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An intuitionistic fuzzy set is one of the efficient generalizations of a fuzzy set for dealing with vagueness/uncertainties in
information. Under this environment, in this manuscript, we familiarize a new type of extensions of fuzzy sets called square-
root fuzzy sets (briefly, SR-Fuzzy sets) and contrast SR-Fuzzy sets with intuitionistic fuzzy sets and Pythagorean fuzzy sets. We
discover the essential set of operations for the SR-Fuzzy sets along with their several properties. In addition, we define a score
function for the ranking of SR-Fuzzy sets. To study multiattribute decision-making problems, we introduce four new weighted
aggregated operators, namely, SR-Fuzzy weighted average (SR-FWA) operator, SR-Fuzzy weighted geometric (SR-FWQG)
operator, SR-Fuzzy weighted power average (SR-FWPA) operator, and SR-Fuzzy weighted power geometric (SR-FWPG)
operator over SR-Fuzzy sets. We apply these operators to select the top-rank university and show how we can choose the best
option by comparing the aggregate outputs through score values.

1. Introduction

The idea of fuzzy sets was proposed by Zadeh [1] to handle
the imprecise information. The notion of rough set theory
was originally introduced by Pawlak [2], and it was applied
to many different domains (see [3-5]). The concept of soft
sets was first defined by Molodtsov [6] as a general mathe-
matical tool for dealing with uncertain objects. The merging
between fuzzy sets and some uncertainty approaches such as
rough sets and soft sets have been discussed in [7-9].

In several real-life situations, the degree of nonmember-
ship is not obtained from the degree of membership. In these
cases, the notion of intuitionistic fuzzy sets defined by Ata-
nassov [10] worked very well. It is one of the interesting gen-
eralizations of fuzzy sets with best applicability. In various
fields, the applications of intuitionistic fuzzy sets appear,

including optimization problems, medical diagnosis, and
decision-making [11-15]. However, there are numerous sit-
uations where the decision-maker may supply the degrees of
membership and nonmembership of a specific attribute in
such a way that their sum is greater than one. Therefore,
Yager [16] put forward the concept of Pythagorean fuzzy
sets which is a generalization of intuitionistic fuzzy sets,
and it is a more powerful tool to solve uncertain problems.
Ibrahim et al. [17] defined a new generalization of Pythago-
rean fuzzy sets called (3, 2)-Fuzzy sets. The main advantage
of (3, 2)-Fuzzy sets is that they can characterize more vague
cases than Pythagorean fuzzy sets, which can be exploited in
many decision-making problems.

The idea of intuitionistic fuzzy weighted averaging oper-
ators was proposed by Xu [18]. Some geometric weighted,
geometric ordered weighted, and geometric hybrid operators
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under the environment of intuitionistic fuzzy sets were
introduced by Xu and Yager [19]. In Refs. [20-25], many
researchers worked in the area of intuitionistic fuzzy sets
and established various aggregation operators which are
applied to group decision-making. After the advent of the
Pythagorean fuzzy sets, the operators of Pythagorean fuzzy
aggregation have also become an important and interesting
field for research. Yager and Abbasov [26, 27], in 2013,
introduced the concepts of weighted geometric, weighted
averaging, ordered weighted geometric, and ordered
weighted averaging operators in the frame of Pythagorean
fuzzy environment. The essential properties of Pythagorean
fuzzy aggregation operators were investigated by the authors
of [28]. Shahzadi et al. [29] established some aggregation
operators under Pythagorean fuzzy data for assessing the
distinct preferences of the choice among the decision-
making process. By using Pythagorean fuzzy values, Rahman
et al. presented many aggregation operators like weighted
geometric [30], hybrid geometric [31], weighted averaging
[32], and ordered weighted geometric operators [33] and
also discussed their practical applications.

The aims of writing this paper are (1) to present a novel
extension of intuitionistic fuzzy set called SR-Fuzzy sets
which is not obtained from g-rung orthopair fuzzy sets, (2)
to introduce novel types of weighted aggregation operators
and discuss their main properties, and (3) to investigate a
MCDM methods depending on these operators.

In this paper, we define the concept of SR-Fuzzy sets and
compare it with the other types of fuzzy sets in Section 2.
Then, we introduce the set of operations for the SR-Fuzzy
sets and explore their main features in Section 3. Also, the
concepts of weighted aggregated operators for SR-Fuzzy sets
are investigated. Thereafter, we describe MADM problems
under these operators in Section 4. Finally, we outline the
main achievements of the paper and propose some upcom-
ing works in Section 5.

Before we present our main concepts and results, we
recall the definitions of the intuitionistic fuzzy set (IFS)
and Pythagorean fuzzy set (PFS).

Definition 1. Let S be a universal set such that Y :S
—1[0,1] and ¥g:S—[0,1] are mapping. Then, the
intuitionistic fuzzy set (IFS) [10] (resp., Pythagorean fuzzy
set (PFS) [16]) is defined by the following:

O={({p.Yo(r): ¥o(r)): PES} (1)

including the condition 0< Yg(p) + Po(p) <1 (resp., 0<
(Yo(p))* + (Wo(p))> < 1), where Yg(p) is the degree of
membership and ¥ (p) is the degree of nonmembership
of every pe S to ©.

2. SR-Fuzzy Sets

In this section, we initiate the notion of SR-Fuzzy sets and
study its features in detail. For computations, we use only
six decimal places in the whole paper.
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FIGURE 1: Grades space of SR-FSs.

Definition 2. Let S be a universal set such that Yy : S—
[0,1] and ¥g :S—[0,1] are mapping. Then, the SR-
Fuzzy set (briefly, SR-FS) © is defined as following:

©={({p.Yo(p): ¥o(r)): peS}h (2)

where Yg(p) is the degree of membership and ¥ (p) is the
degree of nonmembership of p € S to ®, such that

0= (Yo(p)' + ¥o(p) < 1. (3)

Then, there is a degree of indeterminacy of p€ S to ®
defined by

mo(p) =1~ (Yo(p))* ++/Folp)- (4)

It is obvious that (Yg(p))®++/¥e(p)+me(p)=1.
Otherwise, 71 (p) = 0 whenever (Yo (p))> + /¥o(p) = 1.

In the interest of simplicity, we shall mention the symbol
O = (Y, VPg) for the SR-FS O = {(p, Yo (p), Po(p)): p €S}
The space of SR-Fuzzy membership grades is displayed in
Figure 1.

