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In this paper, we present two iterative algorithms involving Yosida approximation operators for split monotone variational
inclusion problems (SpMVIP). We prove the weak and strong convergence of the proposed iterative algorithms to the solution
of SpMVIP in real Hilbert spaces. Our algorithms are based on Yosida approximation operators of monotone mappings such
that the step size does not require the precalculation of the operator norm. To show the reliability and accuracy of the proposed
algorithms, a numerical example is also constructed.

1. Introduction

Variational inequality which was brought into existence by
Hartman and Stampacchia [1] plays an important role as
mathematical model in physics, economics, optimization, net-
working structural analysis, andmedical images. In 1994, Cen-
sor and Elfving [2] first presented the split feasibility problems
(in short, SFP) for modeling in medical image reconstruction.
From the last two decades, SFP has been implemented widely
in intensity-modulation therapy treatment planning and other
branches of applied sciences (see, e.g., [3–5]). Censor et al. [6]
combined the VIP and SFP and presented a new type of vari-
ational inequality problem called split variational inequality
problem (in short, SVIP) as follows:

Find x∗ ∈ C such that x∗ ∈VIP V1 ; Cð Þ andAx∗ ∈VIP V2 ;Qð Þ,
ð1Þ

where C andQ are closed, convex subsets of Hilbert spacesH1
and H2, respectively, A : H1 ⟶H2 is a bounded linear oper-
ator, V1 : H1 ⟶H1 and V2 : H2 ⟶H2 are two operators,
VIPðV1 ; CÞ = fy ∈ C : hV1ðyÞ, x − yi ≥ 0,∀x ∈ Cg and VIPð
V2 ;QÞ = fz ∈Q : hgðzÞ, x − zi ≥ 0,∀x ∈Qg.

Moudafi [7] generalized SVIP into split monotone varia-
tional inclusion problem (in short, SpMVIP) as follows:

Find x∗ ∈H1 such that x∗ ∈VI V1,G1 ;H1ð Þ andAx∗ ∈VI V2, G2 ;H2ð Þ,
ð2Þ

where G1 : H1 ⟶ 2H1 and G2 : H2 ⟶ 2H2 are set-valued
mappings on Hilbert spaces H1 and H2, respectively, VIð
V1,G1 ;H1Þ = fy ∈H1 : 0 ∈ V1ðyÞ + G1ðyÞg and VIðV2,G2 ;
H2Þ = fz ∈H2 : 0 ∈ V2ðzÞ +G2ðzÞg.

Moudafi [7] formulated the following iterative algorithm
to find the solution of SpMVIP. Let λ > 0, select an arbitrary
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starting point x0 ∈H1, and compute

xn+1 =U xn + γA∗ W − Ið ÞAxn½ �, ð3Þ

where A∗ is an adjoint operator of A, γ ∈ ð0, 1/LÞ with L
being a spectral radius of operator A∗A, U = RG1

λ ðI − λV1Þ
= ðI + λG1Þ−1ðI − λV1Þ and W = RG2

λ ðI − λV2Þ =
ðI + λG2Þ−1ðI − λV2Þ:

Let NCðxÞ = fz ∈H1 : hz, y − xi ≤ 0,∀y ∈ Cg and NQðxÞ
= fw ∈H2 : hw, y − xi ≤ 0, ∀y ∈Qg be normal cones to the
closed and convex sets C and Q, respectively. If G1 =NC
and G2 =NQ, then SpMVIP reduces to SpVIP. If V1 =V2 =
0, then SpMVIP reduces to the split variational inclusion
problem (in short, SpVIP) for set-valued maximal monotone
mappings, introduced and studied by Byrne et al. [8]:

Find x∗ ∈H1 such that x∗ ∈VI G1 ;H1ð Þ andAx∗ ∈VI G2 ;H2ð Þ,
ð4Þ

where VIðG1 ;H1Þ = fy ∈H1 : 0 ∈G1ðyÞg and VIðG2 ;H2Þ
= fz ∈H2 : 0 ∈ G2ðzÞg, G1,G2 are the same as in (2). We
denote the solution set of SpVIP by Δ. Moreover, Byrne
et al. [8] presented the following iterative algorithm to find
the solution of SpVIP. Let λ > 0, and select a starting point
x0 ∈H1. Then, compute

xn+1 = RG1
λ xn + γA∗ RG2

λ − I
� �

Axn
h i

, ð5Þ

where A∗ is the adjoint operator of A, L = kA∗Ak, γ ∈ ð0, 2/
LÞ and RG1

λ , RG2
λ are the resolvents of monotone mappings

G1,G2, respectively. It can be easily seen that x∗ solves Sp
VIP if and only if x∗ = RG1

