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The second-hand smoke is a phenomenon that needs to be investigated, and its effects on the health of the people are to be
examined. To analyze such an issue, the mathematical models are the best tools that help us to study the dynamical behaviors
of this phenomenon. For this purpose, in the present paper, we consider a three-compartmental fractal-fractional mathematical
model of a specific population of smokers or people that are exposed to second-hand smoke. By assuming some conditions on
ϕ-ψ-contractions and compact operators, we prove some theorems in relation to the existence of solutions. The Banach
principle for the usual contractions is used for proving the uniqueness of solutions. Next, by some notions of functional
analysis, two types of Ulam-Hyers stability for the fractal-fractional second-hand smoker model are established. Moreover, we
have a steady-state analysis and obtain equilibrium points and basic reproduction number R0. Then, we investigate the
sensitivity of the fractal-fractional system with respect to each parameter. For numerical simulation, the Adams-Bashforth (AB)
method is used to derive numerical schemes for plotting and simulating the approximate solutions. Finally, the obtained
solutions are tested with real data and different values of fractal dimensions and fractional orders.

1. Introduction

The notion of the second-hand smoke is considered as the
combination of smoke caused by the burning end of a
cigarette, the smoke that is exhaled by a smoker, or smoke
caused due to other tobacco products [1]. Therefore, being
in the exposure of second-hand smoke, it involves an unin-
tentional inhalation of smoke that happens near the people
smoking or inhalation in an indoor environment where
tobacco has been recently used. The people may be exposed
to the second-hand smoke in different places that includes
public places, home, private or public transport, workplace,
home of relatives, and buses [2, 3]. Nowadays, the exposure

to second-hand smoke is considered one of the main risk
factor for a class of diseases and harmful health-related
results at a vast scale and is evaluated to cause more than
600,000 deaths in each year.

There exists an apparent relation between the factor of
the second-hand smoke and an increased danger of stroke.
Being in exposure to the second-hand smoke regularly in
some public environment increases the chance of stroke by
fifty percent [4]. At the same time, the second-hand smoke
is as damaging to a fetus as if the mothers were inhaling
the smoke directly from a cigarette [5]. Only 30 minutes of
exposure to second-hand smoke can result in heart diseases
similar to that of habitual smokers [6]. In view of these
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items, being in exposure to second-hand smoke is regarded a
subject of great concern for all of the people due to its famil-
iar harmful effects on the human health.

Some of researchers have discussed about the adverse
effects of second-hand smoke on the health problem as
well. In 2011, Lubick et al. [7] conducted a research on
the global health burden of the second-hand smoke, and
in the same year, Burton [8] focused on an alarming conse-
quence of smoking in indoor places. All the aforementioned
studies indicate that the second-hand smoke is a significant
problem worldwide.

The importance of this issue led to a number of
researches being done in precise mathematical formats,
because we have to model these phenomena to study their
exact behaviors. Even during the recent years, researchers
have modeled many phenomena and diseases by applying
new mathematical operators and analyzed such systems
numerically and analytically. Their findings help us to take
steps about that specific disease and to control the speed of
its spread. Instances of such a modeling can be found in
[9, 10] by studying electrical circuits and some processes in
engineering, in [11–14] for analyzing COVID-19, in [15,
16] for cancer treatment, in [17–19] for investigating differ-
ent diseases, in [20–22] for controlling some viruses, in [23,
24] for studying some social problems, in [25, 26] for
investigating some phenomena in relation to animals and
agriculture, etc. More specifically, the operators with
Mittag-Leffler-type kernels play an important role in recent
mathematical modelings. To see these important phenom-
ena, we can even enumerate some new works in this
regard. Khan et al. [27] studied a fractional COVID-19
epidemic model with a convex incidence rate with the help
of the Atangana-Baleanu operators in the Caputo sense
and analyzed the optimal control on the amount of the
infection. In [28], Akgul solved an Atangana-Baleanu frac-
tional differential equation with the reproducing kernel
Hilbert space method.

In this direction, the second-hand smoke is also a phe-
nomenon which is important to investigate its effects based
on mathematical models. To know some previous works
about smoking models, Alkhudhari et al. [29] conducted a
research on the global dynamics in relation to smoking on
temporary quitters in 2014. One year later, Verma et al.
[30] investigated a new model for the smoking cessation
and the effects of media campaigns on this issue. Recently
in 2019, Adhana et al. [31] studied a model of smoking
tobacco in the form of a case study in Ethiopia and analyzed
the smoking generation number (SGN) in relation to the
given mathematical system. Pulecio-Montoya et al. [32]
designed a model of the growth of tobacco consumers and
simulated it by the fourth-order Runge-Kutta techniques.

In last decades, Atangana [33] introduced a new
advanced kind of derivatives entitled fractal-fractional deriv-
ative that connects the two topics of fractional calculus and
fractal calculus. Further, he extended the relevant fractal-
fractional integral. The construction of such operators is in
the form of the convolution of the power-law, exponential-
law, and generalized Mittag-Leffler-law type kernels with
fractal derivatives. Fractal-fractional operators have two

components: one is the fractional order and the second is
the fractal dimension (order). Actually, differential equa-
tions furnished with the fractal-fractional derivative transfer
the order and dimension of the supposed system into a
rational order system.

According to this property, we can extend the usual
differential equations to generalized systems with arbitrary
order of derivatives and dimensions. In other words, the
basic aim for defining these derivatives is to study nonlocal
BVPs/IVPs in nature that contain fractal behaviors. In this
direction, some mathematicians established several results
and designed some fractal-fractional models that show
better simulations for describing mathematical structures.
For instance, Gomez-Aguilar et al. [34] analyzed the trans-
mission of malaria with the help of these fractal-fractional
operators. The situation and spread of coronavirus in Paki-
stan were studied in the form of a fractal-fractional model
by Shah et al. in 2020 [35]. Also, one year later, Ali et al.
developed another fractal-fractional model of COVID-19
based on the data extracted from Wuhan [36]. In [37],
Farman et al. analyzed the solutions of a fractal fractional
Atangana-Baleanu model of COVID-19 via the Atangana-
Toufik scheme. In other paper, published by Amin et al.
[38], the authors used the same fractal-fractional operators
for investigating the effect of vaccination to control
COVID-19. More recently, Alqhtani and Saad [39] used
three types of fractal-fractional operators via the power-law,
exponential decay, and Mittag-Leffler kernels for modeling
Michaelis-Menten Enzymatic Reaction and compared their
numerical results with the classical results. Also, Saad et al.
[40] used the Caputo-Fabrizio fractal-fractional derivatives
to model the hepatitis C virus infection and analyzed numer-
ical solutions and their chaos with respect to different values
of parameters.

In the present study, we will consider a three-
compartmental mathematical model of a specific population
of smokers or people that are exposured to second-hand
smoke, and we will analyze and interpret our findings and
model graphically, numerically, and analytically. Also, note
that due to the importance of fixed point theory in proving
the existence results, most of researchers use the main theo-
rems of this field for confirming the existence of solutions
for vide range of mathematical models. For instance, there
are different theorems such as the Leray-Schauder fixed
point theorem, Krasnoselskii’s fixed point theorem [41],
some fixed point theorems in partial metric spaces [42], or
some special contractions such as F-contractions [43] and
ϕ-ψ-contractions [44]. Here, we will use these new contrac-
tions for proving the existence of solutions.

We emphasize that the basic contribution and also the
novelty of this work is that we compute and obtain our
results based on a new model of second-hand smokers
designed by the fractal-fractional derivatives for the first
time. In the mentioned structure, we use power-law type
kernel for this fractal-fractional derivative. Also, for the first
time, to prove the existence of solutions, ϕ-admissible maps
and ϕ-ψ-contractions play an important role in this study.
Moreover, we try to investigate different stability results for
the given model and at the end of the paper, we see that
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our simulative graphs show the accuracy and applicability of
the fractal-fractional operators in comparison to other usual
fractional operators. Also, we again emphasize that this is
the first work on the application of the fractal-fractional
derivatives for modeling dynamics of second-hand smokers.
The numerical and graphical results obtained in this work
show that we can analyze different qualitative behaviors of
mathematical models under the effect of the fractal dimen-
sion and fractional order of these new operators and obtain
better and more accurate results with the help of real data.
This confirms the considerable advantages of the fractal-
fractional operators.

This model will be studied from several aspects. In the
first place, after describing the suggested fractal-fractional
model, we investigate existence theory based on two criteria
in relation to ϕ-ψ-contractions and compact operators. The
Banach principle for usual contractions is utilized for prov-
ing the uniqueness result. Next, by notions of functional
analysis, two types of Ulam-Hyers stability of the fractal-
fractional system are established. In the sequel, we have a
steady-state analysis and obtain equillibria and reproduction
number R0, and then we investigate the sensitivity of the
fractal-fractional system with respect to each parameter.
For numerical simulation, a fractional type of two-step
Lagrange polynomial known as the fractional Adams-
Bashforth (AB) method is utilized to derive numerical
schemes for plotting and simulating the results. Finally, the
obtained solutions are tested with real data and different
values of fractal and fractional orders.

