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In this article, we prove some coincidence and common fixed point theorems under the relation-theoretic Meir-Keeler
contractions in a metric space endowed with a locally finitely T-transitive binary relation. Our newly proved results generalize,
extend, and sharpen some existing coincidence point as well as fixed point theorems existing in the literature. Moreover, we
give some examples to affirm the efficacy of our results.

1. Introduction

Banach [1], a Polish mathematician, established the most
successful result in fixed point theory, the Banach contrac-
tion principle (in short, BCP), in 1922, which says that a
contraction mapping on a complete metric space has a
unique fixed point. One of the noted generalizations of
BCP comprising the concept of coincidence point (in short,
CP) and common fixed point (in short, CFP) theorems was
established by Jungck [2] in 1976. In succeeding years, many
researchers introduced relatively weaker version of commut-
ing mappings and developed exciting CFP results, see [3, 4].

On the other hand, generalizations of the underlying
space have been trending since some decades. One of such
important generalizations was initiated by Turinici [5, 6] in
1986, where he proved fixed point results in a partial ordered
set. In this continuation, Alam and Imdad [7] generalized
the BCP using a binary relation. Since then, many relation-
theoretic fixed point theorems are being studied regularly,
see [8, 9] and references therein.

Several researchers reported numerous fixed point
results employing relatively more generalized contractions.

One of such vital contractions was due to Meir and Keeler
[10] in 1969, which was further extended by Rao and Rao
[11]. In 2013, Patel et al. [12] established some CFP theo-
rems for three and four self-mappings satisfying generalized
Meir-Keeler α-contraction in metric spaces. Some general-
izations of Meir-Keeler contraction in the framework of
different types of spaces have also been reported, see
[13–16]. Recently, Sk et al. [17] introduced the Meir-Keeler
contraction in relation-theoretic sense and extended
relation-theoretic contraction principle to relation-theoretic
Meir-Keeler contraction principle.

In this paper, we prove some coincidence and common
fixed point theorems using the relation-theoretic Meir-
Keeler contraction in a metric space endowed with a locally
finitely T-transitive binary relation. We also equip several
examples to exhibit the significance of these new findings.

2. Preliminaries

We will go over some basic definitions in this section that
will help us to prove our primary results. Throughout the
paper, we pertain to ℕ ∪ f0g as K0, and empty set as ∅.
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Definition 1 (see [18]). Let X ≠∅ be a set. A “binary rela-
tion” is a subset R of X2. The subsets X2 and ∅ of X2

are called the “universal relation” and “empty relation,”
respectively.

Definition 2 (see [7]). Let X ≠∅ be a set with a binary rela-
tion R. If either ðϱ, σÞ ∈R or ðσ, ϱÞ ∈R for ϱ, σ ∈X , then ϱ
and σ are called as “R-comparative.” ½ϱ, σ� ∈R is the notion
for it.

Definition 3 (see [18–23]). Let X ≠∅ be a set with a binary
relation R. Then, the relation R is called

(a) “amorphous” if R has no precise attribute

(b) “reflexive” if ðϱ, ϱÞ ∈R∀ϱ ∈X

(c) “symmetric” if ðϱ, σÞ ∈Rðσ, ϱÞ ∈R
(d) “anti-symmetric” if ðϱ, σÞ ∈R and ðσ, ϱÞ ∈Rϱ = σ

(e) “transitive” if ðϱ, σÞ ∈R and ðσ, wÞ ∈Rðϱ, wÞ ∈R
(f) “complete”, “connected” or “dichotomous” if ½ϱ, σ�∈

R∀ϱ, σ∈X

(g) “partial order” if R is “reflexive”, “anti-symmetric”
and “transitive”

Definition 4 (see [18]). Let R be a binary relation on a set
X ≠∅. Then,

R−1 = ϱ, σð Þ ∈X2 : σ, ϱð Þ ∈R� �
andRs =R ∪R−1, ð1Þ

are called inverse relation and symmetric closure of R,
respectively.

Proposition 5 (see [7]). Let X ≠∅ be a set with a binary
relation R. Then, for ϱ, σ ∈X ,

ϱ, σð Þ ∈Rs ⟹ ϱ, σ½ � ∈R: ð2Þ

Definition 6 (see [24]). Let X ≠∅ be a set with a binary rela-
tion R and S ⊆X . Then, the set RjS =R ∩ S2 is defined as
the restriction of R to S .