λ ½x∗ + γA∗ðI − RG2
λ ÞAx∗�. Kazmi

and Rizwi [9] proposed the following iterative method for
approximating the common solutions of SpVIP and fixed
point problem of a nonexpansive mapping:

yn = RG1
λ xn + γA∗ RG2

λ − I
� �

Axn
h i

,

xn+1 = αn f xnð Þ + 1 − αnð ÞSyn,
ð6Þ

where f is a contraction and S is nonexpansive mapping.
Later, Sitthithakerngkiet et al. [10] studied the common
solutions of SpVIP and a fixed point of an infinite family
of nonexpansive mappings and introduced the following
iterative method:

yn = RG1
λ xn + γA∗ RG2

λ − I
� �

Axn
h i

,

xn+1 = αnξu + βnxn + 1 − βnð ÞI − αnD½ �Wnyn, ∀n ≥ 1,
ð7Þ

where u ∈H1 is a given point and Wn is W-mapping
which is generated by an infinite family of nonexpansive
mappings. Similar results related to SpVIP can be found in
[11–17].

The common figure among the above-explained iterative
methods is that they used the resolvent of associated mono-
tone mappings; secondly, the step size depends on the oper-
ator norm kA∗Ak. To avoid this obstacle, self-adaptive step
size iterative algorithms have been introduced (see, for
example, [18–24]). Lopez et al. [20] introduced a relaxed
method for solving split feasibility problem with self-
adaptive step size. Recently, Dilshad et al. [25] proposed
two iterative algorithms to solve SpVIP in which the pre-
calculation of the operator norm kA∗Ak is not required.
They studied the weak and strong convergence of the pro-
posed methods to approximate the solution of SpVIP with

the step size γn = ðjjxn − RG1
λ xnjj

2 + kA∗ðI − RG2
λ ÞAxnk

2Þ/ð
kxn − RG1

λ xn + A∗ðI − RG2
λ ÞAxnk

2Þ, which do not depend
upon the precalculated operator norm.

The resolvent of a maximal monotone operator G is
defined as JGλ = ðI + λGÞ−1, where λ is a positive real num-
ber. A resolvent operator of maximal monotone operator
is single valued and firmly nonexpansive. Due to the fact
that the zeros of maximal monotone operator are the fixed
point sets of resolvent operator, the resolvent associated
with a set-valued maximal monotone operator plays an
important role to find the zeros of monotone operators.
Following Byrne’s iterative method (5), which is mainly
based on the resolvents of monotone mappings, many
researchers introduced and studied various iterative
methods for SpVIP (see, for example, [7–9, 18, 25, 26]
and references therein).

Yosida approximation operator for a monotone map-
ping G and parameter λ > 0 is defined as JGλ = ð1/λÞðI − RG

λ
Þ. It is well known that set-valued monotone operator can
be regularized into a single-valued monotone operator by
the process known as the Yosida approximation. Yosida
approximation is a tool to solve a variational inclusion prob-
lem using nonexpansive resolvent operator and has been
used to solve various variational inclusions and system of
variational inclusions in linear and nonlinear spaces (see,
for example, [18, 25–30]).

Due to the fact that the zero of Yosida approximation
operator associated with monotone operator G is the zero
of inclusion problem 0 ∈GðxÞ and inspired by the work of
Moudafi, Byrne, Kazmi, and Dilshad et al., our motive is to
propose two iterative methods to solve SpMVIP. The rest
of the paper is organized as follows.

The next section contains some fundamental results and
preliminaries. In Section 3, we describe two iterative algo-
rithms using Yosida approximation of monotone mappings
G1 and G2. Section 4 is devoted to the study of weak and
strong convergence of the proposed iterative methods to
the solution of SpMVIP. In the last section, we give a numer-
ical example in support of our main results and show the
convergence of sequence obtained from the proposed algo-
rithm to the solution of SpMVIP.
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2. Preliminaries

Let H be a real Hilbert space endowed with norm k·k and
inner product h·, · i. The strong and weak convergence of a
sequence fxng to x is denoted by xn ⟶ x and xn ⇀ x,
respectively. The operator T : H ⟶H is said to be a con-
traction if ∀x, y ∈H, kTðxÞ − TðyÞk ≤ κkx − yk, κ ∈ ð0, 1Þ; if
κ = 1, then T is called nonexpansive and firmly nonexpan-
sive if ∀x, y ∈H, kTðxÞ − TðyÞk2 ≤ hx − y, Tx − Tyi; T is
called τ-inverse strongly monotone if there exists τ > 0 such
that hTðx − TðyÞ, x − yi ≥ τkTðxÞ − TðyÞk2.