Example 1. Assume that Yg(p) =0.3 and Wg(p) =0.8 for
S={p}. Then, ®=(0.3,0.8) is not an intuitionistic fuzzy
set because 0.3+0.8=1.1>1. In contrast, ® =(0.3,0.8) is

an SR-FS because (0.3)> +1/0.8 ~ 0.984427 < 1.
Note that 7g(p)=0.015573, and hence, (Yq(p))® +

V¥e(p) +me(p) =1.
Remark 3. From Figure 2, we get that

(1) The space of Pythagorean membership grades is
larger than the space of SR-Fuzzy membership
grades

(2) The SR-Fuzzy and intuitionistic fuzzy sets intersect at
the point @ = (Yg = (-1 +1/5)/2, ¥ = (3 - /5)/2)

(3) For Yg € (0, (-1 ++/5)/2) and ¥ € ((3-+/5)/2, 1),
the space of SR-Fuzzy membership grades starts to
be larger than the space of intuitionistic membership
grades
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FiGurg 2: Comparison of grades space of IESs, PFSs, and SR-FSs.

(4) for Yg € ((-1++/5)/2,1) and ¥ € (0, (3 -+/5)/2),
the space of SR-Fuzzy membership grades starts to
be smaller than the space of intuitionistic member-
ship grades

Definition 4. Let ®,=(Yg ,¥g ) and ®,=(Yg ,¥g ) be
two SR-ESs; then
(1) © =06, ifand only if Yo =Yg and ¥g =¥g,

(2) ®, 20, if and only if Yo, 2Yg, and Yo <¥o,

Example 2.
(1) If ®, = (0.2,0.9) and ®, = (0.2,0.9) for S= {p}, then
0,=0,
(2) If ®, =(0.2,09) and ©,=(0.1,0.91) for S={p},
then ®, <O,

Definition 5. Let ®,=(Yg ,¥q ) and ®,=(Yg ,¥g ) be
two SR-Fuzzy sets (SR-FSs). Then

(1) N6, =(min {Yg,Ye }, max {¥g ,¥e,})

(2) ©®,U0B,=(max {Yg,Yg }, min {¥g,¥e })

(3) 8 = ({/¥o, (Yo,)")
Note that ({/Pg )’ + /(Yo )' = /Pe, + (Ye,)* < 1,50

©f is an SR-Fuzzy set. It is obvious that ()" =

(\A/‘IT@’ (Y®)4)C = (Y@’ ljP@)-

Example 3. Assume that @, = (Yg =0.59, ¥ =0.42) and
0,=(Yg, =0.56, ¥ =0.45) are both SR-FSs for S={p}.
Then

(1) ®, NO, = (min {Y@l, Y@Z}, max {‘I’@)l, lP@z}) =(
min {0.59,0.56}, max {0.42,0.45}) = (0.56,0.45)

(2) ©®,U0B,=(max {Yg,Yp }, min {¥g ,¥e,}) =
max {0.59,0.56}, min {0.42,0.45}) = (0.59,0.42)

(3) ©¢ = (0.805030,0.121174)

Theorem 6. Let ©®,=(Yg,¥q ) and ©,=(Yg ,¥q,) be
two SR-FSs; then the following properties hold:

(1) ©®,n0,=0,n6),

(2) ®,U0,=0,U0,

Proof. From Definition 5, we can obtain the following:
(1) ®, NO, = (min {Y@1, Y@Z}, max {'1”(91’ lP@Z}) =
min {Yg , Yg }, max {¥g, ¥ })=0,N0O,
(2) The proof is similar to (1)

O

Theorem 7. Let ©, = (Yg , Vg ), ©,=(Yg,,¥p,) and O;
= (Yo, ¥o,) be three SR-FSs; then

(1) ©,n(0,N0;)=(0,N6,)NO;

(2) B,U(B,UB;)=(B,UB,)UB,

Proof. For the three SR-FSs ©,,®,, and ©®,, according to
Definition 5, we obtain the following:

(1) ©,N(©,n0;)=(Yg,¥e )N (min{Yg,Ye },
max {‘P@z, ‘1/63}) = (min {Y@l, min {Y@Z, Y@3}},
max {‘P@l, max {‘PGZ, l1!’63}}) = (min {min {Y®1’
Yo,} Yo}, max {max {¥ , ¥ },¥p,}) = (min {
Yo, Yo} max {¥g,¥e }) N (Yo, ¥o,) = (@ N
0,)N O,

(2) The proof is similar to (1)
O

Theorem 8. Let ©;=(Yq ,¥p,) and ©,=(Yg ,¥q,) be
two SR-FSs. Then

(1) (G,n6,)uUB,=0,
2) (B,U6,)NO,=06,

Proof. From Definition 5, we obtain the following:

(1) (6,n6,)UB, = (min {Y@)N Y®2},max {‘P@l, ‘I’@Z}
)u (Y@Z, ‘f’@z) = (max {min {Y®1’ Y@Z}, Y@z}’ min
{max {'P@l» lP(az}’ qj®z}) = (Y®z> lpez) =0,

(2) The proof is similar to (1)



Theorem 9. Let ©,
two SR-FSs; then

(1) (©,n0,)°
(2) (©,V6,)

=@ U6,
=@ N6

Proof. For the two SR-FSs ®, and ©®,, according to
Definition 5, we obtain the following:

(1) (©,n6,) = (min {Ye, Y, }, max {¥g,, ¥e,}) =
(max {{/Pe,, {/¥o,}> min {(Y®1)4» (Y®2)4}) =(
v Yo, (Y@1)4) U (y/ e, (Y®2)4) =61U06;

(2) The proof is similar to (1)

3. Aggregation of SR-Fuzzy Sets and
Its Properties

In this section, we introduce some new operations on SR-
Fuzzy sets. Besides, we study the SR-Fuzzy aggregation oper-
ators and some attracted properties are indicated in detail.

