ �:
ð30Þ

We now state the following result which will be used to
establish the coefficient inequalities.

Lemma 5 (see [38]). Let ϑðξÞ = 1 +∑∞
n=1ϑnξ

n ∈P and also let
v be a complex number, then

ϑ2 − vϑ21
�� �� ≤ 2 max 1, 2v − 1j jf g, ð31Þ

the result is sharp for functions given by

ϑ ξð Þ = 1 + ξ2

1 − ξ2
, ϑ ξð Þ = 1 + ξ

1 − ξ
: ð32Þ

The Maclaurin series for the function Δτ
σðξÞ (see [6]) for

the function is given by

Δτ
σ ξð Þ = peiσ + X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

R1
2 ξ+⋯: ð33Þ

4 Journal of Function Spaces



If we define the function ϑðξÞ by

ϑ ξð Þ = 1 + ϑ1ξ + ϑ2ξ
2+⋯ = 1 +w ξð Þ

1 −w ξð Þ ≺
1 + ξ

1 − ξ
, ξ ∈ Eð Þ: ð34Þ

We note that ϑð0Þ = 1 and ϑ ∈P . Using (34), we have

w ξð Þ = ϑ ξð Þ − 1
ϑ ξð Þ + 1

= 1
2 ϑ1ξ + ϑ2 −

ϑ21
2

 !
ξ2 + ϑ3 − ϑ1ϑ2 +

ϑ31
4

 !
ξ3+⋯

" #
:

ð35Þ

For some hðξÞ = 1 + R1ξ + R2ξ
2 +⋯, we have

p + b e−iσΔτ
σ w ξð Þ½ � − p

� 
= p + be−iσR1ϑ1 X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

4 ξ

+ be−iσ X pe−iσ − τ
� �

− Y peiσ − τ
� �� �

R1
4

� ϑ2 − ϑ21
Y + 1ð ÞR1 + 2 1 − R2/R1ð Þð Þ

4

� �� �
ξ2+⋯:

ð36Þ

3. Integral Representations and
Closure Properties

We begin with the following.

Theorem 6. Let χ ∈MSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ, then for λ = 1,

we get for ξ ∈ E∗

χℓ m, μ, a1, c1 ; ξð Þ

= ξp exp 1
ℓ
〠
ℓ−1

ν=0

ðενξ
0

1
t
b p − e−iσΔτ

σ w tð Þ½ �� 
− 2p

� �
dt

( )
:

ð37Þ

And for λ > 1, we have for ξ ∈ E∗

χℓ m, μ, a1, c1 ; ξð Þ = λ − 1
λ

� �

� 1
ℓ
〠
ℓ−1

ν=0

ðξ
0

b p − e−iσΔτ
σ w ενtð Þ½ �� 

+ −pð Þλ
h i

t p+1ð Þλ−p

0
@

1
A

1/λ

dt

8><
>:

9>=
>;

λ−1/λ

,

ð38Þ

where χℓðm, μ, a1, c1 ; ξÞ is defined by equality (16) andwðξÞ is
analytic in E with wð0Þ = 0 and jwðξÞj < 1.

Proof. Let χ ∈MSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ. In view of (23), we

have

ξ p+1ð Þλ−p Imμ a1, c1ð Þχ′ ξð Þ
h iλ

χℓ m, μ, a1, c1 ; ξð Þ = b p − e−iσΔτ
σ w ξð Þ½ �� 

+ −pð Þλ,

ð39Þ

where wðξÞ is analytic in E and wð0Þ = 0, jwðξÞj < 1.
Substituting ξ by ενξ in the equality (39), respectively,
(ν = 0, 1, 2,⋯, ℓ − 1, εℓ = 1), we have

ενξð Þ p+1ð Þλ−p Imμ a1, c1ð Þχ′ ενξð Þ
h iλ

χℓ m, μ, a1, c1 ; ενξð Þ
= b p − e−iσΔτ

σ w ενξð Þ½ �� 
+ −pð Þλ:

ð40Þ

Using (28) in (40), we get

ξ p+1ð Þλ−pεν p+1ð Þλ Imμ a1, c1ð Þχ′ ενξð Þ
h iλ

χℓ m, μ, a1, c1 ; ξð Þ
= b p − e−iσΔτ

σ w ενξð Þ½ �� 
+ −pð Þλ:

ð41Þ

Using the equality (29) in (42), we can get

εν+νpImμ a1, c1ð Þχ′ ενξð Þ
χℓ m, μ, a1, c1 ; ξð Þ½ �1/λ

=
b p − e−iσΔτ

σ w ενξð Þ½ �� 
+ −pð Þλ

h i
ξ p+1ð Þλ−p

0
@

1
A

1/λ

:

ð42Þ

Let ν = 0, 1, 2,⋯, ℓ − 1 in (42), respectively, and sum-
ming them we get

χℓ
′ m, μ, a1, c1 ; ξð Þ

χℓ m, μ, a1, c1 ; ξð Þ½ �1/λ
= 1
ℓ
〠
ℓ−1

ν=0

b p − e−iσΔτ
σ w ενξð Þ½ �� 

+ −pð Þλ
h i

ξ p+1ð Þλ−p

0
@

1
A

1/λ

:

ð43Þ

Case 1. Let λ = 1 in (43). We need to integrate from 0 to ξ to
find χℓðm, μ, a1, c1 ; ξÞ. But from (43), we notice the presence
of the first-order pole at the origin, the difficulty to integrate
the above equality is avoided by integrating from ξ0 to ξ with
ξ0 ≠ 0, and then, let ξ0 ⟶ 0. Therefore, on applying integra-
tion, we get

log χℓ m, μ, a1, c1 ; ξð Þ
ξp

� �

= 1
ℓ
〠
ℓ−1

ν=0

ðενξ
0

1
t
b p − e−iσΔτ

σ w tð Þ½ �� 
− 2p

� �
dt:

ð44Þ

Hence, the proof of (37).
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Case 2. If λ > 1, (43) can be rewritten as

χℓ m, μ, a1, c1 ; ξð Þf g1−1/λ
h i

′

= 1 − 1
λ

� �� � 1
ℓ
〠
ℓ−1

ν=0

b p − e−iσΔτ
σ w ενξð Þ½ �� 

+ −pð Þλ
h i

ξ p+1ð Þλ−p

0
@

1
A

1/λ

:

ð45Þ

On integrating the above expression we obtain (38).
Hence, the proof of Theorem 6.

Theorem 7. Let χ ∈QMSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ, then for

λ = 1, we get

χℓ m, μ, a1, c1 ; ξð Þ

= ξp exp ln q
q − 1ð Þℓ〠

ℓ−1

ν=0

ðενξ
0

1
t

b p½ �q − e−iσYq σ, τ ;w tð Þð Þ
n o

− 2 p½ �q
	 


dt

( )
:

ð46Þ

And for λ > 1, we have

χℓ m, μ, a1, c1 ; ξð Þ

= λ − 1
λ

� �
1
ℓ
〠
ℓ−1

ν=0

ðξ
0

b p½ �q − e−iσΔτ
σ w ενtð Þ½ �

n o
+ p½ �q
	 
λ� �

t p+1ð Þλ−p

0
BB@

1
CCA

1/λ

dt

8>>><
>>>:

9>>>=
>>>;

λ−1/λ

,

ð47Þ

where χℓðm, μ, a1, c1 ; ξÞ is defined by equality (16) and w
ðξÞ is analytic in E with wð0Þ = 0 and jwðξÞj < 1.

Proof. In view of (24), (30), and (43), we have

Dq χℓ m, μ, a1, c1 ; ξð Þ½ �
χℓ m, μ, a1, c1 ; ξð Þ½ �1/λ

= 1
ℓ
〠
ℓ−1

ν=0

b p½ �q − e−iσYq σ, τ ;w ενξð Þð Þ
n o

+ − p½ �q
	 
λ� �

ξ p+1ð Þλ−p

0
BB@

1
CCA

1/λ

:

ð48Þ

Case 1. Let λ = 1 in (48). Using the definition of logarithmic
differentiation for q-derivative operator (see (26)) in (48), we
get ð0 < q < 1Þ

log χℓ m, μ, a1, c1 ; ξð Þ
ξp

� �

= ln q
q − 1ð Þℓ〠

ℓ−1

ν=0

ðενξ
0

1
t

b p½ �q − e−iσYq σ, τ ;w tð Þð Þ
n o

− 2 p½ �q
	 


dqt,

ð49Þ

where the integral is q-Jackson integral. Hence, the proof
of (37).

Case 2. If λ > 1, using chain rule (see (27)) for the q-differ-
ence operator defined in the previous section, (43) can be
rewritten as

Dq χℓ m, μ, a1, c1 ; ξð Þf g1−1/λ
h i

= 1 − 1
λ

� �� � 1
ℓ
〠
ℓ−1

ν=0

�
b p½ �q − e−iσYq σ, τ ;w ενξð Þð Þ
n o

+ − p½ �q
	 
λ� �

ξ p+1ð Þλ−p

0
BB@

1
CCA

1/λ

:

ð50Þ

On applying q-Jackson integral in the above expression,
we obtain (47).