For some x ∈H1, there exists a unique nearest point in C
denoted by PCx such that

x − PCxk k ≤ x − yk k, ∀y ∈ C: ð8Þ

PCx is called the projection of x onto C ⊂H, which sat-
isfies

x − y, PCx − PCyh i ≥ PCx − PCyk k2, ∀x, y ∈H: ð9Þ

Moreover, PCx is also characterized by the fact that

PCx = z⇔ x − z, y − zh i ≥ 0, y ∈ C: ð10Þ

In Hilbert spaces, the following equality and inequality
hold for all x, y, z ∈H, α, β, γ ∈ ½0, 1� such that α + β + γ = 1

αx + βy + γzk k2 = α xk k2 + β yk k2 + γ zk k2 − αβ x − yk k2
− βγ y − zk k2 − γα x − zk k2,

ð11Þ

x + yk k2 ≤ xk k2 + 2 y, x + yh i: ð12Þ

Let G : H ⟶ 2H be a set-valued operator. The graph of
G is defined by fðx, yÞ: y ∈GðxÞg, and inverse of G is
denoted by G−1 = fðy, xÞ: y ∈GðxÞg. A set-valued mapping
G is said to be monotone if hu − v, x − yi ≥ 0, for all u ∈Gð
xÞ, v ∈GðyÞ. A monotone operator G is called a maximal
monotone if there exists no other monotone operator such
that its graph properly contains the graph of G.

Lemma 1 (see [31]). If fang is a sequence of nonnegative real
numbers such that

an+1 ≤ 1 − βnð Þan + δn, n ≥ 0, ð13Þ

where fβng is a sequence in ð0, 1Þ and fδng is a sequence in
ℝ such that

(i) ∑∞
n=1βn =∞

(ii) lim sup
n⟶∞

δn/βn ≤ 0 or lim sup
n⟶∞

jδnj <∞

then lim
n⟶∞

an = 0:

Lemma 2 (see [32]). Let H be a Hilbert space. A mapping
F : H ⟶H is τ -inverse strongly monotone if and only if I
− τF is firmly nonexpansive, for τ > 0.

Lemma 3 (see [33]). Let H be a Hilbert space and fxng be a
bounded sequence in H. Assume there exists a nonempty sub-
set C ⊂H satisfying the properties

(i) limn⟶∞kxn − zk exists for every z ∈ C

(ii) ωwðxnÞ ⊂ C

Then, there exists x∗ ∈ C such that fxng converges weakly
to x∗.

Lemma 4 (see [34]). Let Γn be a sequence of real numbers
that does not decrease at infinity in the sense that there exists
a subsequence Γnk

of Γn such that Γnk
< Γnk+1 for all k ≥ 0.

Also, consider the sequence of integers fσðnÞgn≥n0 defined by

σ nð Þ =max k ≤ n : Γk ≤ Γk+1f g: ð14Þ

Then, fσðnÞgn≥n0 is a nondecreasing sequence verifying
limn⟶∞σðnÞ =∞ and for all n ≥ n0,

max Γσ nð Þ, Γ nð Þ
n o

≤ Γσ nð Þ+1: ð15Þ

3. Yosida Approximation Iterative Methods

Let V1 : H1 ⟶H1, V2 : H2 ⟶H2 be single-valued mono-
tone mappings and G1 : H1 ⟶ 2H1 ,G2 : H2 ⟶ 2H2 be set-
valued mappings such that V1 + G1 : H1 ⟶ 2H1 and V2 +
G2 : H2 ⟶ 2H2 are set-valued maximal monotone map-
pings; RV1+G1

λ1
, RV2+G2

λ2
and JV1+G1

λ1
, JV2+G2

λ2
are the resolvents

and Yosida approximation operators of V1 +G1 and V2 +
G2, respectively. We propose the following iterative methods
to approximate the solution of SpMVIP.

Algorithm 1. For an arbitrary x0, compute the n + 1th itera-
tion as follows:

un = xn − γnJ
V1+G1
λ1

xnð Þ,

xn+1 = un − μnA
∗ JV2+G2

λ2
Aunð Þ,

ð16Þ

where γn and μn are defined as

γn =
τn JV1+G1

λ1
xnð Þ

��� ���
JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ��� , if JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ��� ≠ 0,

0, otherwise,

8>>><
>>>:

ð17Þ
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μn =

τn JV2+G2
λ2

Aunð Þ
��� ���

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� , if JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� ≠ 0,

0, otherwise,

8>>><
>>>:

ð18Þ

where λ1 > 0, λ2 > 0 and θ =min f2λ1, 2λ2g such that τn ∈
ð0, θÞ:

Algorithm 2. For an arbitrary x0, compute the n + 1th itera-
tion as follows:

un = xn − γnJ
V1+G1
λ1

xnð Þ,

vn = un − μnA
∗ JV2+G2

λ2
Aunð Þ,

xn+1 = 1 − βnð Þun + αn vn − unð Þ:
ð19Þ

where γn and μn are defined as

where αn, βn ∈ ð0, 1Þ, λ1 > 0, λ2 > 0, and θ =min f2λ1, 2λ2g
such that τn ∈ ð0, θÞ.