3.1. Some Operations On SR-Fuzzy Sets

Definition 10. Let ® = (Y, ¥g), ©;=(Yg,¥e ) and O,
=(Ye,,¥o,) be three SR-FSs and p be a positive real value
(p>0). Then their operations are defined as follows:

1) ©, 00, = (\/Yél +Yh - Yh Y, ¥e Vo)

2) ©,80,=(Yg Yo,

(\/‘P® +/¥e, = /Yo, \/‘P@)Z)

(3) pO=(\/1-(1-Y%)",¥D)
@) @ = (Y5, (1- (1- /Fo))")

Example 4. Suppose that ©, = (Y =0.43,¥g =0.64) and
0,=(Yg, =0.26, ¥ =0.81) are both SR-FSs for S={p}.
Then

1) ©,00,= (\/Yél +YDh - Y3 Y3 Ve Ve,) = (

\/0.432 +0.262 — (0.43)%(0.26)%, (0.64)(0.81)) = (
0.489899,0.5184)

(\/WM/W—\/W\/W))—

((0.43)(0.26),
(0.1118,0.9604)

:(YQI,TGI) Cmd @2:(Y®2,l}/®2> be
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(3) pO; = (/1 - (1-Yg ), W5 ) =(1/1-(1-0.432)°
,0.64%) = (0.677095,0.262144), for p=3
(4) O] = (¥p,, (1~ (1= /¥5,)")") = (043,
2
(1-(1-v0.64)")") = (0.079507,0.984064), for p =
3

Theorem 11. If ©,=(Yg, ¥ ) and ©,=(Yg ,¥g,) are
two SR-FSs, then ®, @ ®, and ®; ® ®, are also SR-FSs.

Proof. For SR-FSs ©; = (Yg,, ¥g, ) and ©, = (Yg , ¥ ), the
following relations are evident:

2 2

0<Yg <1,0<,/¥g <1,0<(Yg ) +4/¥e <1,
2 2

0<Yg <1,0<, /o <1,0<(Yg) +/¥g <1

(5)
Then, we have

2 2 2 2 2 2 2 2
Yo 2 V5 Y5, YE 2 Vg Y, 12 Y5 Y2 20,

V¥6,21/Pe,\/Fo, \/Po, 2 1/Po \/Fo, 12 /Pe,\/Pe, 20,

(6)

which indicates that

2 2 2 2
Yo + Yo =Yg Yo 20,

which means that\/ Y<291 + Yz@Z - Yz@1 Yz@Z >0,

1/‘f/®1 +’/¥/®2 — A /‘I’@l\/l}/@z 20)
2
which means that (1 [¥o, + /Yo, 1/¥o,\/ lP@)Z) 20
(7)

Since Yg <1 and 0<1-7Yg, then Y§ (1-Yg )<
(1-Y3), and we get Yg +Yg -Yg Yy <1, and
hence, \/Yé)1 +Yg, ~Yh Yo <1

Similarly, we get

(o o= ) 1.

It is obvious that

0</¥o, s1-Yg and0<, /¥ <1-Yg . (9)
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Then we get

2
(\/Yél +Y3 - YD Yéz) +1/¥o Vo, < V2 o)

+YE - YE Y (1 - Yfal) (1 - Yéz) =1.

Therefore

0< /Y3 +Y] ~ Y3 Yh <10<¥e ¥ <1, (11)

and

2
Os<\/Yél+Yé2—YélYéz) Vo Yo, 1. (12)

Similarly, we have

2
osygly@zsl,OS(\ﬁ’;ﬁ \/_Y’_e;—\/‘f_’c:\/‘f"a <1
(

13)

and

o (v o)+ (¥ + o~ ¥ e <1

(14)

These indicate that both of ®, @®, and ®, ® ®, are
SR-FSs. |

Theorem 12. Let © = (Y, V) be an SR-FS and p be a pos-
itive real value. Then, p® and ©F are also SR-FSs.

Proof. Since 0<Y% <1, 0<,/Pg<1, and 0<(Yg) +

/Yo <1, then
0/ Wo<1-Y5=20<(1-Y3) =1-(1-Y5)”
<1=0<,/1-(1-Y3)P<Vi=1

(15)

It is obvious that 0 <% < 1; then we get
2
0< (/1= (1-Y3)") +/¥o<1-(1-Yg)’
() R0,
+(1-Yg) =1

Similarly, we also get

g(Y”@)2+\/(1—(1—\/‘P_®)P)2s1. (17)

Therefore, p® and ®F are SR-FSs. O

Theorem 13. Let ©,=(Yq ,¥g, ) and ©,=(Yg , ¥ ) be
two SR-FSs. Then the following properties hold:

(1) ©,20,=0,00,
(2)0,80,=0,80,

Proof. From Definition 10, we obtain the following:

(1) ©,00,= (\/Yél + Yé)z - Yé)l Y%az"PQI‘lU@Z)(

\/Yé)z +Yh Y3 Y5, ¥ Ve )=0,00,

(2) ©,80,=(Yq
\/‘f’®1 \/‘P \/ e, IPOZ)Z):(Y@ZY@]’
(T, /T, \/To,y/To)") = 0,80,

O

Theorem 14. Let © = (Y, V), O,
(Yo, ¥o,) be three SR-FSs. Then

=(Yg,¥e,) and ©,=

(1) p(®,006,)=
(2) (p; +p;)® =p, @& p,®, for p;,p,>0
(3) (0,0, =67 ®6%, for p>0

PO, ® pO,, for p>0

(4) OF1 @ OF2 = @Pi*P), for p,, p,>0

Proof. For the three SR-FSs ®, ®,, and ®,, and p, p;, p, >0,
according to Definition 10, we obtain the following:

(1) p(©,©0,) = ply/Ye, +Yd ~ Y5 Y, ¥o, Vo,
= (VI-(1-Yg - Y5 +Y5 Yg ), (Yo ¥o,))

\/1— (1- Y3 ) (1- Y3 )P, W5 W5 ).