2. Preliminaries

In this section, we recall some definitions and properties on
the fractal-fractional operators and some self-maps includ-
ing ϕ-ψ-contractions.

We consider the family Ψ of all increasing functions
ψ : ½0,∞Þ⟶ ½0,∞Þ such that

〠
∞

j=1
ψj tð Þ <∞, ψ tð Þ < t,∀t > 0: ð1Þ

Definition 1 (see [44]). Let F : X⟶X and ϕ : X2 ⟶
ℝ≥0, where X is a normed space. Then,

(1) For ϰ1, ϰ2 ∈X, F is ϕ-ψ-contraction if

ϕ ϰ1, ϰ2ð Þd Fϰ1,Fϰ2ð Þ ≤ ψ d ϰ1, ϰ2ð Þð Þ: ð2Þ

(2) F is ϕ-admissible if

ϕ ϰ1, ϰ2ð Þ ≥ 1⟹ ϕ Fϰ1,Fϰ2ð Þ ≥ 1: ð3Þ

Definition 2 (see [33]). Let a continuous function F : ða, bÞ
⟶ ½0,∞Þ be fractal differentiable of fractal order ν. Then,
the fractal-fractional derivative of F equipped with the

power-law-type kernel of order ω in the sense of Riemann-
Liouville is defined by

FFPDω,ν
a,t F tð Þ = 1

Γ n − ωð Þ
d
dtν

ðt
a
t −wð Þn−ω−1F wð Þdw, ð4Þ

where dFðwÞ/dwν = limt⟶wððFðtÞ − FðwÞÞ/ðtν −wνÞÞ is
the fractal derivative and n − 1 < ω, ν ≤ n ∈ℕ.

One can simply observed that by letting ν = 1, the
fractal-fractional derivative FFPDω,ν

a,t is the same standard
Riemann-Liouville derivative RLDω

a,t of order ω.

Definition 3 (see [33]). A continuous function F defined on
ða, bÞ is fractal-fractional integrable of the fractional and
fractal orders ω and ν, respectively, via the power-law-type
kernel if the integral

FFPI
ω,ν
a,t F tð Þ = ν

Γ ωð Þ
ðt
a
wν−1 t −wð Þω−1F wð Þdw ð5Þ

exists, where ν, ω > 0.

3. Description of the Model for Second-
Hand Smokers

This model of second-hand smoker tobacco involves a sys-
tem of three differential equations [45]. The compartments
are P ðtÞ, SðtÞ, and QðtÞ. It is notable that P ðtÞ represents
the second-hand smokers or those (at risk of) exposure to
others smoking, QðtÞ denotes a group of persons who have
cessated smoking but are at risk because of their previous
smoking habit, and SðtÞ is a group of persons who are
addicted to tobacco and smoke it yet. The variable as well
as parameters used in the model is all nonnegative. Meaning
of variables and parameters is given in the sequel. With the
above assumptions, and based on [45], the second-hand
smoker (SHS) model is provided by a system of ODEs in
the form:

P ′ tð Þ = θ − s + q1 + rð ÞP tð Þ − bS tð ÞP tð Þ,
S ′ tð Þ = bP tð ÞS tð Þ + r1Q tð ÞS tð Þ − q1 + q2 + r2ð ÞS tð Þ,
Q′ tð Þ = r2S tð Þ − r1S tð ÞQ tð Þ − q3 + q1 + γð ÞQ tð Þ,

8>><
>>:

ð6Þ

where θ is the number of healthful individuals who are also
at risk of smoker people, q1 stands for the natural mortality
rate per total population, s is the death rate of second-hand
smoker persons because of exposure to second-hand smoke,
q2 is the death rate of individuals by smoking tobacco, q3 is
the death rate of quit because of smoking habit before trans-
ferring to the phase Q, r is the exit rate of second-hand
smoker to the healthful individuals, γ is the exit rate of
persons who have cessation smoking to the healthful people,
b is the infection rate from P to S , r2 is the exit rate from S

to Q, and r1 is the infection rate from Q to S . The limitations
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for these parameters are θ > 0, 0 < s ≤ 1, 0 < q1 < 1, and 0 ≤
r, b, r1, q2, r2, q3, γ ≤ 1. The initial conditions are P ð0Þ =P 0
≥ 0, Sð0Þ = S0 ≥ 0, and Qð0Þ =Q0 ≥ 0.

Motivated by the above standard model, we here con-
sider the fractal-fractional model of the second-hand smoker
in the following structure:

FFPD
ω,ν
0,t P tð Þ = θ − s + q1 + rð ÞP tð Þ − bS tð ÞP tð Þ,

FFPD
ω,ν
0,t S tð Þ = bP tð ÞS tð Þ + r1Q tð ÞS tð Þ − q1 + q2 + r2ð ÞS tð Þ,

FFPD
ω,ν
0,t Q tð Þ = r2S tð Þ − r1S tð ÞQ tð Þ − q3 + q1 + γð ÞQ tð Þ,

8>>><
>>>:

ð7Þ

subject to

P 0ð Þ =P 0 ≥ 0, S 0ð Þ = S0 ≥ 0,Q 0ð Þ =Q0 ≥ 0, ð8Þ

where FFPDω,ν
0,t is the fractal-fractional derivative with the

fractional order ω ∈ ð0, 1� and the fractal order ν ∈ ð0, 1�
via the power-law-type kernel. We impose several
required assumptions on the model: the parameters of (7)
are nonnegative and

N tð Þ =P tð Þ + S tð Þ +Q tð Þ, ð9Þ

where N ðtÞ stands for the total population at the time t ∈ I
≔ ½0, T�, ðT > 0Þ.

4. Existence of Solutions

In this section, the existence criterion is ensured by
fixed point theory. Here, for the qualitative analysis, we
define the Banach space X =M3, where M = CðI,ℝÞ
under the norm

Ak kX = P , S ,Qð Þk kX =max K tð Þj j: t ∈ If g, ð10Þ

for which jK j≔ jP j + jSj + jQj. We rewrite the right-
hand side of the fractal-fractional SHS-model (7) as

W1 t,P tð Þ, S tð Þ,Q tð Þð Þ = θ − s + q1 + rð ÞP tð Þ − bS tð ÞP tð Þ,
W2 t,P tð Þ, S tð Þ,Q tð Þð Þ = bP tð ÞS tð Þ + r1Q tð ÞS tð Þ − q1 + q2 + r2ð ÞS tð Þ,
W3 t,P tð Þ, S tð Þ,Q tð Þð Þ = r2S tð Þ − r1S tð ÞQ tð Þ − q3 + q1 + γð ÞQ tð Þ:

8>><
>>:

ð11Þ

Since, the integral is differentiable, we write the
fractal-fractional SHS-model (7) in the following form:

RLD
ω,ν
0,t P tð Þ = vtv−1W1 t,P tð Þ, S tð Þ,Q tð Þð Þ,

RLD
ω,ν
0,t S tð Þ = vtv−1W2 t,P tð Þ, S tð Þ,Q tð Þð Þ,

RLD
ω,ν
0,t Q tð Þ = vtv−1W3 t,P tð Þ, S tð Þ,Q tð Þð Þ:

8>>><
>>>:

ð12Þ

By (12), the developed system is illustrated by the
following IVP

RLDω,ν
0,t A tð Þ = vtv−1W t, A tð Þð Þ, ω, ν ∈ 0, 1ð �, ð13Þ

where

A tð Þ = P tð Þ, S tð Þ,Q tð Þð ÞT ,A0 = P 0, S0,Q0ð ÞT ,

W t,A tð Þð Þ =
W1 t,P tð Þ, S tð Þ,Q tð Þð Þ,
W2 t,P tð Þ, S tð Þ,Q tð Þð Þ,
W3 t,P tð Þ, S tð Þ,Q tð Þð Þ, t ∈ I:

8>><
>>:

ð14Þ

Now, we operate on both sides of the Equation (13)
by the fractal-fractional integral which is given by Defi-
nition 3, and we get

A tð Þ =A 0ð Þ + ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W w,A wð Þð Þdw:

ð15Þ

In other words, the extended form of the above
fractal-fractional integral is represented as

P tð Þ =P 0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W1 w,P wð Þ, S wð Þ,Q wð Þð Þdw,

S tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W2 w,P wð Þ, S wð Þ,Q wð Þð Þdw,

Q tð Þ =Q0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W3 w,P wð Þ, S wð Þ,Q wð Þð Þdw:

8>>>>>>>>><
>>>>>>>>>:

ð16Þ

To transform into a fixed point problem, we define
G : X⟶X by

G A tð Þð Þ =A 0ð Þ + ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W w,A wð Þð Þdw :

ð17Þ

In the preceding, we recall the required fixed point
theorem in connection with our aim for proving the
existence results.