Definition 7 (see [7]). Let X ≠∅ be a set with a binary rela-
tion R. A sequence fϱkg ⊂X is called R-preserving if

ϱk, ϱk+1ð Þ ∈R ∀k ∈K0: ð3Þ

Definition 8 (see [7, 25]). Let T and H be two self-mappings
on a set X ≠∅ and R a binary relation on X . Then,

(a) R is said to be T-closed if

∀ϱ, σ ∈X , ðρ, σÞ ∈R⟹ ðTðϱÞ, TðσÞÞ ∈R

(b) R is said to be ðT ,HÞ-closed if

∀ϱ, σ ∈X , H ϱð Þ,H σð Þð Þ ∈R⟹ T ϱð Þ, T σð Þð Þ ∈R ð4Þ

Remark 9. Under H = I, the identity mapping on X , the
notion of ðT ,HÞ-closedness coincides with the notion of T
-closedness of R.

Definition 10 (see [25]). Let X ≠∅ be a set with a metric
d together with a binary relation R. If every R-preserv-
ing Cauchy sequence in X converges, we say ðX , dÞ is
R-complete.

Definition 11 (see [25]). Let X ≠∅ be a set with a metric d
together with a binary relation R and T a self-mapping on
X . If for any R-preserving sequence fϱkg ⊂X converging

to an element ϱ ∈X , we have TðϱkÞ⟶
d

TðϱÞ, then the
mapping T is said to be R-continuous.

Definition 12 (see [2]). Let X ≠∅ be a set with a metric d
together with a binary relation R and T ,H two self-
mappings on X . Let fϱkg ⊂X be a sequence satisfying
lim

k⟶∞
HðϱkÞ = lim

k⟶∞
TðϱkÞ. Then, the mappings T and H

are compatible if lim
k⟶∞

dðHTðϱkÞ, THðϱkÞÞ = 0:

Definition 13 (see [25]). Let X ≠∅ be a set with a metric d
together with a binary relation R and T ,H two self-
mappings on X . Let fϱkg ⊂X be a sequence such that
fTðϱkÞg and fHðϱkÞg are R-preserving sequence satisfy-
ing lim

k⟶∞
HðϱkÞ = lim

k⟶∞
TðϱkÞ. Then, the mappings T and

H are “R-compatible” if lim
k⟶∞

dðHTðϱkÞ, THðϱkÞÞ = 0:

Remark 14 (see [25]). Let X ≠∅ be a set with a metric d
together with a binary relation R. Then, the following
relation holds:

}commutativity⟹ compatibility⟹R − compatibility
⟹weak compatibility}:

ð5Þ

Definition 15 (see [7, 25]). Let X ≠∅ be a set with a
metric d together with a binary relation R and T ,H two
self-mappings on X . Consider the R-preserving sequence

fϱkg ⊂X such that ϱk ⟶
d

ϱ. Then,

(a) R is called “d-self-closed” if there exists a subse-
quence fϱkpg of fϱkg with ½ϱkp , ϱ� ∈R∀p ∈K0

(b) R is called “ðH − dÞ-self-closed” if there exists a
subsequence fϱkpg of fϱkg with ½HðϱkpÞ,HðϱÞ� ∈R
∀p ∈K0

Definition 16 (see [26–29]). Let X ≠∅ be set with a binary
relation R and T a self-mapping on X
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(a) If for any ϱ, σ, ς ∈X , ðTðϱÞ, TðσÞÞ ∈R and ðTðσÞ, T
ðςÞÞ ∈R⟹ ðTðϱÞ, TðςÞÞ ∈R, then R is called
“T-transitive”

(b) If for any ϱ0, ϱ1,⋯, ϱK ∈X where K is a natural
number ≥2, we have

ϱℓ−1, ϱℓð Þ ∈R for each ℓ 1 ≤ ℓ ≤Kð Þ⟹ ϱ0, ϱKð Þ ∈R, ð6Þ

then R is called K-transitive

(c) If for each denumerable subset S of X , there exists
K =KðSÞ ≥ 2, such that RjS is K-transitive, then
R is called “locally finitely transitive”

(d) If for each denumerable subset S of TðXÞ, there
exists K =KðSÞ ≥ 2, such that RjS is K-transi-
tive, then R is called “locally finitely T-transitive”

Proposition 17 (see [29]). Let X be a nonempty set, R a
binary relation on X and T a self-mapping on X . Then,

(a) R is “T-transitive” ⟺RjTX is “transitive”

(b) R is “locally finitely T-transitive”⟺RjTX is “locally
finitely transitive”

(c) R is “transitive”⟹R is “finitely transitive”⟹R is
“locally finitely transitive” ⟹R is “locally finitely
T-transitive”

(d) R is “transitive” ⟹R is “T-transitive” ⟹R is
“locally finitely T-transitive”

Definition 18 (see [23]). Let X be a nonempty set and R a
binary relation on X . A subset S of X is called R-directed
if for each ϱ, σ ∈ S , there exists ς ∈X such that ðϱ, ςÞ ∈R
and ðσ, ςÞ ∈R.