And p©, @ p®, = (,/1-(1-73 )", ¥ )@ (\/1-(1-73, ),
¥,) = (\/1-(1-73 P+ 1-(1-Y3 ) - (1-(1-Y3 ))(1 - (1- Y3, )),
Y6, ¥6,) = (\/1-(1-13 ) (1-13,), ¥, ¥6,) = p(6, ©6,)

= (P1 + Pz)(Ye’ Vo) =(\/1-(1-Y3)""™,
(V1-(1-Y5)"(1-Yg),wg™) =
(VI=(=Y3 +1- (=Y = (1- (1- Y5 (A - (1-Y5)™),
YavE) = (VI-(1-v5) ¥a) e (v1-(1-13)™,
¥5)=p,©8p,0
(3) (6,806,)" = (Y®1Y®2’(\/"p®1‘*\/5('@2—\/‘1”@l
\/ )2) =((Ye 1— 1—\/5[’@ - \/‘IV@2
1/ ,/ YP Y‘é,(l—(l—«/‘lf@l)"
\/ = Yg’ (1-(1-/¥e)") )®(Yfa2

lp@ YA

2

2) (p, +p,)®©
lI/S*’Pz)




@) O eer = (YA,(1-(1-P)") ) e (¥,
(1-(1- \/Fo))?) = (Y, 1 - (1- /F)" +1
(- F)” - (- (1- /T~ (1-
VII) = (YE™P (1-(1-/F)""")) =
@(P]*Pz)

O

Theorem 15. Let ©,= (Y, ¥ ) and ©,=(Yg ,¥q,) be
two SR-FSs and p > 0. Then

(1) p(B,UB,) =
(2) (,UB,)f=6"uB),

PO, U pO,

Proof. For the two SR-FSs ®, and ®,, and p > 0, according
to Definitions 5 and 10, we obtain the following:

(1) p(©,V0O,) =

- (\/1 —(1-max {Y2, Y2 })*, min {¥5,¥5 }).

And p®, Up®, = (,/1-(1-73 )", ¥ ) U (,/1-(1-Y2 ),
'}’p@) = (max{\/l—(l—Yél)”,\/1—(1—Yé,2)P},min{‘I’pl,
W5, 1) = (/1 (1 max (Y, 3, })7, min {7, }) =
PO UG,)

p(max {Ye,Ye,}, min{¥g,¥e,})

(2) The proof is similar to (1)
O

Theorem 16. Let © = (Y, ¥g), ©; =Yg, ¥ ) and ©, =
(Yo, ¥o,) be three SR-FSs, and p > 0. Then

(1) (0,00,) =0;8065

2) (0,80,) =665

(3) (@) = (pO)*

(4) p(®)° = (07)°

Proof. For the three SR-FSs ®, ®, and ©,, and p > 0, accord-
ing to Definitions 5(3) and 10, we obtain the following:

4

(1) (8,00, = (/Y6 +Yd ~Y5 Y3, ¥o, Yo,
4
= (/%6 ¥o, (Yo, + Y5, - Y5, Y3) ) = ({/¥e,
2

VP, (Yo, +Y5 — Y5 Y )) =({/¥e, (Y®1)4)
@ ({/¥o, (Yo,)") =0 @0
(Yo, Yo, (v/Po, + /o, - /Po,
VI = (VTa, + /P, ~\/Ter/Ta) s

2) (0,00, =
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=080
3) @)y = ({‘/‘P_ ,(Y@)“)p = (({/‘P_@)P,
(1-(1-Y2)P))=(/T-(1-YE)P,¥2) = (p®)°
4 p = p({/‘P_@,(Y@)“) = ({/1-(1-/%e),

= (Y0, (1- (1-/Fp)")) = (@)
O

Theorem 17. Let ©,=(Yg,¥p ), ©,=(Yp,¥p,), and
O;=(Yg,,¥o,) be three SR-FSs. Then

(1) (©,n0,)90;=(0,80;)n (0,®0;)
(2) (B,U0,)80;=(0,90;)U(O,s0;)
3) (B,N0,)®0,=(0,80;)N (0,8 0;)
(4) (B,U0,)80,;=(0,80,)U (0,’0;)

Proof. By Definitions 5 and 10, we obtain the following:

(1) (6,n0,)®0;=(min {Yq,Ye }, max {¥g,¥e }
)& (Yo, ¥o,) = (|/min {¥3, Y} + 3 - min{v}. V)
»max (¥, ¥, }We,) = (|/(1-73) min {v3,v2} + v3,,
max {¥g ¥o,,¥0,¥0,})-

And (©,00,)n (0, ®0,)= \/YZ +Yh - Yh YD,

Vo, ¥o,) N (\/ Yo, + Yo, —Yo,Ye, ¥e,¥,) = (min{

Yo, + Y~ Y3 Vi, [V, + Y — Y3, Yo }max {7,
_ : 2 2 2

Yo, Yo,¥o,}) = (min {\/(1 Y6,)Y6, + Yo,

V- Y2)YD + Y8 ), {¥6, Yo, Yo, ¥o,}) =

V(=Y min {¥g, Y2} + g, max {¥o, Yo, ¥o,¥o,})-
Thus, (0, N6O,) 60, = (0, ®0,)N (O, d6,)

max

(2) The proof is similar to (1)
(3) (©,N6,)®6;=(min {Yq ,Yg }, max {¥g,¥g }
) ® ®, = (min {Y®1’Y®2}Y® 5 (0 max {/¥ >

Vo) +y/To, = /To max {,/Fo, /¥6,})’)

= (min{Yg Yo,Ye Yo}, ((1-,/¥g,) max

{v Yo,/ ‘P@z} KRV l1”@)3)2)-
And (©,©0;)N(0,80;)=(Yg Yo, (/Po, +/Po,

-/, /¥a,)’) N (Yo Yo, (1/—qf®z+1/—¥/@3—,/—av@z
VYe, )2) = Y®1Y®2 ((1- \/‘P@)\/"p@l + \/lP@3 2
Yo,Yo, (1-/Po)\/ o, + /To,)’) = (min {Yg Y@3
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Yo, Y@3}7 max  {((1- \/‘1’@3)\/‘1’61 T ljV<93)27
(1-/Fo,) /Yo, *+ \/'f'®3)2}) =(min {Yg Yo, Yo Yo, }
(1= llU@S) max {/ Yo,/ ‘P®z} T lP®3)2)'

Thus, (0, N60,)®0,=(0,®0,)N (0, ®06,)
(4) The proof is similar to (3)
[

Theorem 18. Let ©,=(Yg,¥p ), ©,=(Yg,¥p,), and

O;=(Yp,,¥o,) be three SR-FSs. Then
(1)0,00,00;=0,00;00,
(2)0,80,80;,=0,80;90,

Proof.
(1) ©,00,00; = (Yo,¥% )@ (Ye,¥e,)® (Yo,
Yo, = (\/Yél + Y%az - Yfal YzezrlP@l'f'@z) ® (Yo,
Vo, = (VY § +Yg - Y Yo +Yg — Yo (Yo +
Y?az - Y<291 Y?az)’ llye)lllue)zllye)S) =( \/?él + Yéz + Yé)3
VY7, - Y YT, ¢ VTR D Ve
¥o,Y0,)=( /Yo, "+ Yo, — Yo Yo, + Yo, ~ Yol
Y?al + Yé)a - Y2®l Y2@3)) Yo ¥o,Yo,) =

\/Y(Zal +Yo, — Y5 Yo, ¥e, ¥o,) @ (Yo, ¥o,) =O,
©0,00,
(2) The proof is similar to (1)
|

In order to rank SR-FSs, we define the score function and
accuracy function of the SR-FS:

Definition 19.