Corollary 8 (see [1, Theorem 1]). Let χðξÞ ∈MSpðσ, τÞ,
then

χ ξð Þ = ξ−p exp 2 τ − p cos σð Þe−iσ
ðξ
0

w tð Þ
t 1 −w tð Þ½ � dt

 !
, ξ ∈ E∗ð Þ,

ð51Þ

where wðξÞ is analytic in E with wð0Þ = 0 and jwðξÞj < 1.

Proof. Letting m = 2, s = 1, a1 = c1, a2 = 1, X = 1, Y = −1, ℓ =
λ = b = 1, and hðξÞ = ð1 + ξÞ/ð1 − ξÞ in Theorem 6, then
(43) reduces to the form

−eiσ
ξχ′ ξð Þ
χ ξð Þ = peiσ −

2 τ − p cos σð Þw ξð Þ
1 −w ξð Þ

� �
: ð52Þ

Retracing the steps as in Theorem 6, we can establish the
assertion of the corollary.

Setting m = 0, r = 2, s = 1, a1 = c1, and a2 = 1 in Theorem
6, we get the following

Corollary 9. Let χ ∈MS0,λ
ℓ ð2, 1 ; b ; h ; X, YÞ, then, for λ = 1,

we get for ξ ∈ E∗

χℓ ξð Þ = −p
ðξ
0
u−p−1 exp 1

ℓ
〠
ℓ−1

ν=0

ðενu
0

1
t
b p − e−iσΔτ

σ w tð Þ½ �� � �
dt

 !
du:

ð53Þ
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And for λ > 1, we have for ξ ∈ E∗

χℓ ξð Þ = −p
λ − 1
λ

� �ðξ
0
u

� 1
ℓ
〠
ℓ−1

ν=0

ðu
0

b p − e−iσΔτ
σ w ενtð Þ½ �� 

+ −pð Þλ
h i

t p+1ð Þλ−p

0
@

1
A

1/λ

dt

8><
>:

9>=
>;

λ−1/λ

du,

ð54Þ

where χℓðξÞ is defined by equality (12) and wðξÞ is analytic in
E with wð0Þ = 0 and jwðξÞj < 1.

Letting λ = 1X = 1, Y = −1, b = 1, and hðξÞ = ð1 + ξÞ/
ð1 − ξÞ in Corollary 9, we get the following result.

Corollary 10. (see [1]). Let χðξÞ ∈MCpðσ, τÞ, then for ξ ∈
E∗

χ ξð Þ = −p
ðξ
0
u−p−1 exp

� 2 τ − p cos σð Þe−iσ
ðu
0

w tð Þ
t 1 −w tð Þ½ � dt

� �
du,

ð55Þ

where wðξÞ is analytic in E with wð0Þ = 0 and jwðξÞj < 1.

4. Fekete-Szegö Inequality of MSm,λ
ℓ ða1, c1 ; b ;

h ; X, YÞ and QMSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ

Very few researchers have attempted at finding solution to
the Fekete-Szegö problem for class of functions with respect
to ℓ-symmetric points, as it is computational tedious. Nota-
ble among those works on coefficient inequalities of classes
of functions with respect to ℓ-symmetric points were done
by Aouf et al. [39].

Throughout this section, we let

Ψn =
1
ℓ
〠
ℓ−1

ν=0
ενn, ℓ ∈ℕ ; n ≥ 1 ; εℓ = 1

� �
,

Θn =
a1ð Þn a2ð Þn ⋯ arð Þn

n! c1ð Þn c2ð Þn ⋯ csð Þn
andΩm

n = μ

n + μ

� �m

, n ∈ℕð Þ:

ð56Þ

Theorem 11. If χðξÞ ∈MSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ, then, we

have for all μ ∈ℂ

d2−p − μ d21−p
��� ��� ≤ bj j X pe−iσ − τ

� �
− Y peiσ − τ
� ��� ��R1

2 −pð Þλ−1 pΨ2 + 2 − pð Þλf gΘ2Ω
m
2

��� ���
� max 1, 2Q1 − 1j jf g,

ð57Þ

where Q1 is given by

The inequality is sharp for each μ ∈ℂ.