4. Main Results

We assume that the problem SpMVIP is consistent and the
solution set is denoted by Δ.

First, we prove following lemmas, which are used in the
proof of our main results.

Lemma 5. Let V1 : H1 ⟶H1 be single-valued monotone
mappings and G1 : H1 ⟶ 2H1 be set-valued mappings such
that V1 +G1 : H1 ⟶ 2H1 be set-valued maximal monotone
mapping. If RV1+G1

λ1
and JV1+G1

λ1
are the resolvent and Yosida

approximation operators of V1 + G1, respectively, then for
λ1 > 0, following are equivalent:

(i) x∗ ∈H1 is the solution of ðV1 +G1Þ−1ð0Þ
(ii) RV1+G1

λ1
ðx∗Þ = x∗

(iii) JV1+G1
λ1

ðx∗Þ = 0

Proof. The proof is trivial which is an immediate conse-
quence of definitions of resolvent and Yosida approximation
operator of maximal monotone mapping V1 +G1.☐

Theorem 6. Let H1, H2 be real Hilbert spaces; V1 : H1 ⟶
H1, V2 : H2 ⟶H2 be single-valued monotone mappings,
G1 : H1 ⟶ 2H1 , G2 : H2 ⟶ 2H2 be set-valued maximal
monotone mappings such that V1 +G1 and V2 +G2 are max-
imal monotone, and A : H1 ⟶H2 be a bounded linear
operator. Assume that θ =min f2λ1, 2λ2g such that inf τnð
θ − τnÞ > 0. Then, the sequence fxng generated by Algorithm 1
converges weakly to a point z ∈ Δ.

Proof. Let z ∈ Δ. Since the Yosida approximation operator
JV1+G1
λ1

is λ1-inverse strongly monotone, for λ1 > 0, then by
Algorithm 1 and (12), we have

un − zk k2 = xn − γnJ
V1+G1
λ1

xnð Þ − z
��� ���2

= xn − zk k2 + γ2n JV1+G1
λ1

xnð Þ
��� ���2

− 2γn JV1+G1
λ1

xnð Þ, xn − z
D E

≤ xn − zk k2 + γ2n JV1+G1
λ1

xnð Þ
��� ���2

− 2γnλ1 JV1+G1
λ1

xnð Þ
��� ���2 = xn − zk k2

+ γ2n − 2γnλ1
� �

JV1+G1
λ1

xnð Þ
��� ���2:

ð21Þ

Now, using (17), we estimate that

γn =
τn JV1+G1

λ1
xnð Þ

��� ���
JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ��� , if JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ��� ≠ 0,

0, otherwise,

8>>><
>>>:

μn =
τn JV2+G2

λ2
Aunð Þ

��� ���
JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� , if JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� ≠ 0,

0, otherwise,

8>>><
>>>:

ð20Þ
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From (21) and (22), we get

un − zk k2 ≤ xn − zk k2 +
τn

2 − 2λ1τn
� �

JV1+G1
λ1

xnð Þ
��� ���3

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ��� :
ð23Þ

Since JV2+G2
λ2

is λ2-inverse strongly monotone and using

(12), we estimate

xn+1 − zk k2 = un − μn J
V2+G2
λ2

Aunð Þ − z
��� ���2

≤ un − zk k2 + μ2n JV2+G2
λ2

Aunð Þ
��� ���2

− 2μn JV2+G2
λ2

Aunð Þ, un − z
D E

= un − zk k2 + μ2n JV2+G2
λ2

Aunð Þ
��� ���2

− 2μn JV1+G1
λ1

Aunð Þ
��� ���2 = un − zk k2

+ μ2n − 2μnλ2
� �

JV2+G2
λ1

Aunð Þ
��� ���2:

ð24Þ

By (18), it turns out that

γ2n − 2γnλ1
� �

JV1+G1
λ1

xnð Þ
��� ���2 = JV1+G1

λ1
xnð Þ

��� ���2 τn
2 JV1+G1

λ1
xnð Þ

��� ���2

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���� �2 −
2τnλ1 JV1+G1

λ1
xnð Þ

��� ���
JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���

2
64

3
75

= JV1+G1
λ1

xnð Þ
��� ���3 τn

2 JV1+G1
λ1

xnð Þ
��� ��� − 2λ1τn JV1+G1

λ1
xnð Þ

��� ��� + A∗ JV2+G2
λ2

Axnð Þ
��� ���� �

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���� �2

2
64

3
75

≤ JV1+G1
λ1

xnð Þ
��� ���3 τn

2 − 2λ1τn
� �

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���� �

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���� �2

2
64

3
75

=
τn

2 − 2λ1τn
� �

JV1+G1
λ1

xnð Þ
��� ���3

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ��� :
ð22Þ

μ2n − 2μnλ2
� �

JV2+G2
λ2

Aunð Þ
��� ���2 = JV2+G2

λ2
Aunð Þ

��� ���2 τn
2 JV2+G2

λ2
Aunð Þ

��� ���2

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ���� �2 −
2τnλ2 JV2+G2

λ2
Aunð Þ

��� ���
JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ���

2
64

3
75

= JV2+G2
λ2

Aunð Þ
��� ���3 τn

2 JV2+G2
λ2

Aunð Þ
��� ��� − 2λ2τn JV1+G1

λ1
unð Þ

��� ��� + A∗ JV2+G2
λ2

Aunð Þ
��� ���� �

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ���� �2

2
64

3
75

= JV2+G2
λ2

Aunð Þ
��� ���3 τn

2 − 2λ2τn
� �

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ���� �

JV1+G1
λ1

unð Þ
��� ���+∥ A∗ JV2+G2

λ2
Aunð Þ

��� ���� �2

2
64

3
75

=
τn

2 − 2λ2τn
� �

JV2+G2
λ2

Aunð Þ
��� ���3

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� :
ð25Þ
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It follows from (24) and (25) that

xn+1 − zk k2 ≤ un − zk k2 +
τn

2 − 2λ2τn
� �

JV2+G2
λ2

Aunð Þ
��� ���3

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� :
ð26Þ

Combining (23) and (26), we get

xn+1 − zk k2 ≤ xn − zk k2 −
τn 2λ1 − τnð Þ JV1+G1

λ1
xnð Þ

��� ���3
JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���

−
τn 2λ2 − τnð Þ JV2+G2

λ2
Aunð Þ

��� ���3
JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� ,
ð27Þ

≤ xn − zk k, ð28Þ

which implies that fxng is Fejér monotone with respect to Δ
and hence bounded, which assures that lim

n⟶∞
kxn − zk exists

for all z ∈ Δ. Keeping in mind that θ =min f2λ1, 2λ2g, from
(27), we have

〠
∞

n=1
τn θ − τnð Þ

JV1+G1
λ1

xnð Þ
��� ���3

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���

2
64

+
JV2+G2
λ2

Aunð Þ
��� ���3

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ���

3
75 <∞:

ð29Þ

Due to the assumption that inf τnðθ − τnÞ > 0 and the
properties of convergent series, we conclude that

lim
n⟶∞

JV1+G1
λ1

xnð Þ
��� ��� = lim

n⟶∞
JV2+G2
λ2

Aunð Þ
��� ��� = 0: ð30Þ

Hence, there exist constants K1 and K2 such that

JV1+G1
λ1

xnð Þ
��� ��� ≤ K1, JV2+G2

λ2
Aunð Þ

��� ��� ≤ K2: ð31Þ

By Algorithm 1 and (30), we get

xn+1 − xnk k ≤ xn+1 − unk k + un − xnk k ≤ K1γn + K2μn ⟶ 0, as n⟶∞:

ð32Þ

Letfx⋆g ∈ ωwðxnÞandfxnkgbe a subsequence offxngthat
converges weakly tofx⋆g, which implies thatfxnkgandfunkg
also converge tofx⋆g. Recall that JV1+G1

λ1
is λ1-inverse

strongly monotone and fxnkg converges to x⋆, and using

(30), we get

JV1+G1
λ1

xnk
� �

− JV1+G1
λ1

x⋆ð Þ, xnk − x⋆
D E

≥ λ1 JV1+G1
λ1

xnk
� �

− JV1+G1
λ1

x⋆ð Þ
��� ���2:

ð33Þ

Taking limit k⟶∞, we obtain JV1+G1
λ1

ðx⋆Þ = 0:
Replacing JV1+G1

λ1
by JV2+G2

λ2
A, xnk by Aunk with the same

arguments, we get JV2+G2
λ2

Aðx⋆Þ = 0: This completes the
proof.☐

Theorem 7. Let H1, H2 be real Hilbert spaces; V1 : H1 ⟶
H1, V2 : H2 ⟶H2 be single-valued monotone mappings,
G1 : H1 ⟶ 2H1 , G2 : H2 ⟶ 2H2 be set-valued maximal
monotone mappings such that V1 +G1 and V2 +G2 are max-
imal monotone, and A : H1 ⟶H2 be a bounded linear
operator. If fαng, fβng are real sequences in ð0, 1Þ and θ =
min f2λ1, 2λ2g such that τn ∈ ð0, θÞ and

lim
n⟶∞

βn = 0,

〠
∞

n=0
βn =∞,

lim
n⟶∞

1 − αnð Þαn > 0,

inf
n
τn θ − τnð Þ > 0,

ð34Þ

then the sequence fxng generated by Algorithm 2 converges
strongly to z = PΔð0Þ.

Proof. Let z = PΔð0Þ; then, from (23) and (26) of the proof of
Theorem 6, we have

un − zk k2 ≤ xn − zk k2 +
τn

2 − 2λ1τn
� �

JV1+G1
λ1

xnð Þ
��� ���3

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ��� ,
ð35Þ

vn − zk k2 ≤ un − zk k2 +
τn

2 − 2λ2τn
� �

JV2+G2
λ2

Aunð Þ
��� ���3

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� :
ð36Þ

Since τn ≤min f2λ1, 2λ2g, we get ∥vn − z∥≤∥un − z∥≤∥xn
− z∥: From Algorithm 2, we have

xn+1 − zk k = 1 − βnð Þun + αn vn − unð Þ − zk k
≤ 1 − αn − βnð Þ un − zk k + +αnk kvn − z +βnk k − zk
≤ 1 − βnð Þ xn − zk k + βn zk k ≤max xn − zk k, zk kf g
≤⋯≤max x0 − zk k, zk kf g,

ð37Þ

which implies that the sequence fxng is bounded and hence,
the sequences fung,fvng,fJV1+G1

λ1
ðunÞg and fA∗ JV2+G2

λ2
ðAunÞg
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are also bounded. Now,

xn+1 − zk k2 = 1 − βnð Þun + αn vn − unð Þ − zk k2
≤ 1 − αn − βnð Þ un − zk k2 + αn vn − zk k2

+ βn zk k2 − αn 1 − αn − βnð Þ vn − unk k2:
ð38Þ

Combining (35), (36), and (38), we obtain

xn+1 − zk k2 ≤ 1 − αn − βnð Þ xn − zk k2 +
τn

2 − 2λ1τn
� �

JV1+G1
λ1

xnð Þ
��� ���3

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���

2
64

3
75

+ αn un − zk k2 +
τn

2 − 2λ2τn
� �

JV2+G2
λ2

Aunð Þ
��� ���3

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���

2
64

3
75

+ βn zk k2 − αn 1 − αn − βnð Þ vn − unk k2 ≤ xn − zk k2
+ βn − xn − zk k2 + zk k2� �

− αn 1 − αn − βnð Þ vn − unk k2

−
1 − αn − βnð Þ τn

2 − 2λ1τn
� �

JV1+G1
λ1

xnð Þ
��� ���3

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���

−
αn τn

2 − 2λ2τn
� �

JV2+G2
λ2

Aunð Þ
��� ���3

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� :

ð39Þ

We discuss the two possible cases.
Case 1. If the sequencefkxn − zkg is nonincreasing, then

there exists a number k ≥ 0 such that kxn+1 − zk ≤ kxn − zk,
for each n ≥ k. Then, lim

n⟶∞
kxn − zk exists and hence, lim

n⟶∞
ðkxn+1 − zk − kxn − zkÞ = 0. Thus, it follows from (39) that

lim
n⟶∞

vn − unk k = 0, lim
n⟶∞

JV1+G1
λ1

xnð Þ
��� ��� = 0,

lim
n⟶∞

JV2+G2
λ2

Aunð Þ
��� ��� = 0:

ð40Þ

From (40), we conclude that lim
n⟶∞

γn = lim
n⟶∞

μn = 0 and

lim
n⟶∞

kun − xnk = 0: We observe from Algorithm 2 that

xn+1 − un = αnðvn − unÞ + γnun ⟶ 0; thus,

xn+1 − xnk k ≤ xn+1 − unk k + un − xnk k ≤ vn − unk k
+ γn unk k + un − xnk k⟶ 0 as n⟶∞:

ð41Þ

This shows that the sequence fxng is asymptotically reg-
ular. By Theorem 6, we have that ωwðxnÞ ⊂ Δ.
Settingzn = ð1 − αnÞun + αnvnand
rewritingxn+1 = ð1 − βnÞzn + αnβnðvn − unÞ, we have

zn − zk k = 1 − αnð Þun + αnvn − zk k
≤ 1 − αnð Þ un − zk k + αn vn − zk k ≤ xn − zk k: ð42Þ