Definition 19 (see [24]). Let R be a binary relation defined
on a nonempty set X . Then, for ϱ, σ ∈X , a finite sequence
fϱ0, ϱ1,⋯, ϱpg⊂X satisfying the following conditions:

ϱℓ, ϱℓ+1ð Þ ∈R for each ℓ 0 ≤ ℓ ≤ p − 1ð Þ,
ϱ0 = ϱ and ϱp = σ,

ð7Þ

is said to be a path of length p in R from ϱ to σ.

Definition 20 (see [7]). Let R be a binary relation on a non-
empty set X , and Y a subset of X . If there exists a path inR

from ρ to σ for each ϱ, σ ∈ Y , then Y is called R-connected.

Lemma 21 (see [28]). Let R be a binary relation on a non-
empty set X , and fϱkg ⊂X a sequence satisfying ðϱk, ϱk+1Þ
∈R. Now, if for some natural number K ≥ 2, R is K

-transitive on the set L = fϱk : k ∈K0g, then

ϱk, ϱk+1+r K−1ð Þ
� �

∈R for all k, r ∈K0: ð8Þ

3. Main Results

The first result in this section is on the existence of CP for
two mapping T and H. For a nonempty set X and two
self-mappings T and H on X , the notations we use herein
are as follows:

Θ T ,Hð Þ = ρ ∈X : T ϱð Þ =H ϱð Þf g,
�Θ T ,Hð Þ = �ϱ ∈X : �ϱ = T ϱð Þ =H ϱð Þ, ϱ ∈Xf g:

ð9Þ

Theorem 22. Let X be a nonempty set together with a metric
d, R a binary relation on X and T ,H two self-mappings on
X . Suppose the following conditions hold:

(a) TðXÞ ⊂HðXÞ
(b) ðX , dÞ is R-complete

(c) there exists ϱ0 ∈X such that ðHðϱ0Þ, Tðϱ0ÞÞ ∈R
(d) R is ðT ,HÞ-closed and locally finitely T-transitive

(e) T and H are R-compatible

(f) H is R-continuous

(g) T is R-continuous or R is ðH − dÞ-self-closed
(h) for every ε > 0 and ϱ, σ ∈X , there exists δ > 0 such

that

H ρð Þ,H σð Þð Þ ∈R and ε ≤ d H ϱð Þ,H σð Þð Þ < ε + δ⟹ d T ϱð Þ, T σð Þð Þ < ε

ð10Þ

Then, T and H have a CP.

Proof. Assumption ðcÞ confirms the existence of ϱ0 ∈X such
that ðHðϱ0Þ, Tðϱ0ÞÞ ∈R. Now, if Hðϱ0Þ = Tðϱ0Þ then noth-
ing is left to be proved. Otherwise, by assumption ðaÞ, we
can pick ϱ1 ∈X such that Tðϱ0Þ =Hðϱ1Þ. Again, there will
be ϱ2 ∈X such that Hðϱ2Þ = Tðϱ1Þ. In this way, we construct
a sequence fϱkg ⊂X such that

H ϱk+1ð Þ = T ϱkð Þ ∀k ∈K0: ð11Þ

Now, we assert that fHðϱkÞg is R-preserving, i.e.,

H ϱkð Þ,H ϱk+1ð Þð Þ ∈R ∀k ∈K0: ð12Þ

We will adopt the induction method to prove this fact. In
view of assumption ðcÞ, equation (12) holds for k = 0, i.e.,

H ϱ0ð Þ,H ϱ1ð Þð Þ ∈R: ð13Þ

Now, suppose that equation (12) holds for k = p > 0, i.e.,

H ϱp
� �

,H ϱp+1
� �� �

∈R: ð14Þ
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Then, we have to show that

H ϱp+1
� �

,H ϱp+2
� �� �

∈R: ð15Þ

In view of the fact that R is ðT ,HÞ-closed, it is clear that

H ϱp
� �

,H ϱp+1
� �� �

∈R T ϱp
� �

, T ϱp+1
� �� �

∈R, ð16Þ

implying thereby

H ϱp+1
� �

,H ϱp+2
� �� �

∈R, ð17Þ

which guarantees the fact that equation (2) holds for k = p
+ 1. Therefore, fHðϱkÞg is R-preserving sequence. Notice
that fTðϱkÞg is also a R-preserving sequence due to equa-
tion (1), i.e.,

T ϱkð Þ,H ϱk+1ð Þð Þ ∈R: ð18Þ

Now, if there exists n0 ∈K such that Hðϱn0Þ =Hðϱn0+1Þ,
then, in view of equation (1), ϱn0 turns out to be a CP of T
and H. As an alternative, consider that HðϱkÞ ≠Hðϱk+1Þ
for all k ∈K0, i.e., dðHðϱkÞ,Hðϱk+1ÞÞ ≠ 0.