Theorem 4 (see [44]). Assume that ðX, dÞ is a complete
metric space, ϕ : X ×X⟶ℝ, ψ ∈Ψ, and W : X⟶X are
an ϕ - ψ -contractive map such that

(1) W is ϕ-admissible self map on X

(2) For some u0 ∈X, ϕðu0,Wu0Þ ≥ 1

(3) For any sequence fung in X with un ⟶ u and
ϕðun, un+1Þ ≥ 1 for all n ≥ 1, we have ϕðun, uÞ ≥ 1
for all n ≥ 1

Then, there is a fixed point for W.
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Now, the first existence result is proved here under some
special operators.

Theorem 5. Suppose that there are a map ℏ : ℝ ×ℝ⟶ℝ, a
continuous function W : I ×X⟶X, and a nondecreasing
function ψ ∈Ψ. Assume that

ð℘1Þ For any A1,A2 ∈X and t ∈ I,

W t,A1 tð Þð Þ −W t,A2 tð Þð Þj j ≤ ~ℓψ A1 tð Þ −A2 tðj jð Þ, ð18Þ

with ℏðA1ðtÞ,A2ðtÞÞ ≥ 0, where ~ℓ = Γðν + ωÞ/νTν+ω−1ΓðνÞ.
ð℘2Þ There is some A0 ∈X such that for each t ∈ I,

ℏ A0 tð Þ,G A0 tð Þð Þð Þ ≥ 0, ð19Þ

and also the inequality

ℏ A1 tð Þ,A2 tð Þð Þ ≥ 0 ð20Þ

gives

ℏ G A1 tð Þð Þ,G A2 tð Þð Þð Þ ≥ 0, ð21Þ

for each A1,A2 ∈X and t ∈ I.
ð℘3Þ For each convergent sequence fAngn≥1 that belongs

to X with An ⟶A and

ℏ An tð Þ,An+1 tð Þð Þ ≥ 0, ð22Þ

for each n and t ∈ I, we get

ℏ An tð Þ,A tð Þð Þ ≥ 0: ð23Þ

Then, there is a solution for the fractal-fractional IVP
(13), and so there is a solution to the given fractal-fractional
SHS-model (7).

Proof. Let A1 and A2 be two members belonging to X with

ℏ A1 tð Þ,A2 tð Þð Þ ≥ 0, ð24Þ

for each t ∈ I. Then, by definition of the Beta function, we
may write

G A1 tð Þð Þ −G A2 tð Þð Þj j ≤ ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1 W w,A1 wð Þð Þj

−W w,A2 wð Þð Þjdw

≤
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1~ℓψ A1 wð Þðj

−A2 wð ÞÞjdw

≤
ν~ℓTν+ω−1B ν, ωð Þ

Γ ωð Þ ψ A1 −A2k kXð Þ

=
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ

~ℓψ A1 −A2k kXð Þ:

ð25Þ

Consequently, we have

G A1ð Þ −G A2ð Þk kX ≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ

~ℓψ A1 −A2k kXð Þ

= ψ A1 −A2k kXð Þ:
ð26Þ

Now, a function ϕ : X ×X⟶ ½0,∞Þ is introduced by
the rule

ϕ A1,A2ð Þ =
1

if ℏ A1 tð Þ,A2 tð Þð Þ ≥ 0,

0 otherwise,

8><
>: ð27Þ

for each A1,A2 ∈X. Then, for every A1,A2 ∈X, we will get

ϕ A1,A2ð Þd G A1ð Þ,G A2ð Þð Þ ≤ ψ d A1,A2ð Þð Þ: ð28Þ

Thus, G is found as an ϕ-ψ-contraction. To verify that G
is ϕ-admissible, let A1,A2 ∈X be arbitrary and ϕðA1,A2Þ
≥ 1. By definition of ϕ, we have

ℏ A1 tð Þ,A2 tð Þð Þ ≥ 0: ð29Þ

Then, by ðP2Þ, ℏðGðA1ðtÞÞ,GðA2ðtÞÞÞ ≥ 0 is satisfied.
Again, the definition of ϕ gives ϕðGðA1Þ,GðA2ÞÞ ≥ 1. Thus,
G is ϕ-admissible.

On the other hand, the condition ðP2Þ guarantees the
existence of A0 ∈X. In this case, for each t ∈ I, ℏðA0ðtÞ,
GðA0ðtÞÞÞ ≥ 0 holds. Clearly, we get ϕðA0,GðA0ÞÞ ≥ 1.
These show that the conditions (1) and (2) of Theorem
4 are fulfilled.

Now, we assume that fAngn≥1 ⊆X such that An ⟶A

and for all n, ϕðAn,An+1Þ ≥ 1. By virtue of the definition of
the nonnegative function ϕ,

ℏ An tð Þ,An+1 tð Þð Þ ≥ 0: ð30Þ

Therefore, in the light of hypothesis ðP3Þ, we obtain

ℏ An tð Þ,A tð Þð Þ ≥ 0: ð31Þ

This indicates that ϕðAn,AÞ ≥ 1 for every n. This guar-
antees the condition (3) of Theorem 4. Ultimately, by using
Theorem 4, we conclude that there is a fixed point for G like
A∗ ∈X: This implies thatA∗ = ðP ∗, S∗,Q∗ÞT is interpreted
as a solution of the fractal-fractional model of second-hand
smoker (7), and the proof is completed.

In the sequel, we use the Leray-Schauder fixed point the-
orem to prove the existence result.

Theorem 6 (see [41]). Let X be a Banach space, E a bounded
convex closed set in X, and O ⊂ E an open set with 0 ∈O.
Then, for the continuous and compact mapping G : �O⟶
E, either

(P1) There is u ∈ �O such that u = GðuÞ or
(P2) There is u ∈ ∂O and 0 < μ < 1 such that u = μGðuÞ.
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Theorem 7. Suppose that W ∈ CðI ×X,XÞ and
(C1) There are φ ∈ L1ðI,ℝ+Þ and increasing function A

∈ Cð½0,∞Þ, ð0,∞ÞÞ such that for each t ∈ I and A ∈X,

W t,A tð Þð Þj j ≤ φ tð ÞA A tð Þj jð Þ: ð32Þ

(C2) There is α > 0 such that

α

A0 + νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �
φ∗
0A αð Þ > 1, ð33Þ

where φ∗
0 = supt∈IjφðtÞj.

Then, there is a solution for the fractal-fractional problem
(13), and so there is a solution for the given fractal-fractional
model of second-hand smokers (7) on I.

Proof. To begin the proof, consider G : X⟶X formulated
by (17) and the ball

Nε = A ∈X : Ak kX ≤ ε
� �

, ð34Þ

for some ε > 0. In the first place, the continuity of W yields
that of the operator G. Now, by (C1), we have

G A tð Þð Þj j ≤ A 0ð Þj j + ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1 W w,A wð Þð Þj jdw

≤A0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1φ wð ÞA A wð Þj jð Þdw

≤A0 +
νTν+ω−1B ν, ωð Þ

Γ ωð Þ φ∗
0A Ak kXð Þ

≤A0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0A εð Þ,

ð35Þ

for each A ∈Nε. In consequence, we obtain

GAk kX ≤A0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0A εð Þ <∞: ð36Þ

Hence, G is uniformly bounded on X. In the sequel, the
equicontinuity of G is investigated. To prove such a claim,
for every t, t∗ ∈ ½0, T� such that t < t∗ and for each A ∈Nε,
by letting

sup
t,Að Þ∈I×Nε

W t,A tð Þð Þj j =W∗ <∞, ð37Þ

we have

G A t∗ð Þð Þ − G A tð Þð Þj j

≤
ν

Γ ωð Þ
ðt∗
0
wν−1 t∗ −wð Þω−1W w,A wð Þð Þdw

����
−

ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W w,A wð Þð Þdw

����
≤
νW∗

Γ ωð Þ
ðt∗
0
wν−1 t∗ −wð Þω−1dw −

ðt
0
wν−1 t −wð Þω−1dw

����
����

≤
νW∗B ν, ωð Þ

Γ ωð Þ tν+ω−1∗ − tν+ω−1
� �

=
νW∗Γ νð Þ
Γ ν + ωð Þ tν+ω−1∗ − tν+ω−1

� �
,

ð38Þ

which is independent of A, and the right-hand side of (38)
converges to 0 as t∗ ⟶ t. Therefore, this implies that

G A t∗ð Þð Þ −G A tð Þð Þk kX ⟶ 0, ð39Þ

as t∗ ⟶ t. Thus, G is equicontinuous and is compact on Nε
by referring to the Arzelá–Ascoli thoerem. We found that
the conditions of Theorem 6 are valid on G. So, one of
(P1) or (P2) will be fulfilled. By (C2), set

O≔ A ∈X : Ak kX < α
� �

, ð40Þ

for some α > 0 via A0 + ðνTν+ω−1ΓðνÞ/Γðν + ωÞÞφ∗
0AðαÞ < α.