From (42) and Algorithm 2, we get

xn+1 − zk k2 = 1 − βnð Þ zn − zð Þ + βn αn vn − unð Þ − zð Þk k2
≤ 1 − βnð Þ2 zn − zk k2 + 2βn αn vn − unð Þ − z, xn+1 − zh i
≤ 1 − βnð Þ xn − zk k2 + 2βn αn vn − un, xn+1 − zh if

+ −z, xn+1 − zh ig,
ð43Þ

or

an+1 = 1 − βnð Þan + bn, ð44Þ

where an = kxn − zk, bn = 2βnfαnhvn − un, xn+1 − zi + h−z,
xn+1 − zig:

Since ωwðxnÞ ⊂ Δ and z = PΔð0Þ, then using (40), we get

lim sup
n⟶∞

bn
βn

= lim sup
n⟶∞

2αn vn − un, xn+1 − zh if

+ −z, xn+1 − zh ig = lim sup
n⟶∞

−z, xn+1 − zh i ≤ 0:

ð45Þ

Thus, by Lemma 1, we obtain xn ⟶ z.
Case 2. If the sequence fkxn − zkg is not nonincreasing,

we can select a subsequence fkxnk − zkg of fkxn − zkg such
that kxnk − zk ≤ kxn − zk for all k ∈ℕ. In this case, we define
a subsequence of positive integers σðnÞ⟶∞ with the
properties

xσ nð Þ − z
��� ��� < xσ nð Þ+1 − z

��� ���,
max xσ nð Þ − z

��� ���, xn − zk k
n o

≤ xσ nð Þ+1 − z
��� ���:

ð46Þ

If kxn+1 − zk > kxn − zk for some n ≥ 0, then it follows
from (39) that

αn 1 − αn − βnð Þ vn − unk k2 +
1 − αn − βnð Þ τn

2 − 2λ1τn
� �

JV1+G1
λ1

xnð Þ
��� ���3

JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ���

+
αn τn

2 − 2λ2τn
� �

JV2+G2
λ2

Aunð Þ
��� ���3

JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� ≤ βn zk k2 − xn − zk k2� �
:

ð47Þ

Replacing n by σðnÞ and taking limit n⟶∞, we get
the following relation for the subsequences fxσðnÞg, fuσðnÞg
, and fvσðnÞg:

lim
n⟶∞

vσ nð Þ − uσ nð Þ
��� ��� = 0,

lim
n⟶∞

JV1+G1
λ1

xσ nð Þ
� ���� ��� = 0,

lim
n⟶∞

JV2+G2
λ2

Auσ nð Þ
� ���� ��� = 0

ð48Þ
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Thus, we have kxσðn+1Þ − xσðnÞk⟶ 0, as n⟶∞ and
ωwðxσðnÞÞ ⊂ Δ. It is remaining to show that xn ⟶ z.

Replacing n by σðnÞ in (47), using kxσðnÞ − zk < kxσðnÞ+1
− zk and boundedness of kxn − zk, we have

xσ nð Þ − z
��� ���2 ≤M vσ nð Þ − uσ nð Þ

��� ��� + 2 −z, xσ nð Þ+1 − z
D E

: ð49Þ

Since z = PΔð0Þ, ωðxσðnÞÞ ⊂ Δ with using kvσðnÞ − uσðnÞk
⟶ 0 and kxσðnÞ+1 − xσðnÞk⟶ 0, we have

lim sup
n⟶∞

−z, xσ nð Þ+1 − z
D E

= lim sup
n⟶∞

−z, xσ nð Þ − z
D E

= max
r∈ωw xσ nð Þð Þ

−z, r − zh i
�
≤ 0:

ð50Þ

From (49) and (52), we conclude that xσðnÞ ⟶ z and

xn − zk k ≤ xσ nð Þ+1 − z
��� ��� ≤ xσ nð Þ+1 − xσ nð Þ

��� ��� + xσ nð Þ − z
��� ���⟶ 0,

ð51Þ

that is, xn ⟶ z. This complete the proof.☐

For τn = 1, we have the following result for the conver-
gence of Algorithm 2.

Corollary 8. Let H1, H2, V1, V2, G1,G2, and A, A∗ be the
same as defined in Theorem 7. If fαng, fβng are sequences
in ð0, 1Þ and assuming that λ1 > 1/2 and λ2 > 1/2 satisfying

lim
n⟶∞

βn = 0, 〠
∞

n=0
βn =∞,

lim
n⟶∞

1 − αnð Þαn > 0,
ð52Þ

then the sequence fxng generated by Algorithm 2 (with τn = 1
) converges strongly to z = PΔð0Þ.