Denote μk ≔ dðHðϱkÞ,Hðϱk+1ÞÞ. Now, in view of
assumption ðhÞ, we get

μk+1 = d H ϱk+1ð Þ,Hϱk+2ð Þ = d T ϱkð Þ, T ϱk+1ð Þð Þ < d H ϱkð Þ,H ϱk+1ð Þð Þ = μk,

ð19Þ

which gives

μk+1 < μk: ð20Þ

Therefore, the sequence fμkg is decreasing. As fμkg is
also bounded below by 0 (as a lower bound), we can find r
≥ 0 satisfying

lim
k⟶∞

μk = r = inf
k∈K0

μk: ð21Þ

Now, let us assume that r > 0. So, there will always be a
δðrÞ > 0 such that

H ϱð Þ,H σð Þð Þ ∈R,

r ≤ d H ϱð Þ,H σð Þð Þ < r + δ rð Þ⟹ d T ϱð Þ, T σð Þð Þ < r:

ð22Þ

Since fμkg is decreasing sequence converging to r, there
exists p ∈K such that

r ≤ d H ϱp
� �

,H ϱp+1
� �� �

< r + δ rð Þ: ð23Þ

Thus, in view of assumption ðhÞ, we have

μp+1 = d H ϱp+1
� �

,Hϱp+2
� �

< r, ð24Þ

which contradicts the fact that r = inf
k⟶K0

μk. Hence, we

conclude that

lim
k⟶∞

d H ϱkð Þ,H ϱk+1ð Þð Þ = 0: ð25Þ

Now, we establish that the sequence fHðϱkÞg is Cauchy.
Utilizing equation (1), since fHðϱkÞg ⊂ TðXÞ, we get that
the range S = fHðϱkÞ: k ∈K0g is a denumerable subset of
TðXÞ. Hence, in view of assumption ðdÞ, there exist K =
KðSÞ ≥ 2, such that RjS is K-transitive. Let ε > 0 be an
arbitrary and fixed real number and let δ > 0 corresponds
to ε verifying the assumption ðhÞ. WLOG, we may consider
that δ < ε: In view of (2), there exists n0ðδÞ ∈ℕ satisfying

d H ϱkð Þ,H ϱk+1ð Þð Þ < δ

4K
∀k ≥ n0 δð Þ: ð26Þ

For all k ≥ n0ðδÞ and for all pð1 ≤ p ≤KÞ, using triangu-
lar inequality, we get

d H ϱkð Þ,H ϱk+ϱ
� �� �

≤ d H ϱkð Þ,H ϱk+1ð Þð Þ
+ d H ϱk+1ð Þ,Hϱk+2ð Þ⋯ +d Hϱk+p−1,Hϱk+p

� �

≤
δ

4K
+

δ

4K
+⋯+

δ

4K
=

pδ
4K

:

ð27Þ

Now, we claim that

d H ϱkð Þ,Hϱk+p
� �

< ε +
δ

2
∀k ≥ n0 δð Þ and∀p ∈K : ð28Þ

This is demonstrated herein using the mathematical
induction method. From (27), it is clear that (28) holds for
all p ∈ f1, 2, 3,⋯,Kg. Suppose that the conclusion holds
for all p ∈ f1, 2, 3,⋯,mg, where m ≥K . We have to show
that (28) holds for k =m + 1 also. As m ≥K , so m − 1 ≥K

− 1 > 0. By division algorithm, there exists unique integers
μ and ηð0 ≤ η ≤K − 1Þ such that

m − 1 = K − 1ð Þμ + η

m = 1 + K − 1ð Þμ + η:
ð29Þ

Denoting q≕ 1 + ðK − 1Þμ, the above equation reduces to

m = q + η, ð30Þ

so that

2 ≤K ≤ q ≤m = q + η: ð31Þ

Now, using (27), we get

d H ϱk+q+1
� �

,H ϱk+m+1ð Þ� �
= d H ϱk+q+1

� �
,H ϱk+q+η+1

� �� �
≤

ηδ

4K
:

ð32Þ
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Now, using Lemma 21, we get

H ϱkð Þ,H ϱk+q
� �� �

∈R: ð33Þ

As q ∈ fK ,K + 1,:⋯ ,mg, using inductive hypothesis,
we get

0 < d H ϱkð Þ,H ϱk+q
� �� �

< ε +
δ

2
< ε + δ: ð34Þ

Using (33) and (34) and applying contractive condition
ðhÞ, we get

d H ϱk+1ð Þ,H ϱk+q+1
� �� �

= d T ϱkð Þ, T ϱk+q
� �� �

< ε: ð35Þ

Now, using triangular inequality, (25), (32), and (35),
we get

d H ρkð Þ,Hρk+m+1ð Þ ≤ d H ϱkð Þ,H ϱk+1ð Þð Þ + d H ϱk+1ð Þ,H ϱk+q+1
� �� �

+ d H ϱk+q+1
� �

,H ϱk+m+1ð Þ� �

<
δ

4K
+ ε + ηδ

4K
< δ

4K
+ ε + δ

4K
K − 1ð Þ asK

≥ 2 and η <K − 1 = ε +
δ

4
< ε +

δ

2
:

ð36Þ

Thus, by induction, (28) is verified. From (28), it
embraces that the sequence fHðϱkÞg is Cauchy. Now, the
R-completeness property of X and R-preserving property
of fHðϱkÞg confirm the availability of an element ς ∈X
such that

lim
k⟶∞

H ϱkð Þ = ς: ð37Þ

Also, from (11),

lim
k⟶∞

T ϱkð Þ = ς: ð38Þ

Now, by dint of the R-continuity of H, we acquire

lim
k⟶∞

H H ϱkð Þð Þ =H lim
k⟶∞

H ϱkð Þ
� �

=H ςð Þ: ð39Þ

Utilizing (38) and R-continuity of H,

lim
k⟶∞

H T ϱkð Þð Þ =H lim
k⟶∞

T ϱkð Þ
� �

=H ςð Þ: ð40Þ

Since fTðϱkÞg and fHðϱkÞg are R-preserving and

lim
k⟶∞

T ϱkð Þ = lim
k⟶∞

H ϱkð Þ = ς, ð41Þ

by assumption ðeÞ,

lim
k⟶∞

d HT ϱkð Þ, TH ϱkð Þð Þ = 0: ð42Þ

The next step is to establish that ς ∈ΘðT ,HÞ. From
assumption ðgÞ, we first consider that T is “R-continu-
ous.” Using (12), (37), and R-continuity of T,

lim
k⟶∞

T H ϱkð Þð Þ = T lim
k⟶∞

H ϱkð Þ
� �

= T ςð Þ: ð43Þ

Applying (40) and (42), we get

d H ςð Þ, T ςð Þð Þ = d lim
k⟶∞

HT ϱkð Þ, lim
k⟶∞

TH ϱkð Þ
� �

= lim
k⟶∞

d HT ϱkð Þ, TH ϱkð Þð Þ = 0,
ð44Þ

yielding thereby HðςÞ = TðςÞ, which establishes our claim.
Instead of R-continuity of T , we now suppose that R is

ðH, dÞ-self-closed, based on assumption ðgÞ. Then, fHðϱkÞg
being R-preserving sequence guarantees the existence of a
subsequence fHϱkpg such that ½Hϱkp , ς� ∈R. If Hϱkk0

= ς

for some k0 ∈K , then using (11) and by the R-preserving
property of fHðϱkÞg, we get Hðϱkk0 Þ ∈ΘðT ,HÞ. Otherwise,
suppose Hϱnp ≠ ς, i.e., dðHϱnp , ςÞ ≠ 0 for all p ∈K . In this

case, in view of assumption ðhÞ, assuming ε = dðHϱkp , ςÞ
and using assumption ðhÞ, we get

d T Hϱnp

� �
, T ςð Þ

� �
< ε: ð45Þ

Using triangle inequality, we get

d H ςð Þ, T ςð Þð Þ ≤ d H ςð Þ,HTϱkp

� �

+ d HTϱkp , THϱkp

� �

+ d THϱkp , T ςð Þ
� �

:

ð46Þ

Now, using (40), (42), and (45) in the previous equation,
we obtain

d H ςð Þ, T ςð Þð Þ = 0, ð47Þ

which establishes that TðςÞ =HðςÞ.

It is clear that Theorem 22 solely considers the existence
of a CP of T and H. As a result, we must add extra condi-
tions to the hypothesis of Theorem 22 to obtain the unique-
ness of point of coincidence, CP and CFPs. This is the
purpose of our next theorems.

Theorem 23. Assume that all of the criteria of Theorem 22
are met. Let the following condition holds additionally:

(i) TðXÞ is Rs
HðXÞ-connected

then T and H have a unique point of coincidence.
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Proof. From Theorem 22, we get thatΘðT ,HÞ ≠∅. Consider
that ϱ, σ ∈ΘðT ,HÞ. Then, there exist �σ, �σ ∈X such that

T ϱð Þ =H ϱð Þ = �ϱ andT σð Þ =H σð Þ = �σ: ð48Þ

It is now our goal to prove that �ϱ = �σ. Since TðϱÞ, TðσÞ
∈ TðXÞ ⊆HðXÞ, by assumption ðiÞ, there exists a path fH
ðς0Þ,Hðς1Þ,Hðς2Þ,⋯,HðςpÞg of some finite length p in
Rs