With the help of (C1) and by (36), we write

GAk kX ≤A0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0A Að Þ: ð41Þ

Now, we assume the existence of A ∈ ∂O and 0 < μ < 1
with A = μGðAÞ. For these selections of A and μ, and by
(41), one may write

α = Ak kX = μ GAk kX <A0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0A Ak kXð Þ

<A0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0A αð Þ < α,

ð42Þ

and this cannot occur. Therefore, the case (P2) does not hold
and G has a fixed–point in �O by Theorem 6 which is inter-
preted as a solution of the fractal-fractional model of second-
hand smoker (SHS) (7), and the proof is completed.

5. Uniqueness result

To prove the uniqueness of solution of the given fractal-
fractional model of second-hand smoker (7), we use the
Lipschitz property of functionsWi, ði = 1, 2, 3Þ given by (11).

Lemma 8. Consider the functions P , S ,Q,P ∗, S∗,Q∗ ∈M
≔ CðI,ℝÞ. Let
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(H1) kP k ≤ λ1, kSk ≤ λ2, and kQk ≤ λ3 for some
constants λ1, λ2, λ3 > 0.

Then, the functions W1,W2,W3 introduced by (11) are
satisfied the Lipschitz property with respect to the correspond-
ing components if w1,w2,w3 > 0, where

w1 = s + q1 + r + bλ2,w2

= bλ1 + r1λ3 + q1 + q2 + r2,w3

= r1λ2 + q3 + q1 + γ:

ð43Þ

Proof. We begin with the function W1. For each P ,P ∗ ∈
M≔ CðI,ℝÞ, we have

W1 t,P tð Þ, S tð Þ,Q tð Þð Þ −W1 t,P ∗ tð Þ, S tð Þ,Q tð Þð Þk k
= θ − s + q1 + rð ÞP tð Þ − bS tð ÞP tð Þð Þk

− θ − s + q1 + rð ÞP ∗ tð Þ − bS tð ÞP ∗ tð Þð Þk
≤ q1 + s + rð Þ + b S tð Þk k½ � P tð Þ −P ∗ tð Þk k
≤ q1 + s + rð Þ + bλ2½ � P tð Þ −P ∗ tð Þk k
=w1 P tð Þ −P ∗ tð Þk k:

ð44Þ

This shows that W1 is Lipschitz with respect to P with
the Lipschitz constant w1 > 0. For the function W2, for each
S , S∗ ∈M≔ CðI,ℝÞ, we have

W2 t,P tð Þ, S tð Þ,Q tð Þð Þ −W2 t,P tð Þ, S∗ tð Þ,Q tð Þð Þk k
= bP tð ÞS tð Þ + r1Q tð ÞS tð Þ − q1 + r2 + q2ð ÞS tð Þð Þk

− bP tð ÞS∗ tð Þ + r1Q tð ÞS∗ tð Þ − q1 + r2 + q2ð ÞS∗ tð Þð Þk
≤ b∥P tð Þ∥+r1∥Q tð Þ∥+ q1 + r2 + q2ð Þ½ �∥S tð Þ − S∗ tð Þ∥
≤ bλ1 + r1λ3 + q1 + r2 + q2½ �∥S tð Þ − S∗ tð Þ∥
=w2∥S tð Þ − S∗ tð Þ∥:

ð45Þ

This shows that W2 is Lipschitz with respect to S with
the Lipschitz constant w2 > 0. Now, for each Q,Q∗ ∈M≔ C
ðI,ℝÞ, we have

W3 t,P tð Þ, S tð Þ,Q tð Þð Þ −W3 t,P tð Þ, S tð Þ,Q∗ tð Þð Þk k
= r2S tð Þ − r1S tð ÞQ tð Þ − q3 + q1 + γð ÞQ tð Þð Þk

− r2S tð Þ − r1S tð ÞQ∗ tð Þ − q3 + q1 + γð ÞQ∗ tð Þð Þk
≤ r1 S tð Þk k + q3 + q1 + γ½ � Q tð Þ −Q∗ tð Þk k
≤ r1λ2 + q3 + q1 + γ½ � Q tð Þ −Q∗ tð Þk k
=w3 Q tð Þ −Q∗ tð Þk k:

ð46Þ

Accordingly, this shows thatW3 is Lipschitz with respect
to Q with the Lipschitz constant w3 > 0. Above results show
that three functions W1,W2,W3 are Lipschitzian with
respect to the corresponding component with the Lipschitz
constants w1,w2,w3 > 0, respectively.

According to the obtained results in Lemma 8, we inves-
tigate the uniqueness property for solution to the supposed
fractal-fractional system (7).

Theorem 9. Let (H1) holds. Then, the given fractal-fractional
model of second-hand smoker (7) has a unique solution if

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ wi < 1, i ∈ 1, 2, 3f g: ð47Þ

Proof. We assume that the conclusion of theorem is not
valid. In other words, there is another solution for the given
fractal-fractional model of second-hand smoker (7). Assume
that ðP ∗ðtÞ, S∗ðtÞ,Q∗ðtÞÞ is another solution with initial
conditions ðP 0, S0,Q0Þ such that by (16), we have

P ∗ tð Þ =P 0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W1 w,P ∗ wð Þ, S∗ wð Þ,Q∗ wð Þð Þdw,

S∗ tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W2 w,P ∗ wð Þ, S∗ wð Þ,Q∗ wð Þð Þdw,

Q∗ tð Þ =Q0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W3 w,P ∗ wð Þ, S∗ wð Þ,Q∗ wð Þð Þdw:

ð48Þ

Now, we can estimate

P tð Þ −P ∗ tð Þj j ≤ ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1

× W1 w,P wð Þ, S wð Þ,Q wð Þð Þj
−W1 w,P ∗ wð Þ, S∗ wð Þ,Q∗ wð Þð Þjdw

≤
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1w1 P −P ∗k kdw

≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ w1 P −P ∗k k,

ð49Þ

and so

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ w1

	 

P −P ∗k k ≤ 0: ð50Þ

The latter inequality is true if kP −P ∗k = 0, and accord-
ingly, P =P ∗. Similarly, from

S − S∗k k ≤ νTν+ω−1Γ νð Þ
Γ ν + ωð Þ w2 S − S∗k k, ð51Þ

we get

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ w2

	 

S − S∗k k ≤ 0: ð52Þ

7Journal of Function Spaces



This implies that kS − S∗k = 0 and so S = S∗. Also,

Q −Q∗k k ≤ νTν+ω−1Γ νð Þ
Γ ν + ωð Þ w3 Q −Q∗k k: ð53Þ

This gives

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ w3

	 

Q −Q∗k k ≤ 0: ð54Þ

Hence, Q =Q∗. Consequently, we get

P tð Þ, S tð Þ,Q tð Þð Þ = P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ: ð55Þ

This shows that the fractal-fractional model of second-
hand smoker (7) has a unique solution, and this completes
our proof.

6. Stability

Here, the stability notion in the sense of the Ulam–Hyers,
Ulam–Hyers–Rassias, and their generalized versions is
established for the system of fractal-fractional SHS-
model (7). For more details on the stability analysis, we
refer to [46, 47].

Definition 10. The fractal-fractionalmodel of SHS (7) is Ulam–
Hyers stable if there are 0 <MWi

∈ℝ, ði ∈ f1, 2, 3gÞ such that
for each εi > 0, and for each ðP ∗, S∗,Q∗Þ ∈X satisfying

FFPDω,ν
0,t P

∗ tð Þ −W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ�� �� < ε1,
FFPDω,ν

0,t S
∗ tð Þ −W2 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ�� �� < ε2,

FFPDω,ν
0,t Q

∗ tð Þ −W1 t,Q∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ�� �� < ε3,

8>>><
>>>:

ð56Þ

there is ðP , S ,QÞ ∈X satisfying the given fractal-fractional
model (7) such that

P ∗ tð Þ −P tð Þj j ≤MW1
ε1,

S∗ tð Þ − S tð Þj j ≤MW2
ε2,

Q∗ tð Þ −Q tð Þj j ≤MW3
ε3:

8>><
>>: ð57Þ

Definition 11. The given fractal-fractional model of second-
hand smoker (7) is generalized Ulam–Hyers stable if there are
MWi

∈ Cðℝ+,ℝ+Þ, ði ∈ f1, 2, 3gÞ with MWi
ð0Þ = 0 such that

for each εi > 0 and for each ðP ∗, S∗,Q∗Þ ∈X satisfying
the inequalities (56), there is ðP , S ,QÞ ∈X as a solution
of the given fractal-fractional model of second-hand smoker
(7) such that

P ∗ tð Þ −P tð Þj j ≤MW1
ε1ð Þ,

S∗ tð Þ − S tð Þj j ≤MW2
ε2ð Þ,

Q∗ tð Þ −Q tð Þj j ≤MW3
ε3ð Þ:

8>><
>>: ð58Þ

Note that Definition 11 is derived from Definition 10.