Proof. As χ ∈MSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ, by (23), we have

ξ p+1ð Þλ−p Imμ a1, c1ð Þχ′ ξð Þ
h iλ

χℓ m, μ, a1, c1 ; ξð Þ − −pð Þλ = −b e−iσΔτ
σ w ξð Þ½ � − p

� �
:

ð59Þ

Thus, let ϑ ∈P be of the form ϑðξÞ = 1 +∑∞
ℓ=1ϑnξ

n and
defined by

ϑ ξð Þ = 1 +w ξð Þ
1 −w ξð Þ , ξ ∈Ω: ð60Þ

On computation, we have

w ξð Þ = 1
2 ϑ1ξ +

1
2 ϑ2 −

1
2 ϑ

2
1

� �
ξ2

+ 1
2 ϑ3 − ϑ1ϑ2 +

1
4 ϑ

3
1

� �
ξ3+⋯,ξ ∈Ω:

ð61Þ

The right hand side of (58)

−b e−iσΔτ
σ w ξð Þ½ � − p

� 
= −

be−iσR1ϑ1 X pe−iσ − τ
� �

− Y peiσ − τ
� �� �

4 ξ

−
be−iσ X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

R1
4

� ϑ2 − ϑ21
Y + 1ð ÞR1 + 2 1 − R2/R1ð Þð Þ

4

� �� �
ξ2+⋯:

ð62Þ

Q1 =
1
4 Y + 1ð ÞR1 + 2 1 − R2

R1

� �
−
e−iσb X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

2p2Ψ2
1 + 2p 1 − pð ÞΨ1 + λ λ − 1ð Þ 1 − pð Þ2� 

R1

2 −pð Þλ pΨ1 + 1 − pð Þλ½ �2
(

−
μ e−iσbR1 X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

pΨ2 + 2 − pð Þλf gΘ2Ω
m
2

−pð Þλ−1 pΨ1 + 1 − pð Þλ½ �2Θ2
1Ω

2m
1

)
:

ð58Þ
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From the left hand side of (58) is given by

ξ p+1ð Þλ−p Imμ a1, c1ð Þχ′ ξð Þ
h iλ

χℓ m, μ, a1, c1 ; ξð Þ − −pð Þλ

= −pð Þλ−1 pΨ1 + 1 − pð Þλ½ �Θ1Ω
m
1 d1−pξ +

−pð Þλ−1
2p

� 2p pΨ2 + 2 − pð Þλf gΘ2Ω
m
2 d2−p

�
− 2p2Ψ2

1 + 2p 1 − pð ÞΨ1
�

+ λ λ − 1ð Þ 1 − pð Þ2d21−pΘ2
1Ω

2m
1
�
ξ2+⋯:

ð63Þ

From (61) and (62), we obtain

d1−p = −
e−iσbR1ϑ1 X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

4 −pð Þλ−1 pΨ1 + 1 − pð Þλ½ �Θ1Ω
m
1

,

d2−p = −
e−iσb X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

R1

4 −pð Þλ−1 pΨ2 + 2 − pð Þλf gΘ2Ω
m
2

ϑ2 −
1
4 Y + 1ð ÞR1 + 2 1 − R2

R1

� ���

−
e−iσb X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

2p2Ψ2
1 + 2p 1 − pð ÞΨ1 + λ λ − 1ð Þ 1 − pð Þ2� 

R1

2 −pð Þλ pΨ1 + 1 − pð Þλ½ �2
gϑ21
#
:

ð64Þ

Now we consider

On applying Lemma 5, we get the assertion.

To demonstrate the applications of our results, here, we
provide the most simple special case of our result. Note that
the following result was obtained [[40], Theorem 6] for
functions in χ ∈A .

Corollary 12. If χðξÞ ∈L1 satisfies

−
ξχ′ ξð Þ
χ ξð Þ ≺ h ξð Þ, ð66Þ

and hðξÞ = 1 + R1ξ + R2ξ
2 +⋯, with R1, R2 ∈ℝ, R1 > 0, then

for all μ ∈ℂ we have

d1 − μd20
�� �� ≤ R1

2
max 1 ; R2

R1
− R1 + 2μR1

����
����

� �
: ð67Þ

The inequality is sharp for the function χ∗ given by

χ∗ ξð Þ =
ξ exp

ðξ
0
−
h tð Þ + 1

t
dt, if

R2

R1
− R1 + 2μR1

����
���� ≥ 1,

ξ exp
ðξ
0
−
h t2
� �

+ 1

t
dt, if

R2

R1
− R1 + 2μR1

����
���� ≤ 1:

8>>>><
>>>>:

:

ð68Þ

Proof. In Theorem 11, taking r = 2, s = 1, a1 = b1, a2 = 1, X
= 1, Y = −1, m = σ = τ = 0, and ℓ = λ = p = 1, we get the
inequality

d1 − μd20
�� �� ≤

R1
2 , if R2

R1
− R1 + 2μR1

����
���� ≤ 1,

R1
2

R2
R1

− R1 + 2μR1

����
����, if R2

R1
− R1 + 2μR1

����
���� ≥ 1:

8>>><
>>>:

ð69Þ

d2−p − μd21−p
��� ��� = −

e−iσb X pe−iσ − τ
� �

− Y peiσ − τ
� �� �

R1

4 −pð Þλ−1 pΨ2 + 2 − pð Þλf gΘ2Ω
m
2

ϑ2 −
1
4 Y + 1ð ÞR1 + 2 1 − R2

R1

� ��������
−
e−iσb X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

2p2Ψ2
1 + 2p 1 − pð ÞΨ1 + λ λ − 1ð Þ 1 − pð Þ2� 

R1

2 −pð Þλ pΨ1 + 1 − pð Þλ½ �2
)
ϑ21

#

−
μ e−2iσb2R2

1ϑ
2
1 X pe−iσ − τ
� �

− Y peiσ − τ
� �� �2

16 −pð Þ2λ−2 pΨ1 + 1 − pð Þλ½ �2Θ2
1Ω

2m
1

����� = −
e−iσb X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

R1

4 −pð Þλ−1 pΨ2 + 2 − pð Þλf gΘ2Ω
m
2

�����
� ϑ2 −

ϑ21
4 Y + 1ð ÞR1 + 2 1 − R2

R1

� ��
−
e−iσb X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

2p2Ψ2
1 + 2p 1 − pð ÞΨ1 + λ λ − 1ð Þ 1 − pð Þ2� 

R1

2 −pð Þλ pΨ1 + 1 − pð Þλ½ �2
"

−
μ e−iσbR1 X pe−iσ − τ

� �
− Y peiσ − τ
� �� �

pΨ2 + 2 − pð Þλf gΘ2Ω
m
2

−pð Þλ−1 pΨ1 + 1 − pð Þλ½ �2Θ2
1Ω

2m
1

)#�����:
ð65Þ
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Analogous to Theorem 11, we can prove the following.

Theorem 13. If χðξÞ ∈QMSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ, then, we

have for all μ ∈ℂ

d2−p − μd21−p
��� ��� ≤ bj j X p½ �qe−iσ − τ

	 

− Y p½ �qeiσ − τ
	 
��� ���R1

2 −p½ �q
	 
λ−1

2 − p½ �qλ − −p½ �qΨ2

n o
Θ2Ω

m
2

����
����

� max 1, 2Q2 − 1j jf g,
ð70Þ

where Q2 is given by

Q2 =
1
4

Y + 1ð ÞR1 + 2 1 −
R2

R1

� ��

−
e−iσb X p½ �qe−iσ − τ

	 

− Y p½ �qeiσ − τ
	 
h i

2 −p½ �2qΨ2
1 − 2 −p½ �q 1 − p½ �qΨ1 + λ λ − 1ð Þ 1 − p½ �2q

n o
R1

2 −pð Þλ 1 − p½ �qλ − −p½ �qΨ1

n o2

−
μ e−iσbR1 X p½ �qe−iσ − τ

	 

− Y p½ �qeiσ − τ
	 
h i

2 − p½ �qλ − −p½ �qΨ2

n o
Θ2Ω

m
2

−pð Þλ−1 1 − p½ �qλ − −p½ �qΨ1

n o2
Θ2

1Ω
2m
1

9>=
>;:

ð71Þ

The inequality is sharp.

5. Conclusions

The defined function classMSm,λ
ℓ ða1, c1 ; b ; h ; X, YÞ though

familiar with so called pseudo-star-like functions required
lots of adaptation since it involves functions with a remov-
able singularity of order p at the origin. Integral representa-
tion and Fekete-Szegö inequalities have been established.
Further, we extend the class MSm,λ

ℓ ða1, c1 ; b ; h ; X, YÞ by
replacing the classical derivative with q-derivative. Since all
the results involving classical derivative does not get trans-
lated to the results involving q-derivative, we used some
modified conditions to obtain our main results. We note that
these adaptation are essential for future research.
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