(1) The score function of an SR-FS @ = (Y, ¥ ) can be
represented as score(®) = Y5, — /¥

(2) The accuracy function of an SR-FS @ = (Yg, ¥g)
can be represented as accuracy(®) =Yg + /¥q

Example 5. For an SR-FS ® =(0.3,0.8), we find that score
(®) =—-0.804427 and accuracy(®) =~ 0.984427. In particu-
lar, if ®=(0,1), then score(®)=-1, and if ®=(1,0),
then score(®) = 1.

Theorem 20. The suggested score function of any SR-FS ©
=(Yg, Yg), denoted by score(®) lies in [-1, 1].

Proof. Since for any SR-FS ©, we have Y, + /¥ < 1, hence

Ye-\/Yo<Ysy<land Y3 — /¥ >-/¥o>-1. There-
fore, -1 < Y2 — /¥ < 1. Hence, score(®) € [-1,1]. O

Remark 21. The suggested accuracy function of any SR-FS
O = (Y, ¥Yg), denoted by accuracy(®), lies in [0, 1].

3.2. Aggregation of SR-Fuzzy Sets

Definition 22. Let ®; = (Y®i, lP@l)(i =1,2,---,m) be a value

of SR-FSs and w = (w,, w,, ---,w,,)" be the weight vector
of ®; with w; >0 and )", w; = 1. Then an SR-Fuzzy

(1) Weighted average (SR-FWA) operator is a function
SR-FWA : ®" — ®, where

SR—-FWA(®,,0,,--,0,) = (Z wYe, Y wi‘P@,) (18)
i=1 i=1

(2) Weighted geometric (SR-FWG) operator is a func-
tion SR-FWG : ®" — ®, where

1

SR-FWG(®,,0,,-,0,,) = <
1

m
=1

Yo mlP“’l) (19)
e e,
=1

(3) Weighted power average (SR-FWPA) operator is a
function SR-FWPA : ®" — ®, where

m 1/2 m 2
SR- FWPA(6,,0,,-,0,,) = ((Z in§>1> , <Z wn/Y’@) >
i1 i

(4) Weighted power geometric (SR-FWPG) operator is a
function SR-FWPG : ®" — O, where

Example 6. Suppose that @, = (0.53,0.49), ®, = (0.52,0.51)
,0, =(0.26,0.76), ®, = (0.51,0.53), O = (0.50,0.54),  and
®¢=(0.22,0.86) are six SR-Fuzzy sets, and let w=

(0.12,0.32,0.22,0.13,0.10,0.11)" be a weight vector of ©,
(i=1,2,---,6). Then



(1) SR— FWA(®,,0,,-,0;) = (0.53x0.12+0.52 x
0.32+0.26x0.22+0.51 x 0.13 + 0.50 X 0.10 + 0.22
x0.11,0.49 x 0.12 + 0.51 X 0.32 + 0.76 x 0.22 + 0.53
x 0.13 +0.54 X 0.10 + 0.86 x 0.11) = (0.4277,0.6067)

(2) SR = FWG(®,,0,, -, 0) = (0.5312 x 0.52032 x
0.26%2% x 0.51%1% x 0.50%10 x 0.22°11,0.49%1% x
0.51%%2 x 0.76"22 x 0.53%13 x 0.54%19x 0.86"!")
~ (0.404460,0.593219)

(3) SR—- FWPA(®,,0,,--,0) =((0.53 2x0.12+0.5
22x0.32 +0.262 x 0.22 + 0.51% x 0.13 + 0.50% x 0.10
+0.222x0.11)"2, (0.12x 1/0.49 +0.32 x /0.51 +

0.22x+v/0.76 +0.13 x +/0.53+0.10 x+1/0.54+0.11
X \/0.86)2) = (0.446369,0.599778)

(4) SR-FWPG(®,,0,, -+, 0¢) = ((1-(1-0.532) 012
x (1-0.522)"% x (1-0.26%)"% x (1-0.512)""
x (1-0.502)"" X (1-0.222)"1H"2,
(1-(1- \/@)0'12 (1- \/63—1)0.32
(1- m)ozz X (1- \/m)o.w x(1- \/m)o.lo o
(1-/0.86)""1)?) = (0.452616,0.632933)

Remark 23. Note that the ordered values induced from the
different operators introduced in Definition 22 need not
be an SR-FS. To validate this matter, take the ordered
values (0.452616,0.632933) which are given in (4) of the

above example. By calculating, we find that (0.452616)°

++/0.632933=1.0004 >1 which means that SR
-FWPG(®,,®,, ---,0) is not an SR-FS.

Theorem 24. Let ©, = (Y®i, ‘f’@i)(iz 1,2,---,m) be a value
of SR-FSs, ©=(Yg, Ve be SRFS and w=

(Wpwy, - w,,)" be a weight vector of @; with ¥ w, = 1.
Then

(1) SR-FWA(®,90,0,00,---,0, ®©) >SR- FW
AB,90,0,80,--,0, ®0)

(2) SR-FWG(©,90,0,00,---,0, ®©O) >SR- FW
G(©,;860,0,80,--,0,, 80)

(3) SR- FWPA(®,90,0,90,---,0, ®®)>SR-F
WPA(®,®0,0,80,---,0, ®0)

(4) SR- FWPG(®,90,0,90,---,0, @) >SR-F
WPG(0,80,0,806,---,0, ®0)

Proof. We will display the proof of (1) and (4). The other
affirmations are proved in a similar fashion.