HðXÞ from TðρÞ to TðσÞ. Now, in view of (48), WLOG
we can choose ς0 = ϱ and ςp = σ. Thus, we have

H ςℓð Þ,H ςℓ+1ð Þ½ � ∈RH Xð Þ for each ℓ 0 ≤ ℓ ≤ p − 1ð Þ: ð49Þ

Define the constant sequences ς0k = ρ and ςpk, then in view
of equation (48), we have Hðς0k+1Þ = Tðς0kÞ = �ϱ and Hðςpk+1Þ
= TðςpkÞ = �σ for all k ∈K0. Put ς10 = ς1, ς20 = ς2, ς30 = ς3,⋯,
ςp−10 = ςp−1: Now, since TðXÞ ⊂HðXÞ, we can define

sequences fς1kg, fς2kg, ..., fςp−1k g such that Hðς1k+1Þ = Tðς1kÞ,
Hðς2k+1Þ = Tðς2kÞ, ..., Hðςp−1k+1Þ = Tðςp−1k Þ for all k ∈K0. Hence,
we have

H ςℓk+1
� �

= T ςℓk
� �

∀k ∈K0 and for each ℓ 0 ≤ ℓ ≤ pð Þ: ð50Þ

Now, we claim that

H ςℓk
� �

,H ςℓ+1k

� �� 	
∈R∀k ∈K0 and for each ℓ 0 ≤ ℓ ≤ p − 1ð Þ:

ð51Þ

This is demonstrated herein using the mathematical
induction method. equation (51) holds for k = 0 as a result
of (49). Assume that equation (51) is true for k = r, i.e.,

H ςℓr
� �

,H ςℓ+1r

� �� 	
∈R: ð52Þ

As R is ðT ,HÞ-closed, we obtain

T ςℓr
� �

, T ςℓ+1r

� �� 	
∈R, ð53Þ

which on using (51) gives us that

H ςℓr+1
� �

,H ςℓ+1r+2
� �� 	

∈R k ∈K0 and for each ℓ 0 ≤ ℓ ≤ p − 1ð Þ:
ð54Þ

Therefore, equation (51) holds. Now, for each k ∈K0
and for each ð0 ≤ ℓ ≤ p − 1Þ, define

tℓk = d H ςℓk
� �

,H ςℓ+1k

� �� �
: ð55Þ

We show that

lim
k⟶∞

tℓk = 0: ð56Þ

Now, we look at two scenarios in which ℓ is fixed. Firstly,
suppose that

tℓn0 = d H ςℓn0

� �
,H ςℓ+1n0

� �� �
= 0 for some n0 ∈K0, ð57Þ

which gives rise to Hðςℓn0Þ =Hðςℓ+1n0
Þ. Now applying (11),

we have tℓn0+1 = 0. Continuing this process, we get

ςℓk = 0∀k ≥ n0, ð58Þ

which establishes that lim
k⟶∞

ςℓk = 0.

Alternatively, assume that ςℓk > 0∀k ∈K0. For any ε > 0,
assume tℓk = dðHðςℓkÞ,Hðςℓ+1k ÞÞ = ε. Then,

tℓk+1 = d H ςℓk+1
� �

,H ςℓ+1k+1
� �� �

= d T ςℓk
� �

, T ςℓ+1k

� �� �
< ε = tℓk,

ð59Þ

which gives

tℓk+1 < tℓk: ð60Þ

As a result, the sequence ftℓkg is decreasing. As ftℓkg is
also bounded below by 0 (as a lower bound), there exists r
≥ 0 such that

lim
k⟶∞

tℓk = r = inf
k∈K0

tℓk: ð61Þ

Now, we prove that r = 0. Assume, on the other hand
that r > 0. So, there will always be a δðrÞ > 0 such that

H ϱð Þ,H σð Þð Þ ∈R and r ≤ d H ϱð Þ,H σð Þð Þ < r + δ rð Þd T ϱð Þ, T σð Þð Þ < r:

ð62Þ

Since ftℓkg is decreasing sequence converging to r, there
exists p ∈K such that

r ≤ d H ςℓp

� �
,H ςℓ+1p

� �� �
< r + δ rð Þ: ð63Þ

Thus, in view of assumption ðhÞ, we have

tℓp+1 = d H ςℓp+1

� �
,H ςℓ+1p+1

� �� �
< r, ð64Þ

which contradicts the fact that r = inf
k⟶∞

tℓk. Hence, we

conclude that

lim
k⟶∞

tℓk = 0: ð65Þ

Thus, equation (56) holds ∀ℓð0 ≤ ℓ ≤ p − 1Þ. Now, in
light of equation (56) and triangle inequality, we get

d �ϱ, �σð Þ ≤ t0k + t1k+⋯+tp−1k ⟶ 0 as k⟶∞: ð66Þ

Therefore, �ϱ = �σ, which ends the proof.
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Theorem 24. Assume that all of the criteria of Theorem 22
are met. Let the following condition holds additionally:

(i) T and H are “weakly compatible”

then T and H have a unique CFP.