Remark 12. Notice that ðP ∗, S∗,Q∗Þ ∈X is a solution for
(56) if and only if there are ℏ1, ℏ2, ℏ3 ∈ Cð½0, T�,ℝÞ (depend-
ing on P ∗, S∗,Q∗, respectively) such that for each t ∈ I,

ℏi tð Þj j < εi: ð59Þ

(1) We have

FFPD
ω,ν
0,t P

∗ tð Þ −W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ + ℏ1 tð Þ,
FFPD

ω,ν
0,t S

∗ tð Þ −W2 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ + ℏ2 tð Þ,
FFPD

ω,ν
0,t Q

∗ tð Þ −W3 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ + ℏ3 tð Þ,

8>>><
>>>:

ð60Þ

Definition 13. The given fractal-fractional model of second-
hand smoker (7) is Ulam–Hyers–Rassias stable with respect
to functionsΦi, ði ∈ f1, 2, 3gÞ if there are 0 <MðWi ,ΦiÞ ∈ℝ such
that for each εi > 0 and for each ðP ∗, S∗,Q∗Þ ∈X satisfying

FFPD
ω,ν
0,t P

∗ tð Þ −W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ
��� ��� < ε1Φ1 tð Þ,
FFPD

ω,ν
0,t S

∗ tð Þ −W2 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ
��� ��� < ε2Φ2 tð Þ,
FFPD

ω,ν
0,t Q

∗ tð Þ −W3 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ
��� ��� < ε3Φ3 tð Þ,

8>>>>><
>>>>>:

ð61Þ

there is ðP , S ,QÞ ∈X as a solution of the given fractal-
fractional model of second-hand smoker (7) such that

P ∗ tð Þ −P tð Þj j ≤ ε1M W1,Φ1ð ÞΦ1 tð Þ,∀t ∈ I,
S∗ tð Þ − S tð Þj j ≤ ε2M W2,Φ2ð ÞΦ2 tð Þ,∀t ∈ I,
Q∗ tð Þ −Q tð Þj j ≤ ε3M W3,Φ3ð ÞΦ3 tð Þ,∀t ∈ I:

8>><
>>: ð62Þ

Definition 14. The given fractal-fractional model of second-
hand smoker (7) is generalized Ulam–Hyers–Rassias stable
with respect to functions Φi if there are 0 <MðWi ,ΦiÞ ∈ℝ such
that for each ðP ∗, S∗,Q∗Þ ∈X satisfying
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FFPD
ω,ν
0,t P

∗ tð Þ −W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ
��� ��� <Φ1 tð Þ,
FFPD

ω,ν
0,t S

∗ tð Þ −W2 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ
��� ��� <Φ2 tð Þ,
FFPD

ω,ν
0,t Q

∗ tð Þ −W3 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ
��� ��� <Φ3 tð Þ,

8>>>>><
>>>>>:

ð63Þ

there is ðP , S ,QÞ ∈X as a solution of the given fractal-
fractional model of second-hand smoker (7) such that

P ∗ tð Þ −P tð Þj j ≤M W1,Φ1ð ÞΦ1 tð Þ,
S∗ tð Þ − S tð Þj j ≤M W2,Φ2ð ÞΦ2 tð Þ,
Q∗ tð Þ −Q tð Þj j ≤M W3,Φ3ð ÞΦ3 tð Þ:

8>><
>>: ð64Þ

Note that Definition 14 is derived fromDefinition 13. Also,
if we take ΦiðtÞ = 1, then Definition 13 gives the Ulam-Hyers
property for the stability of solutions.

Remark 16. Notice that ðP ∗, S∗,Q∗Þ ∈X is a solution for
(61) if and only if there are ℏ1, ℏ2, ℏ3 ∈ Cð½0, T�,ℝÞ (depend-
ing on P ∗, S∗,Q∗, respectively) such that ∀t ∈ I,

ℏi tð Þj j < εiΦi Tð Þ: ð65Þ

(i) We have

FFPDω,ν
0,t P

∗ tð Þ =W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ + ℏ1 tð Þ,
FFPDω,ν

0,t S
∗ tð Þ =W2 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ + ℏ2 tð Þ,

FFPDω,ν
0,t Q

∗ tð Þ =W3 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ + ℏ3 tð Þ:

8>><
>>:

ð66Þ

The Ulam–Hyers stability is discussed here to the given
fractal-fractional model of second-hand smoker (7).

Theorem 17. If the assumption (H1) is fulfilled, then the
given fractal-fractional model of second-hand smoker (7) is
Ulam–Hyers stable on I≔ ½0, T� and also is generalized
Ulam–Hyers stable such that

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ wi < 1, i ∈ 1, 2, 3f g, ð67Þ

where wi is given by (43).

Proof. Let ε1 > 0 and P ∗ ∈M be arbitrary such that

FFPD
ω,ν
0,t P

∗ tð Þ −W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ
��� ��� < ε1: ð68Þ

Then, from Remark 1, we can find a function ℏ1ðtÞ
satisfying

FFPD
ω,ν
0,t P

∗ tð Þ =W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ + ℏ1 tð Þ, ð69Þ

with jℏ1ðtÞj ≤ ε1. It follows that

P ∗ tð Þ =P 0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W1 w,P ∗ wð Þ, S∗ wð Þ,Q∗ wð Þð Þdw

+
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1ℏ1 wð Þdw:

ð70Þ

By Theorem 9, let P ∈M be the unique solution of the
given fractal-fractional model of second-hand smoker (7).
Then, P ðtÞ is defined as

P tð Þ =P 0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W1 w,P wð Þ, S wð Þ,Q wð Þð Þdw:

ð71Þ

Therefore,

P ∗ tð Þ −P tð Þj j ≤ ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1 ℏ1 wð Þj jdw

+
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1

× W1 w,P ∗ wð Þ, S∗ wð Þ,Q∗ wð Þð Þj
−W1 w,P wð Þ, S wð Þ,Q wð Þð Þjdw

≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ε1 +

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ w1 P ∗ −Pk k:

ð72Þ

Hence, we get

P ∗ −Pk k ≤ νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �
ε1

1 − νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �
w1

: ð73Þ

If we let MW1
= ðνTν+ω−1ΓðνÞÞ/ðΓðν + ωÞÞ/ð1 − ðν

Tν+ω−1ΓðνÞÞ/ðΓðν + ωÞÞw1Þ, then ∥P ∗ −P ∥≤MW1
ε1. Simi-

larly, we have

S∗ − Sk k ≤MW2
ε2, Q∗ −Qk k ≤MW3

ε3, ð74Þ

where

MWi
=

νTν+ω−1Γ νð Þ/Γ ν + ωð Þ
1 − νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �

wi

, i ∈ 2, 3f gð Þ: ð75Þ
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Hence, the Ulam–Hyers stability of the given SHS-
model (7) is fulfilled. Next, by assuming

MWi
εið Þ = νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �

εi
1 − νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �

wi

, i ∈ 2, 3f gð Þ,

ð76Þ

with MWi
ð0Þ = 0, clearly, the generalized Ulam–Hyers

stability is proved.

Theorem 18. The condition (H1) is assumed to be held, and
ðH ′Þ There are increasing functions Φi ∈ Cð½0, T�,ℝ+Þ,

ði ∈ f1, 2, 3gÞ, and ΛΦi
> 0 such that

FFPD
ω,ν
0,t Φi tð Þ <ΛΦi

Φi tð Þ, i ∈ 1, 2, 3f gð Þ,∀t ∈ I: ð77Þ

Then, the given fractal-fractional model of second-hand
smoker (7) is the Ulam–Hyers–Rassias and generalized
Ulam–Hyers–Rassias stable.