For βn = 0, we have the following corollary for the con-
vergence of Algorithm 2.

Corollary 9. Let H1, H2, V1, V2, G1,G2, and A, A∗ be the
same as defined in Theorem 7. If fαng is a sequence in ð0, 1
Þ and assuming that θ =min f2λ1, 2λ2g such that τn ∈ ð0, θ
Þ and

lim
n⟶∞

1 − αnð Þαn > 0,

inf
n
τn θ − τnð Þ > 0,

ð53Þ

then the sequence fxng generated by the iterative method

un = xn − γnJ
V1+G1
λ1

xnð Þ,

vn = un − μnA
∗ JV2+G2

λ2
Aunð Þ,

xn+1 = 1 − αnð Þun + αnvn,

ð54Þ

where γn and μn are defined as in Algorithm 2 (with τn = 1),
converges strongly to z ∈ Δ.

For τn = 1 and βn = 0, we have the following corollary for
the convergence of Algorithm 2.

Corollary 10. Let H1, H2, V1, V2, G1,G2, and A, A∗ be the
same as defined in Theorem 7. If fαng be a sequence in ð0,
1Þ and assuming that

lim
n⟶∞

1 − αnð Þαn > 0,

λ1 >
1
2
,

λ2 >
1
2
,

ð55Þ

then the sequence fxng generated by the iterative method

un = xn − γnJ
V1+G1
λ1

xnð Þ,

vn = un − μnA
∗ JV2+G2

λ2
Aunð Þ,

xn+1 = 1 − αnð Þun + αnvn,

ð56Þ

where γn and μn are defined in Algorithm 2 (with τn = 1),
converges strongly to z ∈ Δ.

5. Numerical Example

Let H1 =H2 =ℝ and V1 =V2 = 0; G1 : ℝ⟶ℝ, G2 : ℝ
⟶ℝ are defined as G1ðxÞ = 2x + 3 and G2ðxÞ = 2ðx + 1Þ,
respectively. One can easily check that G1 and G2 are mono-
tone and the Yosida approximation operator of G1 and G2
for λ1 = λ2 = 1 is computed as

JV1+G1
λ1

xð Þ = 2x + 3
3 ,

JV2+G2
λ2

xð Þ = 2x + 2
3 :

ð57Þ

Let A : H1 ⟶H2 be defined as AðxÞ = 2x/3, then, for
τn = ð2 − ðe1/n/2ÞÞ ∈ ð0, 2Þ, we compute the step size as

γn =
τn JV1+G1

λ1
xnð Þ

��� ���
JV1+G1
λ1

xnð Þ
��� ��� + A∗ JV2+G2

λ2
Axnð Þ

��� ��� = 2 − e1/n

2

� 	 9
13 ,

μn =
τn JV2+G2

λ2
Aunð Þ

��� ���
JV1+G1
λ1

unð Þ
��� ��� + A∗ JV2+G2

λ2
Aunð Þ

��� ��� = 2 − e1/n

2

� 	 6
13 :

ð58Þ

Then, for αn = ð2 − ðe1/n/3ÞÞ and two different values of
ðβnÞ (for example, βn = 1/ðn + 5Þ and βn = 1/ðn + 10Þ) and
for arbitrary x0 (for example, x0 = −2 and x0 = 0), we com-
pute the iterative sequences from Algorithm 2 as follows:
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un = xn − 2 − e1/n

2

� 	 3
13 2xn + 3ð Þ,

vn = un − 2 − e1/n

2

� 	 8
117 2xn + 3ð Þ,

xn+1 = 1 − 1
n + 5

� 	
un + 2 − e1/n

3

� 	
vn − unð Þ:

ð59Þ

In Figures 1 and 2, we show that the obtained sequences

fung, fvng, and fxng converge to z = −ð3/2Þ for randomly
selected arbitrary values of x0 = −2 and 0.

6. Conclusions

We have proposed two iterative algorithms for SpMVIP
which are mainly based on the Yosida approximation oper-
ators. Since the zero of Yosida approximation of monotone
mapping V1 +G1 is the solution of ðV1 +G1Þ−1ð0Þ, we used
the Yosida approximations of monotone mappings V1 + G1
and V2 +G2 to solve SpMVIP. We proved the weak and
strong convergence of the composed iterative algorithms to
investigate the solution of SpMVIP under some suitable
assumptions such that the estimation of step size does not
require any prior calculation of the operator norm kA∗Ak.
To show the accuracy and efficiency of our algorithms, we
have present a numerical example and showed the conver-
gence using different parameters.
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