Proof. Assume ρ ∈X such that ϱ ∈ΘðT ,HÞ. Therefore, there
exists �ρ ∈X such that

H ϱð Þ = T ϱð Þ = �ϱ: ð67Þ

In light of the Remark 14, the concept R-compatibility
coincides with the weak compatibility. Hence, �ϱ ∈ΘðT ,HÞ.
Utilizing ς = �ϱ in Theorem 23, we obtain HðϱÞ =Hð�ϱÞ
yielding thereby

�ϱ =H �ϱð Þ = T �ϱð Þ: ð68Þ

Hence, �ϱ is a CFP of T and H.
Now, we assume that ϱ′ is another CFP of T and H in

order to assert the uniqueness. Applying Theorem 23, we get

ϱ′ =H ϱ′
� �

=H �ϱð Þ = �ϱ, ð69Þ

which finishes the proof.

Theorem 25. Assume that all of the criteria of Theorem 22
are met. Suppose either of the mappings T and H is one-to-
one. Then, T and H have a unique CP.

Proof. From Theorem 22, it is evident that ΘðT ,HÞ ≠∅. Let,
ϱ, σ ∈ΘðT ,HÞ. Then, Theorem 23 permits us to write

T ϱð Þ =H ϱð Þ = T σð Þ =H σð Þ: ð70Þ

Now, since T or H is one-to-one, we have, ϱ = σ which
finishes the proof.

Theorem 22 has the following implication when we
apply Proposition 17.

Corollary 26. If either of the below conditions:

(a) R is “transitive”

(b) R is “T-transitive”

(c) R is “finitely transitive”

(d) R is “locally finitely transitive”

is utilized in Theorem 22 instead of the locally finitely T
-transitivity condition; then, the validity of Theorem 22
remains the same.

Corollary 27. If either of the below conditions:
(i′). TðXÞ is Rs-directed
(i′}). RjTðXÞ is complete

holds in place of condition ðiÞ of Theorem 23, then the
validity of Theorem 23 remains the same.

Proof. If condition ði′Þ is satisfied, then, for each ϱ, σ ∈ T
ðXÞ, we get ς ∈X satisfying ½ρ, ς� ∈R and ½σ, ς� ∈R.
Notice that the sequence fϱ, ς, σg works as a path of
length 2 in Rs from ρ to σ, which establishes the fact that
TðXÞ is Rs-connected. Now, applying Theorem 23, we
obtain the uniqueness of point of coincidence.

Alternately, from assumption ði′′Þ, we get ½ϱ, σ� ∈R∀ϱ,
σ ∈ TðXÞ, which assents that fρ, σg constitutes a path of
length 1 in Rs. As a result, TðXÞ is Rs-connected, which
wrap up the proof when Theorem 23 is applied.

Under H = I, the identity map, we obtain the following
result which is proved by Sk et al. [17].

Corollary 28 (see [17]). Let ðX , dÞ be a R-complete metric
space endowed with a binary relation R on X and T a self-
mapping on X . Suppose that the following conditions hold:

(a) there exists ϱ0 ∈X such that ðϱ0, Tϱ0Þ ∈R,

(b) R is T-closed and locally finitely T-transitive

(c) either T is R-continuous or R is d-self-closed

(d) for every ε > 0 there exists δ > 0 such that

ϱ, σð Þ ∈R and ε ≤ d ϱ, σð Þ < ε + δ⟹ d T ϱð Þ, T σð Þð Þ < ε

ð71Þ

Then, T has a fixed point. Further, if we impose an addi-
tional hypothesis:

(e) TðXÞ is Rs-connected

then T has a unique fixed point.

Remark 29. Under the universal relation R and H = I, the
identity map, Theorem 22, and Theorem 23 reduce to the
classical fixed point theorem of Meir and Keeler [10].

Remark 30. Under partial order the relation ℝ = °, and H = I,
the identity map, Theorem 22, and Theorem 23 reduces to
fixed point theorem of Harjani et al. [30].

4. Examples

Now, we equip two examples to show how important our
results are in comparison to other results in the literature.