Proof. For each ε1 > 0 and for each P ∗ ∈M satisfying

FFPD
ω,ν
0,t P

∗ tð Þ −W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ
��� ��� < ε1Φ1 tð Þ,

ð78Þ

we can find a function ℏ1ðtÞ satisfying

FFPD
ω,ν
0,t P

∗ tð Þ =W1 t,P ∗ tð Þ, S∗ tð Þ,Q∗ tð Þð Þ + ℏ1 tð Þ, ð79Þ

with jℏ1ðtÞj ≤ ε1Φ1ðtÞ. It gives

P ∗ tð Þ =P 0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W1 w,P ∗ wð Þ, S∗ wð Þ,Q∗ wð Þð Þdw

+
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1ℏ1 wð Þdw:

ð80Þ

By Theorem 9, let P ∈M be the unique solution of the
given fractal-fractional model of second-hand smoker (7).
Then, P ðtÞ is given by

P tð Þ =P 0 +
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1W1 w,P wð Þ, S wð Þ,Q wð Þð Þdw:

ð81Þ

Then, by (77),

P ∗ tð Þ −P tð Þj j ≤ ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1 ℏ1 wð Þj jdw

+
ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1

× W1 w,P ∗ wð Þ, S∗ wð Þ,Q∗ wð Þð Þj
−W1 w,P wð Þ, S wð Þ,Q wð Þð Þjdw

≤
ε1ν

Γ ωð Þ
ðt
0
wν−1 t −wð Þω−1Φ1 wð Þdw

+
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ w1 P ∗ −Pk k

≤ ε1ΛΦ1
Φ1 tð Þ + νTν+ω−1Γ νð Þ

Γ ν + ωð Þ w1 P ∗ −Pk k:

ð82Þ

Accordingly, it gives

P ∗ −Pk k ≤ ε1ΛΦ1
Φ1 tð Þ

1 − νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �
w1

: ð83Þ

If we let

M W1,Φ1ð Þ =
ΛΦ1

1 − νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �
w1

, ð84Þ

then kP ∗ −P k ≤ ε1MðW1,Φ1ÞΦ1ðtÞ. Similarly, we have

S∗ − Sk k ≤ ε2M W2,Φ2ð ÞΦ2 tð Þ, Q∗ −Qk k ≤ ε3M W3,Φ3ð ÞΦ3 tð Þ,
ð85Þ

where

M Wi ,Φið Þ =
ΛΦi

1 − νTν+ω−1Γ νð Þ/Γ ν + ωð Þ� �
wi

, i ∈ 2, 3f gð Þ:

ð86Þ

Hence, the given fractal-fractional model of second-hand
smoker (7) is stable in the sense of Ulam–Hyers–Rassias.
Along with this, by setting εi = 1, ði ∈ f1, 2, 3gÞ, the men-
tioned fractal-fractional model of second-hand smoker (7)
is generalized Ulam–Hyers–Rassias stable.

7. Steady-State Analysis and Local Stability

Here, we follow our investigation for obtaining equilibrium
points of the supposed fractal-fractional system (7).

7.1. Disease-free equilibrium point. Define the following
homogeneous system of equations:

FFPD
ω,ν
0,t P tð Þ = FFPD

ω,ν
0,t S tð Þ = FFPD

ω,ν
0,t Q tð Þ = 0, ð87Þ

or equivalently
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θ − s + q1 + rð ÞP tð Þ − bS tð ÞP tð Þ = 0,

bP tð ÞS tð Þ + r1Q tð ÞS tð Þ − q1 + q2 + r2ð ÞS tð Þ = 0,

r2S tð Þ − r1S tð ÞQ tð Þ − q3 + q1 + γð ÞQ tð Þ = 0:

8>><
>>:

ð88Þ

In this case, the (disease) smoke-free equilibrium point
E0 of the model of second-hand smoker (7) under no infec-
tion when S0 = 0 and Q0 = 0 is presented by

E0 =
θ

s + q1 + r
, 0, 0

� �
: ð89Þ

7.2. Basic Reproduction Number. Here, we calculate the basic
reproduction number with the help of the next generation
matrix approach [48]. As we know, this quantity denoted
by R0 is considered as the expected value of the rate of infec-
tion in each time unit. The infection happens in the suscep-
tible individuals due to the infected individuals, and also, the
existence of the endemic equilibrium point to the fractal-
fractional second-hand smoker model (7) depends on the
value of R0. To do this, we consider the infected compart-
ments SðtÞ and QðtÞ. By assuming Y = ðS ,QÞT and from
the infected compartments, we have two vectors say f and
v in which we have nonlinear terms in f and the negative
of linear terms in v, satisfying

dY
dt

����
E0
= f − v, ð90Þ

where

f =

bSP

0

0

2
664

3
775, v =

q1 + q2 + r2ð ÞS
−θ + s + q1 + rð ÞP + bSP

−r2S + r1SQ + q3 + q1 + γð ÞQ

2
664

3
775:

ð91Þ

The Jacobian matrices of both matrices f and v are
given by

J f½ � =
bS bP 0

0 0 0

0 0 0

2
6664

3
7775, J v½ �

=

0 q1 + q2 + r2ð Þ 0

s + q1 + rð ÞP + bS bP 0

0 −r2 + r1Q r1S + q3 + q1 + γð Þ

2
6664

3
7775:

ð92Þ

Therefore, the Jacobian matrices of both matrices f
and v at disease-free equilibrium point E0 obtained as
(89) are given by

J f½ � E0 =

0
bθ

s + q1 + r
0

0 0 0

0 0 0

2
666664

3
777775, J v½ �

�����������

�����������
E0

=

0 q1 + q2 + r2ð Þ 0

θ
bθ

s + q1 + r
0

0 −r2 q3 + q1 + γð Þ

2
666664

3
777775:

ð93Þ

On the other side,

J−1 v½ ���E0 =
−

b
s + q1 + rð Þ q1 + q2 + r2ð Þ

1
θ

0

1
q1 + q2 + r2

0 0

r2
q1 + q2 + r2ð Þ q3 + q1 + γð Þ 0

−1
q3 + q1 + γ

2
666666664

3
777777775
:

ð94Þ

By some simple calculations, we get

J f½ � E0 · J−1 v½ �
�� ��

E0 =

bθ
s + q1 + rð Þ q1 + q2 + r2ð Þ 0 0

0 0 0

0 0 0

2
66664

3
77775:

ð95Þ

In the final step, the spectral radius of the next gener-
ation matrix ðJ½ f �jE0 · J−1½v�jE0Þ is the basic reproduction
number R0 which is given by

R0 = ρ J f½ � E0 · J−1 v½ ��� ��
E0

 �
=

bθ
s + q1 + rð Þ q1 + q2 + r2ð Þ :

ð96Þ

In Figures 1–4, we plot the dynamics of R0 by 3D
plots and the contours of the basic production number
versus different parameters.

7.3. Endemic Equilibrium Point. As we know, the quantity R0
is a criterion to measure the transmission potential of a
infectious disease during a specific time. Whenever R0 > 1,
then the fractal-fractional second-hand smoker model (7)
involves an endemic equilibrium point E∗ = ðP ∗, S∗,Q∗Þ.
To find this point, we must solve the homogeneous system
of equation (88) by considering this claim that all state
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functions P ðtÞ, SðtÞ,QðtÞ are nonzero. Therefore, from the
second equation of (88) and by assuming SðtÞ ≠ 0, we get

bP + r1Q = q1 + q2 + r2: ð97Þ

Now, we rewrite the first and third equations of (88) as

θ − s + q1 + rð Þ + bS½ �P = 0,

r2S − r1S + q3 + q1 + γð Þ½ �Q = 0,

(
ð98Þ

and we derive the following relations

P =
θ

s + q1 + rð Þ + bS
,Q =

r2S
r1S + q3 + q1 + γð Þ : ð99Þ

We substitute above relations into (97) and by assuming
the constants K1 = s + q1 + r > 0, K2 = q1 + q2 + r2 > 0 and
K3 = q3 + q1 + γ > 0, we obtain

bθ
K1 + bS

+
r1r2S

r1S + K3
− K2 = 0: ð100Þ
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Figure 1: The dynamics of R0 by 3D plot and the contour of R0 vs. b and r2, respectively.
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We have

bθ r1S + K3ð Þ + r1r2S K1 + bSð Þ − K2 K1 + bSð Þ r1S + K3ð Þ
K1 + bSð Þ r1S + K3ð Þ = 0:

ð101Þ

Since the denominator of the above equation is
nonzero, hence

bθ r1S + K3ð Þ + r1r2S K1 + bSð Þ − K2 K1 + bSð Þ r1S + K3ð Þ = 0:
ð102Þ

On the other hand, by the new notation, we know that
R0 = bθ/K1K2 and so K1K2R0 = bθ. Thus, from (102) and
by some simple calculations, we derive a quadratic equation
with respect to S as

r1r2b − r1bK2ð ÞS2 + r1r2K1 − bK2K3 + r1K1K2 R0 − 1ð Þð ÞS
+ K1K2K3 R0 − 1ð Þ = 0:

ð103Þ

Set Y1 = r1br2 − r1bK2, and
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Figure 2: The dynamics of R0 by 3D plot and the contour of R0 vs. r and r1, respectively.
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Y2 = r1r2K1 − bK2K3 + r1K1K2 R0 − 1ð Þ, ð104Þ

and Y3 = K1K2K3ðR0 − 1Þ. Consequently, we get

S =
−Y2 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
2 − 4Y1Y3

p
2Y1

: ð105Þ

Since r1br2 < r1bK2, thus Y1 < 0 and if R0 > 1, then

S∗ =
−Y2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
2 − 4Y1Y3

p
2Y1

: ð106Þ

Simply, P ∗ and Q∗ can be obtained by inserting the
equation (106) into equation (99), and therefore,

P ∗ =
θ

s + q1 + rð Þ + b −Y2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
2 − 4Y1Y3

p
/2Y1

 � , ð107Þ

Q∗ =
r2 −Y2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
2 − 4Y1Y3

p
/2Y1

 �
r1 −Y2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
2 − 4Y1Y3

p
/2Y1

 �
+ q3 + q1 + γð Þ

:

ð108Þ
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Figure 3: The dynamics of R0 by 3D plot and the contour of R0 vs. q1 and q2, respectively.
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Theorem 19. If R0 > 1 or R0 = 1 and r1r2K1 > bK2K3, then
there exists E∗ = ðP ∗, S∗,Q∗Þ as the endemic equilibrium
point, where P ∗, S∗, and Q∗ are as (106)–(108). Also, If R0
< 1, then this point does not exist.

Proof. If R0 > 1, then by the above discussions, E∗ = ðP ∗,
S∗,Q∗Þ exists. If R0 = 1, then Y2 = r1r2K1 − bK2K3 and Y3
= 0. In this case, we have

S =
−Y2 − Y2j j

2Y1
: ð109Þ

On the other side, we know that Y1 ≠ 0. Hence, if Y2 ≤ 0,
then S = 0 and if Y2 > 0, then S < 0. These show the exis-
tence of the endemic equilibrium point E∗.

On the other side, R0 < 1 gives −Y2 > 0 and Y3 < 0. Thus,
either S is a complex number or a negative real number, and
E∗ does not exist.

In Figures 5 and 6, we show the stability curves of P , S ,
and Q at endemic equilibrium point E∗ for some values of
the fractal and fractional orders.

7.4. Local Asymptotic Stability Analysis. In this place, we aim
to investigate the local asymptotic stability of the smoke-free
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Figure 4: The dynamics of R0 by 3D plot and the contour of R0 vs. θ and q1, respectively.
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Figure 5: The stability curves of P ðtÞ and SðtÞ at E∗ for ω = 0:97 and ν = 0:5:
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point E0 found in (89) in relation to the fractal-fractional
model (7) of second-hand smokers. First, we obtain the Jaco-
bian matrix of the fractal-fractional system (7) as

J =

− s + q1 + rð Þ − bS −bP 0

bS bP + r1Q − q1 + q2 + r2ð Þ r1S

0 r2 − r1Q −r1S − q3 + q1 + γð Þ

2
664

3
775:

ð110Þ

Theorem 20. The fractal-fractional model (7) of second-
hand smokers is locally asymptotically stable at smoke-free
equilibrium point E0 if all roots of the characteristic polyno-
mial det ðJðE0Þ − λIÞ = 0 are negative or R0 < 1; otherwise,
it is unstable.

Proof. In view of (110), the Jacobian matrix JðE0Þ of the
model (7) at smoke-free equilibrium point E0 is given as

J E0� �
=

− s + q1 + rð Þ −bθ
s + q1 + r

0

0
bθ

s + q1 + r
− q1 + q2 + r2ð Þ 0

0 r2 − q3 + q1 + γð Þ

2
6666664

3
7777775
:

ð111Þ

By considering the Jacobian matrix (111) and by det ðJ
ðE0Þ − λIÞ = 0, the characteristic polynomial becomes

λ + s + q1 + rð Þ λ + q3 + q1 + γð Þ λ −
bθ

s + q1 + r
− q1 + q2 + r2ð Þ

� �� �
= 0:

ð112Þ

The roots of the above polynomial are

λ1 = − s + q1 + rð Þ, λ2 = − q3 + q1 + γð Þ, λ3 =
bθ

s + q1 + r
− q1 + q2 + r2ð Þ:

ð113Þ

Since all parameters are assumed to be positive, we
clearly have λ1 < 0 and λ2 < 0. On the other hand, if R0 < 1,
then R0 − 1 < 0. So, we can write

bθ
s + q1 + rð Þ q1 + q2 + r2ð Þ < 1: ð114Þ

Hence,

bθ
s + q1 + rð Þ < q1 + q2 + r2ð Þ: ð115Þ

Consequently, λ3 = bθ/ðs + q1 + rÞ − ðq1 + q2 + r2Þ < 0.
Thus, all of roots are negative, and so the fractal-fractional
second-hand smoker model (7) is locally asymptotically
stable around the smoke-free equilibrium point E0. This
completes the proof.
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Figure 6: The stability curves of QðtÞ at E∗ for ω = 0:97 and ν = 0:5.
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7.5. Sensitivity Analysis. To find out how sensitive the
parameters in each model are to the transmission of infec-
tions or diseases, the authors use a criterion introduced by
Chitnis et al. [49]. Here, to obtain the sensitivity of R0 in
terms of each of its parameters, we compute the partial
derivative with respect to every parameter in the reproduc-
tion number. In other words, if p is an arbitrary parameter,
then the sensitivity index of R0 versus p is calculated by

S
R0
p =

p
R0

∂R0
∂p

	 

: ð116Þ

Now, according to the above relation, we have

S
R0
b =

b
R0

θ

q1 + r2 + q2ð Þ q1 + r + sð Þ
	 


> 0, ð117Þ

S
R0
θ =

θ

R0

b
q1 + r2 + q2ð Þ q1 + r + sð Þ

	 

> 0, ð118Þ

SR0
s =

s
R0

−
b θ

q1 + r2 + q2ð Þ q1 + r + sð Þ2
" #

< 0, ð119Þ

SR0
q1

=
q1
R0

−
b θ

q1 + q2 + r2ð Þ q1 + r + sð Þ2 −
b θ

q1 + r2 + q2ð Þ2 q1 + r + sð Þ

" #
< 0,

ð120Þ

SR0
r =

r
R0

−
b θ

q1 + r2 + q2ð Þ q1 + r + sð Þ2
" #

< 0, ð121Þ

SR0
q2

=
q2
R0

−
b θ

q1 + r2 + q2ð Þ2 q1 + r + sð Þ

" #
< 0, ð122Þ

SR0
r2

=
r2
R0

−
b θ

q1 + r2 + q2ð Þ2 q1 + r + sð Þ

" #
< 0: ð123Þ

The numeric values for sensitivity indices (120) are given
in Table 1.

In Figure 7, when the sign of sensitivity index is positive,
then each increase (decrease) in the value of parameters
(assuming the remaining parameters to be constant)
increases (decreases) the value of R0. The negative sign in
this index gives the inverse result for R0. In the sensitivity
analysis of our second-hand smoker model (7), it is observed
that R0 increases by increasing the values of b, θ and
decreases by increasing the values of s, q1, r, q2, r2. For exam-
ple, SR0

q1
= −0:0061 means that an increase in q1 by 10%

decreases R0 by 0:061%. Therefore, to reduce the spread of
infections, those parameters having negative sensitivity
indices must be minimized in the environment.

8. Numerical scheme

In this section, we describe the numerical scheme in relation
to the fractal-fractional model of second-hand smoker (7).

For this, we have taken help from the technique regarding
two-step Lagrange polynomials known as the fractional
Adams-Bashforth (AB) method [50]. To begin this process,
we present the numerical method of fractal-fractional inte-
gral equation (16) using a new approach at tn+1. In other
words, we discretize the mentioned equation (16) for t =
tn+1, and we have

P tn+1ð Þ =P 0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −wð Þω−1H 1 wð Þ dw,

S tn+1ð Þ = S0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −wð Þω−1H 2 wð Þ dw,

Q tn+1ð Þ =Q0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −wð Þω−1H 3 wð Þ dw,

8>>>>>>>>><
>>>>>>>>>:

ð124Þ

where

H 1 wð Þ =wν−1W1 w,P wð Þ, S wð Þ,Q wð Þð Þ,
H 2 wð Þ =wν−1W2 w,P wð Þ, S wð Þ,Q wð Þð Þ,
H 3 wð Þ =wν−1W3 w,P wð Þ, S wð Þ,Q wð Þð Þ:

8>><
>>: ð125Þ

By approximating above integrals, we get

P tn+1ð Þ =P 0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −wð Þω−1H 1 wð Þ dw,

S tn+1ð Þ = S0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −wð Þω−1H 2 wð Þ dw,

Q tn+1ð Þ =Q0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −wð Þω−1H 3 wð Þ dw:

8>>>>>>>>>><
>>>>>>>>>>:

ð126Þ

In the sequel, we approximate the functions H 1ðwÞ,H 2
ðwÞ,H 3ðwÞ introduced by (125), on the interval ½tl, tl+1� via

Table 1: Sensitivity of the R0 versus proposed parameters.