(1) For any ©;=(Yg,¥e)(i=1,2,---,m) and ©®=
(Yo, Vo), we get
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VYo + Y= Y3 Y8 > [2Y2 Y2 - Y3 Y3 = Y, Yo,

o)

(22)

that is

m m
Ywn/Yh A YE-YEYEE Y wYeYe  (23)
i=1 i=1

and

m 2 m

wi(1 o ++/Po /‘I’Q\/‘P@) > Y w¥e Yo
i=1 i=1

(24)
By Definition 10 (1) and (2), we have

SR-FWA(®,¢06,0,00,-,0, ¢0)

_ <Z wi\/Yé[ YL Y YE, Y wi‘f’@i‘f’@> ,
i=1

i=1

SR-FWA(©,®0,0,80, -0, 0)

- <gin@iY@, iwi(\/?;+ V¥o- ‘/@—‘;\/Y/_@)j

(25)
Therefore, from (25), the proof is proved

(4) For any ©;=(Yg,¥e)(i=1,2,---,m) and ©=(
Yo, Vo), we get

Yo + Yo - Yo Y22V Y4 - Yo Y5,
2 2 2 2 2 2
=YL Y5 =1 (YQ_ +Y2 - Y@iYQ)

<1-Y2 Y2 = (1— (YngYg—Yg Yé))w‘
< (1 - YéYé)wi = (1 - (Yg +Y2 - ngg))“"'

m
=1

—

w;
1- YéYé) =1
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Similarly

Now, by (1) and (2) of Definition 10, we have

SR-FWPG(®,©06,0,80,---,0, ¢0)

m 1/2
- ((1— H(l— (Yé_+Y2@—Y2®_Yé)) ) ,

(i) )

SR-FWPG(®,©0,0,80,--,0, ®0)

1

(- 1L0-rm)).

i=1

(H((Wﬁﬁw—))))

(28)
Hence, SR-FWPG(®,90,0,60,---,0, ®0)>SR
FWPG(®,®0,0,80, .0, 86). O

Theorem 25. Let ©; =
of SR-FSs, ©O=

(Y@,.’ly®,)<i:1’2>“"
(Yo, ¥e) be SR-FS,

m) be a value

and w=

(Wpwy, - w,,)" be the weight vector of ©, with Y™ w, = I;
then
(1) SRRFWA(®;90,0,80,---,0,, &©®) > SR
FWA(©,,0,,-0,)80
(2) SR-FWG(©,90,0,80,---,0, &0) >SR
FWG(©,,0,,,6,)80
(3) SR-EWPA(®,©0,0,60, -0, ®0) > SR
FWPA(®,,0,, -0, )®0
(4) SRFWPG(®, ©,0,80, -0, ®©) > SR
FWPG(®,,0,,-6,)®0

Proof. We will display the proof of (1). The other affirma-
tions are proved in a similar fashion.

(1) For any ©,= (Y@,,‘I’Qi)(iz 1,2,
Yo, Vo), We get

m) and O = (

VYo + Y- Y3 Y82 2Y2 Y2 - Y3, Y3 = Yo Yo, (29)

that is

m
wi /Y3 + Y- YR YE2 Y wYe Ve,
i=1

™M

Il
—_

(30)

Similarly,

(MW% \/lei%\/?% Zw‘I’Q‘I’@.
(31)

By (1) and (2) of Definition 10, we have

SR-FWA(®, ®0,0,80, -

:( wi/Ys + Y5 - Y3 Y
i=1

,0,,00)

m
<2a’ Zwi‘fleiq’@)))
i=1

SR-FWA(®,,0,, -,

(sz@Y@, (ﬁ - zwavw—))

(32)

Hence, the desired result is proved. O
Theorem 26. Let ©,=(Yg,¥o) and K;=(Yy,¥g)
(i=1,2,---,m) be two values of SR-FSs, and w=

(wy, w,, -
1. Then

w,,)" be a weight vector of them with ¥ w, =

(1) SR—-FWA(®,®K,,0,8K,,---,0, ®K,)>SR-F
WA(®,8K,,0,8K,, 0, 8K,)

(2) SR-FWG(®,9K,,0,0K,,--,0, &K, ) > SR -
FWG(®,8K,,0,®K,,--,0,,8K,,)

(3) SR—- FWPA(®,®K,,0,8K,,---,0, ®K,,) > SR -
FWPA(®,®K,;,0,8K,,---,0,, ®K,,)

(4) SR—- FWPG(®,®K,,0,®K,, -
FWPG(®,®K,,0,8K,, -

,0,,0K,,)>SR -
,0,,0K,,)

Proof. We will display the proof of (1). The other affirma-
tions are proved in a similar fashion.

(1) For any O;=
(i=1,2,~~,

(Yo,¥e) and K;=

m), we get

(Y, ¥,)

\/ YL + Yy Y4 Y% > \/ 2Y% Y} ~ Y3 Yh = Yo Yy,

(33)
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that is

m m
y w,.\/ Y2+ YR ~YRYE 2 Y wYe V. (34)
i=1 i=1
Similarly
m 2 m
wi(1 Mo +1/x — /¥, /‘I’Ki) > Y w ¥ ¥y .
i=1 i=1
(35)

By (1) and (2) of Definition 10, we have

SR-FWA(®, ®K,,0,8K,, -0, &K,

m m
- (Z w,.\/Yg +Y3 -YR YR, Y wi%x_l}/&) ,
i=1

i=1
SR-FWA(®,®K,,0,8K,, -0, ®K,,)

m m 2
=Y wYe Y. Zwi(1 o +1/Fx — /P, /‘I’Ki> .
i=1 i=1

(36)
Thus, SR-FWA(®,®K,,0,8K,, 0, &K,,)=SR
-FWA(®,®K,,0,8K,, -0, ®K,,). 0

Theorem 27. Let ©;=(Yq, ¥ )(i=1,2,---,m) be a value

of SR-FSs, and w = (w,, w,, -~ w,,)" be the weight vector of
O, with " w; =1 and p > 1; then

(1) SR— FWA(p®,, p®,, --
e OF)

- p®,,) = SR— FWA(®", &

(2) SR - FWG(p(H)I, pO,, -
®§) ey @51)

- p®,)>SR- FWG(O,
(3) SR— FWPA(p®, p®,, -+, p®,,) > SR - FWPA(E,
e, -, er)
(4) SR— FWPG(p®,, p®,, -+, p®,,) > SR — FWPG(0Y,
5, -, 0r)
Proof. We will display the proof of (1). The other affirma-

tions are proved in a similar fashion.