Example 1. LetX = fð0, 1Þ, ð1, 0Þ, ð1, 1Þ, ð0, 0Þg ⊂ℝ2 together
with the usual Euclidean metric d. Consider the following
relation endowed with X:

R = 1, 1ð Þ, 0, 0ð Þð Þf g: ð72Þ
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Then, ðX , dÞ is a R-complete metric space. Now con-
sider that T ,H : X ⟶X are two mappings defined by

T 1, 0ð Þ = 0, 1ð Þ ; T 0, 1ð Þ = 1, 0ð Þ ; T 1, 1ð Þ = 1, 1ð Þ ; T 0, 0ð Þ = 0, 0ð Þ,
H 0, 1ð Þ = 1, 0ð Þ ;H 0, 0ð Þ = 0, 1ð Þ ;H 1, 1ð Þ = 1, 1ð Þ ;H 1, 0ð Þ = 0, 0ð Þ:

ð73Þ

Notice that for ε = dðð0, 1Þ, ð1, 0ÞÞ = ffiffiffi
2

p
, we have

d T 0, 1ð Þ, T 1, 0ð Þð Þ = d 1, 0ð Þ, 0, 1ð Þð Þ =
ffiffiffi
2

p
< ε, ð74Þ

which is absurd. Further, ðð1, 1Þ, ð0, 0ÞÞ ∈R and dðð1, 1Þ,
ð0, 0ÞÞ = ffiffiffi

2
p

but the inequality

d T 1, 1ð Þ, T 0, 0ð Þð Þ = d 1, 1,ð Þ, 0, 0ð Þð Þ =
ffiffiffi
2

p
< ε, ð75Þ

does not hold. Hence, the existing theorems cannot be applied
for this example. Now, assume that ε = dðHð1, 1Þ,Hð1, 0ÞÞ
= dðð1, 1Þ, ð0, 0ÞÞ = ffiffiffi

2
p

. Then, the inequality

d T 1, 1ð Þ, T 1, 0ð Þð Þ = d 1, 1ð Þ, 0, 1ð Þð Þ = 1 < ε, ð76Þ

holds. As a result, assumption ðhÞ of Theorem 22 holds. It can
also be seen that all of the conditions of Theorem 22 are met
using regular calculation. Therefore, T and H have a CP,
namely, ð1, 1Þ:

Although it does not satisfy Theorem 23, the CP of T
and H in Example 1 is unique, proving that condition ðiÞ
of Theorem 23 is not a necessary condition for the unique-
ness of CPs.

Example 2. Let X = fð0, 1Þ, ð1, 0Þ, ð1, 1Þ, ð0, 0Þg ⊂ℝ2

together with the usual Euclidean metric d. Consider the
following relation endowed with X ,

R = ϱ, σð Þ: ϱ, σ ∈ 0, 1ð Þ, 1, 1ð Þf gf g: ð77Þ

Then, ðX , dÞ is a R-complete metric space. Now con-
sider that T ,H : X ⟶X are two mappings defined by

T 1, 0ð Þ = 1, 0ð Þ ; T 0, 1ð Þ = 0, 1ð Þ ; T 1, 1ð Þ = 1, 0ð Þ ; T 0, 0ð Þ = 0, 1ð Þ,
H 1, 0ð Þ = 1, 0ð Þ ;H 0, 1ð Þ = 0, 1ð Þ ;H 1, 1ð Þ = 0, 1ð Þ,H 0, 0ð Þ = 1, 1ð Þ:

ð78Þ

Now, for ε = dðHð0, 1Þ,Hð0, 0ÞÞ = 1, we have

d T 0, 1ð Þ, T 0, 0ð Þð Þ = d 0, 1ð Þ, 0, 1ð Þð Þ = 0 < ε, ð79Þ

holds. As a result, assumption ðhÞ of Theorem 22 holds. It
can also be seen that all of the conditions of Theorem 22
are met using regular calculation. Therefore, T and H have
CPs, namely, ð0, 1Þ, ð1, 0Þ. The availability of more than
one fixed point certifies the eminence of Theorem 23.

Notice that for ε = dðð0, 1Þ, ð1, 0ÞÞ = ffiffiffi
2

p
, we have

d T 0, 1ð Þ, T 1, 0ð Þð Þ = d 1, 0ð Þ, 0, 1ð Þð Þ =
ffiffiffi
2

p
< ε, ð80Þ

which is absurd. Further, ðð0, 1Þ, ð1, 1ÞÞ ∈R and dðð0, 1Þ,
ð1, 1ÞÞ = 1 but the inequality

d T 0, 1ð Þ, T 1, 1ð Þð Þ = d 0, 1,ð Þ, 1, 0ð Þð Þ =
ffiffiffi
2

p
< ε, ð81Þ

does not hold. Hence, the existing theorems cannot be
applied for this example.

5. Conclusion

In this paper, we have established some coincidence point
theorems for two mappings employing the relation-theoretic
Meir-Keeler contractions in a metric space endowed with a
class of transitive binary relation. Our findings have also led
to the deduction of certain related fixed point results. Further-
more, some examples are given to demonstrate the significant
progress made in this area.
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