Parameter S Value Parameter S Value

b S
R0
b +1.0000 θ S

R0
θ +1.0000

s SR0
s -9.1621e-05 q1 SR0

q1 -0.0061

r SR0
r -0.0366 q2 SR0

q2 -0.0018

r2 SR0
r2 -4.0813e-04
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two-step Lagrange interpolation polynomials with the step
size h = tl − tl−1 as

Then, we have

By evaluating above integrals directly, the numerical
solutions of the given fractal-fractional model of second-
hand smoker (7) are given by

b s r r2 q1 q2
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Figure 7: Global sensitivity analysis of model (7) based on R0 (96) and sensitivity analysis (120).

H∗
1,l wð Þ ≃ w − tl−1

h
tν−1l W1 wl ,P l , S l ,Qlð Þ − w − tl

h
tν−1l−1 W1 wl−1,P l−1, S l−1,Ql−1ð Þ,

H∗
2,l wð Þ ≃ w − tl−1

h
tν−1l W2 wl ,P l , S l ,Qlð Þ − w − tl

h
tν−1l−1 W2 wl−1,P l−1, S l−1,Ql−1ð Þ,

H∗
3,l wð Þ ≃ w − tl−1

h
tν−1l W3 wl ,P l, S l ,Qlð Þ − w − tl

h
tν−1l−1 W3 wl−1,P l−1, S l−1,Ql−1ð Þ:

ð127Þ

P tn+1ð Þ =P 0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −wð Þω−1H∗
1,l wð Þ dw,

S tn+1ð Þ = S0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −wð Þω−1H∗
2,l wð Þ dw,

Q tn+1ð Þ =Q0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −wð Þω−1H∗
3,l wð Þ dw:

8>>>>>>>>>><
>>>>>>>>>>:

ð128Þ

P n+1 =P 0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l W1 tl,P l , S l,Qlð ÞY n,lð Þ − tν−1l−1 W1 tl−1,P l−1, S l−1,Ql−1ð ÞŶ n,lð Þ
h i

,

Sn+1 = S0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l W2 tl ,P l , S l ,Qlð ÞY n,lð Þ − tν−1l−1 W2 tl−1,P l−1, S l−1,Ql−1ð ÞŶ n,lð Þ
h i

,

Qn+1 =Q0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l W3 tl ,P l , S l ,Qlð ÞY n,lð Þ − tν−1l−1 W3 tl−1,P l−1, S l−1,Ql−1ð ÞŶ n,lð Þ
h i

,

ð129Þ
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Figure 8: The simulation of the functions P ðtÞ and SðtÞ during the time t for different fractional orders ω = 1,0:99,0:97,0:95,0:93,0:91 and
fractal dimension ν = 0:99.
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Figure 9: (a) The simulation of the function QðtÞ during the time t for different fractional orders ω = 1,0:99,0:97,0:95,0:93,0:91 and fractal
dimension ν = 0:99. (b) The simulation of the function P ðtÞ during the time t for different fractal dimensions ν = 1,0:9,0:8,0:7,0:6,0:5 and
fractional order ω = 0:97.
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Figure 10: The simulation of the functions SðtÞ and QðtÞ during the time t for different fractal dimensions ν = 1,0:9,0:8,0:7,0:6,0:5 and
fractional order ω = 0:97.
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where

Y n,lð Þ = n + 1 − lð Þω n − l + 2 + ωð Þ − n − lð Þω n − l + 2 + 2ωð Þ,
Ŷ n,lð Þ = n + 1 − lð Þω+1 − n − lð Þω n − l + 1 + ωð Þ,

ð130Þ

where ω is the fractional order of the given fractal-fractional
system (7).

9. Simulations

In this section, we simulate and discuss the behavior of the
model based on some parameters provided by [45].
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Figure 11: The simulation of the functions P ðtÞ and SðtÞ during the time t for fractal dimensions and fractional orders ω = ν =
1,0:98,0:95,0:92.
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According to this source, we take θ = 0:3, s = 0:01, q1 =
0:035, r = 0:2, b = 0:9001, r1 = 0:009, q2 = 0:01, r2 = 0:01,
q3 = 0:1, and γ = 0:1. Finally, the initial values for state
functions are assumed as P ð0Þ = 11, Sð0Þ = 9,Qð0Þ = 30:
In different figures, we will show the behaviors of three
state functions P , S ,Q by assuming different values for
the fractal order ν = 1, 0:9, 0:8, 0:7, 0:6, 0:5 and fractional
orders ω = 1:00, 0:99, 0:97, 0:95, 0:93, 0:91.

More precisely, in Figure 8(a), we see the simulation for
different fractional orders ω = 1:00,0:99,0:97,0:95,0:93,0:91
and fractal order ν = 0:99 of the function P ðtÞ in which
the rate of population who addicts to tobacco increases with
time t, while in Figure 8(b), the simulation of the function
SðtÞ for the same values of fractal dimension ν = 0:99 and
fractional orders ω = 1:00,0:99,0:97,0:95,0:93,0:91 shows an
increase of addiction to tobacco in the population SðtÞ by
increasing the time t.

In Figure 9(a), we see the simulation for fractional orders
ω = 1:00,0:99,0:97,0:95,0:93,0:91 and fractal order ν = 0:99
of the function QðtÞ in which the rate of population who
quitting tobacco decreases, while in Figure 9(b), the simula-
tion of the function P ðtÞ for different fractal orders ν =
1,0:9,0:8,0:7,0:6,0:5 and fractional order ω = 0:97 shows an
increase in addiction to tobacco in the population at risk.

In Figure 10, we see the simulation for different frac-
tal orders ν = 1,0:9,0:8,0:7,0:6,0:5 of the functions SðtÞ
and QðtÞ for fractional order ω = 0:97 in which the
addiction to tobacco increases but the population quitting
tobacco decreases.

On the other hand, to see the effect of fractional order
and fractal dimension simultaneously, we choose different
values for these two parameters as ω = ν = 1,0:98,0:95,0:92.
In Figure 11(a), the simulation of the function P ðtÞ and
(Figure 11(b)) the simulation of the function SðtÞ during

the time t are plotted. We see that the change in the behavior
of curves when the fractal dimension ν and fractional order
ω decreases, then the slope of curves increases and finally,
the curves reach to a stable status. We see similar behavior
for the function P ðtÞ in Figure 12.

10. Conclusions

Due to the destructive effects of smoking and its resulting
smoke on the health of the people in the community, in
the present manuscript, we designed a mathematical model
of secondhand smokers (SHS) based on three different com-
partments of the smoker and nonsmoker population and ana-
lyzed it numerically and analytically. Tomodel this system,we
applied new derivatives entitled the fractal-fractional deriva-
tives with power-law-type kernel. The existence section was
proved by ϕ-ψ-contractions and compact operators, and the
Banach principle for usual contractions was used for proving
the uniqueness result. The stability notionwas investigated for
solutions of the fractal-fractional SHS-model (7). The steady-
state analysis including calculation of equilibrium points and
basic reproduction number R0 was done, and then we com-
pared the sensitivity of the fractal-fractional SHS-system with
each parameter. For numerical simulation, the Adams-
Bashforth (AB) method was used and simulated the graphs
with the help of real data. The effects of each parameter on
the overall result of the calculations showed the increase or
decrease in the harmful effect of cigarette smoke on people’s
health. Along with these results, we see accurate and better
simulations via the fractal-fractional operators. Our graphs
and data showed that our analysis on real data for different
fractal dimensions and fractional orders yield similar results
in comparison to classical operators. In the next works, we

𝜔 = 𝜈 = 1
𝜔 = 𝜈 = 0.98

𝜔 = 𝜈 = 0.95
𝜔 = 𝜈 = 0.92

Fractal-fractional order

0 50 100 150
Time (t)

0

5

10

15

20

25

30

Q
 (t

)

10 20 30
4

6

8

Zoom

Figure 12: The simulation of the function QðtÞ during the time t for fractal dimensions and fractional orders ω = ν = 1,0:98,0:95,0:92.
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can conduct comparative research on different fractal-
fractional with exponential decay and power-law type kernels.
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