(1) For any ®;=(Yg,¥g )(i=1,2,+,m), we have

SR—FWA(p®,, pOy, -+, pO,,)

- (iwm /1- (1 - Yéi)P, iwﬁ‘é{),
i=1 i=1
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SR-FWA(6%,05,---,0¢)

(S wrt, Sw(i-(1- YY)
(St Eu(1-0-%)))
Let f(Yg)=1-(1-Yg)" = (Y5)", and we have to

show f(Yg ) >0. Using the Newton generalized binomial
theorem, we are able to get

(1- Yéi)P+ (Yé,i)ps (1-7,+ Yé{)”: 1. (39)

Thus, f(Yg,) 20, that is
- (1- Yéx)p— (Ygi)” >0=1-(1- Ygi)"z (Ygi)”

m
= /1- (1—Yé)’)ng:> Y wy /1~ (1—1@})[’
i=1

(39)

Similarly,

™=

w(1-(1-/%6)) 2 zwqf (40)

Therefore SR — FWA(p®,, p®,, -+, p®,,) = SR - FWA(
eF,@~, -, en). O

m

i=1

Theorem 28. Let ©;=(Yq,¥g )(i=1,2,--,m) be a value
of SR-FSs, ©=(Yg, Ve) be SRFS and w=
(Wpwy, - w,,)" be a weight vector of ©, with ¥ ,w; =1
and p> 1. Then

(1) SR— FWA(p®, ®©, p@, 80O, ---, p@, ®O) > SR —
FWA(@] 20,0500, ,6F 0)

(2) SR-FWG(p®, 00, p0,80, -, pB, &O) > SR -
FWG(O]®0,0580, ,0° ®0)

(3) SR— FWPA(p®, ®®, p@, @O, ---, p@, & O) > SR
- FWPA(®)®0,85,80,,0F ®0)

(4) SR-FWPG(p®, 0, p0, 80, -, pB,, & ®) > SR
- FWPG(®) 80,0580, ,0° ®0O)

Proof. We will display the proof of (1). The other affirma-
tions are proved in a similar fashion.

(1) For any ©;=(Yg,¥g)(i=1,2,--,m) and ©=(
Yo, ¥e), we have
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SR—-FWA(p®,®0,p0, 0, -, p0, &0)

_ (Z w;y [1- (1 - Yéx_)P(l -Y2), Zwﬂ’gi?’@)
i=1 i=1

SR-FWA(6{206,0,80,-,0" 80)
_ (zw” Sui-(1- %) (- W—@))Z).

(41)

Let f(Yg)=1-(1-Yg ) (1-Yg) - (Y ) Y5, and we
have to show that (Y ) > 0. At first we indicate g(Yg ) =
(1-Y3)" +(Y5,)" and take the derivative of g(Y, ); then

9 (Yo) =-2pYe (1 - Ygi)‘” +2pYq (Yél)p*l
=2pY,, ((Yéi)P_ - (1 - Yéi)p_l).

Therefore, if Yg >1/ V2, then 9(Yg) is monotonic
increasing, and if Yo <1/ V2, then g(Yg,) is monotonic
decreasing, so g(Yg)<g(Ye) _=max{g(0),g(1)}=1.
Since (1-Yg )" (1-Yg) + (Y3 ) Yg <1, hence

(42)

f(Yo)=1- (1 - Y2@[>P(l - Y2) - (yé{)”yg >0
m P m
wi\/l - (1 - Yéi) (1-Y3) 2 Y wY} Ye.
= in1

(43)
Similarly
m 2 m
Zwi(l - (1 = /‘f’@I)P(l - \/‘P@>) > Y w¥h V.
i=1 i=1
(44)
Hence, SR- FWA(p®, 0, p®, @0, -+, pO, &O) =S

R-FWA(®}®0,0,20, 0" ®0).

To prove the following three results, we suppose that the
values obtained from the introduced operators are an SR-FS
(see Remark 23). O

Theorem 29. Let ©;=(Yq, ¥ )(i=1,2, -,
of SR-FSs, ©=(Yg, Vo) be SRFS and w=
w,,)" be the weight vector of ©, with ¥ w; = 1

m) be a value

(wy, wy, -
; then

(1) SR-FWA(®,,0,, -+, ® ) ®©>SR
-FWA(®,,0,,--,0,,)®

(2) SR-FWG(®,,0,, -, 0 ) ®© > SR
-FWG(®,,0,,-,0,,)®

11

(3) SR-FWPA(®,,0,, -, 0 ) ®© > SR
-FWPA(®,,0,,--,0,)®

(4) SR-FWPG(®,,0,,---,0,, ) ®©>SR
-FWPG(®,,0,,-,0,)®

Proof. We will display the proof of (1). The other affirma-
tions are proved in a similar fashion.

(1) For any ©,= (Y®i,‘P@i)(i= 1,2,
Yo, Vo), we get

(Z in@i> +Y% - (Z in®,-> Y2
i=1 i=1

m 2 m 2 m
2(2 wﬂ’@,-) Yo - <Z wﬂ’@,-) Yo=Y wYeYo.
i=1 i=1

m) and O = (

i=1

(45)
Similarly
2
m m m
<1 Y w¥o +/Fo— Y w¥en /‘I’@> > Y w¥e Vo
i=1 i=1 i=1
(46)

By (1) and (2) of Definition 10, we obtain

SR-FWA(®,,0,,-,0,)e0

m 2 m 2 m
= (Z in@,> +Y% - (Z wz-Y@i) Y3, Y w¥e ¥ |
i=1 i=1 i=1

SR - FWA(®,,0,, -, 0

(Zw Yoo (\/27 - zw»vw—))

(47)

Hence, the desired result is proved. O
Theorem 30. Let ©,=(Yq,¥o) and K;=(Yg,¥g)
(i=1,2,---,m) be two values of SR-FSs and w=

(Wpwy, -+ w,,)" be a weight vector of them with Y™ w, =

1. Then

(1) SR—- FWA(®,,®,, --
,K,)=SR-FWA(®,,0,, -
Ky K,,)

(2) SR—-FWG(®,,0,,--,0,) &SR - FWG(K,,K,, -
,K,)=SR-FWG(®,,0,,--,0,)®SR- FWG(K,
Ky K,

®,)®SR—-FWA(K,K,, -
- ®,,)®SR— FWA(K,
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(3) SR- FWPA(®,,0,,---,0,)®SR- FWPA(K,K,,
-,K,)>SR— FWPA(®,,0,,---,0, ) ® SR— FWP
A(Kp Kz’ T Km)

(4) SR - FWPG(®,,0,, ---,®,,) ® SR - FWPG(K,, K,,
.,K,)>SR- FWPG(®,,0,,---,0, ) ® SR— FWP
G(K}, Ky -+, K,y)

Theorem 31. Let ©;= (Y, ¥ )(i=1,2,---,m) be a value

of SR-FSs and w = (w,, w,, -+, w,,)" be the weight vector of
O, with Y w, =1 and p > 1; then

(1) pSR— FWA(®,,0,,-,0, ) >
(SR—FWA(®,,0,,--,8,,))

(2) pSR- FWG(O,,0,,--,0,) >
(SR-FWG(®,,0,,---,0,))"

(3) pSR— FWPA(®,,®,, ---,®
(SR- FWPA(®,,08,,---,0,))

(4) pSR— FWPG(®,,0,,-,0, ) >
(SR FWPG(®,,0,,--,0,,))’

4. Application of SR-FSs to Select the
Top-Rank University

In this section, we apply the SR-FWA, SR-FWG, SR-FWPA,
and SR-FWPG operators to select the top-rank university
among different universities.

One of the following techniques to handle the multicri-
teria decision-making (in short, MCDM) problems is based
on the different types of fuzzy weighted operators. Herein,
we, first, show the steps used in the proposed methodology
for MCDM:

Step 1. Represent a MCDM problem under study using the
SR-Fuzzy decision matrix.

Step 2. Transmit SR-Fuzzy decision matrix into the normal-
ized SR-Fuzzy decision matrix.

Step 3. Compute for each alternative all kinds of SR-Fuzzy
weighted operators.

Step 4. Compute the scores and accuracy functions for each
alternative (as we showed in Remark 23, the ordered values
induced from the different operators need not be an SR-FS;
however, we apply the formulas of scores and accuracy func-
tions given in Definition 19 for those ordered values).

Step 5. Compare the given alternatives based on the score
function.

Step 6. If the score functions are equal for some alternatives,
then compare between them in terms of accuracy function.

Journal of Function Spaces

Step 7. Determine the optimal ranking order of the alterna-
tives and recognize the optimal alternative(s).

In the next example, we illustrate how the above steps
are applied to select the top-rank university among different
universities.

Example 7. Let U={U,,U,, Uy} be a set of alternatives
(universities) and P ={P,, P,, P, P,, Ps, P¢, P, } be a set of
seven attributes for the selection of universities, where

P, = {represents Academic Staffs},
P, = {represents Scientific Research},
P; = {represents National and International Scientific Activities},
P, = {represents Student Satisfaction},
P; = {represents Quality Assurance},
P = {represents Cultural and Community Activities} and

P, = {represents Library}.
(48)

Suppose that the weight vector of the attributes given by the
decision-maker is w = (0.1,0.37,0.14,0.03,0.27,0.06,0.03)".
Obviously, ¥/, w; = 1. The SR-F values (Y,,¥,) of the alter-

natives according to different attributes are given in Table 1,
where Y, is the positive membership degree for which alter-

native obeys the given attribute and ¥, is the membership
degree for which alternative does not obey the given attribute

such that 0 < (YP,-)Z +,/¥, <landY,,¥, €0, 1].

Applying the proposed aggregation operators given in
Definition 22, score and accuracy functions, we find, as dem-
onstrated in Table 2, that the optimal ranking order of the
three universities is U > U, > U,, and thus, the top alterna-
tive is Us;.

Note that the score functions for the data given in
Table 2 are unequal, so they are enough to determine the
optimal alternative.

The method adopted in this application is illustrated in
Figure 3.

5. Conclusions

This paper contributes to the fuzzy set theory in which inter-
est in it grew since the moment Zadeh launched it. To han-
dle some real-life issues which are difficult to solve using
fuzzy set theory, some researchers extended this theory to
other fuzzy models; the most important are IFSs and PFSs.

In this paper, we have proposed a new shape of fuzzy sets
called an SR-Fuzzy set and revealed its relationship with
other types of the generalizations of fuzzy sets. Then, some
operators on SR-Fuzzy sets have been defined, and their
relationships have been presented. Furthermore, we have
introduced four new weighted aggregated operators over
SR-Fuzzy sets and discussed their properties in detail.
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TaBLE 1: SR-Fuzzy values.
Universities P, P, P, P, P Py P,
U, 0.7,02) (0.4, 0.5) (0.4, 0.7) (0.5, 0.5) (0.4, 0.5) (0.7, 0.1) (0.8, 0.1)
U, (0.6, 0.3) (0.3, 0.6) (0.3, 0.8) (0.6, 0.4) (0.4, 0.7) (0.6, 0.1) (0.7, 0.2)
U, (0.8, 0.1) (0.5, 0.4) (0.5, 0.5) (0.6, 0.4) (0.7, 0.2) (0.8, 0.1) (1, 0)
TaBLE 2: Evaluation of scores and accuracy with SR-Fuzzy aggregation operators.
U, U, (O rank order
SR-FWA (0.463, 0.462) (0.396, 0.577) (0.62, 0.3)
Score -0.465337 -0.602789 -0.163323 U,>U, > U,
Accuracy 0.894075 0.916421 0.932123 Uy >U,>U,
SR-FWG (0.449660, 0.413739) (0.379393, 0.521591) (0.606024, 0)
Score -0.441031 -0.578274 0.367265 U;>U,>U,
Accuracy 0.845420 0.866152 0367265 U,>U, > U,
SR- FWPA (0.479479, 0.440997) (0.414970, 0.553320) (0.634823, 0.273865)
Score -0.434176 -0.571655 -0.120321 Us;>U,>U,
Accuracy 0.893976 0.916055 0.926321 Us;>U,>U,
SR- FWPG (0.496476, 0.475544) (0.425919, 0.605327) (1,0)
Score -0.443109 -0.596621 1 U;>U, > U,
Accuracy 0.936085 0.959435 1 U;>U, > U,
Moreover, we have shown this procedure with one practical
Selection of different alternatives fully developed example.
. (universities) In future works, further applications of SR-Fuzzy sets

Input ——»

Output——»

for ranking

!

Choose particular attributes for
alternatives

!

Assign weight vector to attributes
by decision maker

!

Compute the aggregation values of
alternatives by
SR-FWA, SR-FWG, SR-FWPA
and SR-FWPGoperators

!

Compute score values

!

Select the alternative Output having
high score value

F1GURrk 3: Flow chart to select the high-rank university.

may be investigated, and also, SR-Fuzzy soft sets may be
explored. Also, we will try to generate the topology from
the collection of SR-Fuzzy sets and introduce the ideas of
connectedness and compactness in SR-Fuzzy topology.
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