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Four-dimensional continuous chaotic models with Caputo fractional derivative are presented. Fixed point theory is used to
investigate the existence and uniqueness of complex systems. The dynamical properties are studied, including the Lyapunov
exponent, phase portrait, and time series analysis. The hyperchaotic nature of each system is revealed by the positive
exponents. The numerical method is introduced to describe the influence of the order of the Caputo fractional derivative. The
phase portraits are presented to investigate the behavior and effect of some key parameters and fractional orders on model
dynamics. The systems approach fixed point attractors for fractional-order and increase the visibility of the attractor by
decreasing fractional order. This means that a change in fractional order has a significant impact on the dynamics of the
models. When the order of the derivative is equal to one, both systems oscillate frequently. However, as the fractional order is
reduced, the system oscillations decrease as compared to the integer-order, and the system moves towards its fixed point,
reveals the hidden attractors inherent in the system, and enabling it to develop to a stable state more efficiently.

1. Introduction

Fractional calculus (FC) is widely used to model different
natural phenomena in several fields of science and engineer-
ing. The nonlocal nature of fractional order derivatives and
integrals is shown to be a significant component in fractional
calculus for a wide range of applications [1]. Contiguous
data is used to approximate the integer-order derivative of
a function at a particular point, but the fractional derivative
requires a completely unique situation from the beginning.
The nonlocality of the fractional derivative is important in
describing the storage and hereditary aspects in the system
[2–5]. As a result, models that use fractional derivatives are
more realistic than integer-order. The fractional derivatives’
second advantage is that it can model transitional processes.
The integer order derivative cannot model the genuine
occurrences in several physical problems, such as fluid diffu-
sion in porous media, as the processes are intermediate.
Recently, several novel fractional operators have been sug-

gested with different types of kernels. The Caputo fractional
operator is one of the most important definition in fractional
calculus [6, 7].

Since the analytical techniques are unable to solve many
fractional-order dynamic systems, therefore, a wide range of
numerical algorithms have been developed to find an
approximate solution to fractional-order systems [8–11].
Differential equations are particularly used to describe a
variety of natural phenomena. Dynamical systems are one
of the most important and rapidly increasing subjects that
make extensive use of differential equations. The dynamical
system can describe each point in phase space across time. If
the mathematical model is a dynamical system that repre-
sents a real-world situation, its state may be predicted at
any moment t. Fractional-order calculus is one of the useful
tools for understanding complex dynamical systems with
nonlinear properties [12, 13].

A chaotic system is the combination of differential equa-
tions in which any two solutions for two relatively similar
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conditions are drastically different at any given time. For the
reasons stated above, many chaotic systems have been intro-
duced to produce chaos. These systems produce attractors,
which are a set of invariant points in phase space. In 1963,
Lorenz was the first to introduce chaos [14]. Since then,
chaos has attracted the curiosity of many academics and
research groups throughout the world. Over the last few
decades, chaos has been successfully applied in communica-
tions, control applications such as managing irregular
behavior in devices and systems [15], communication pri-
vacy, and synchronisation of same or different systems that
lead to data encryption, chaotic band radio, and secure com-
munications [16].

Although it has been shown that fractional-order chaotic
systems are better to realize physical objects due to their
dynamic nature, the majority of chaotic systems are of inte-
ger order. Fractional-order chaotic systems have been shown
to be more appropriate for modelling nonlinear systems
than integer-order because their future state is determined
not only by their current state but also by the conditions of
their previous states. Because fractional calculus can
improve the complexity and precision of chaos, researchers
are interested in fractional order multiwing chaotic systems.
Many scholars have examined a wide range of chaotic sys-
tems with fractional-order operators and have found this
area to be a useful tool for analysing the system’s complexi-
ties [17–20].

According to Liouville’s theorem, for the conservative
dynamical systems, the volume of phase space is conserva-
tive and the flow is incompressible. Lichtenberg and Lieber-
man constructed a system with coexisting quasiperiodic and
coexisting chaotic flows [21]. 3D conservative chaotic sys-
tems were constructed by Cang et al. [22]; meanwhile, con-
servative flows and the dynamics were also studied.
Furthermore, conservative chaotic mapping has been
revealed in [23, 24]. Hidden chaotic attractors and hidden
periodic oscillations have been investigated in drilling sys-
tems [25], phase-locked loops, and in aviation control sys-
tem [26, 27]. The attraction basin for hidden attractor’s is
not connected to any nearby regions of equilibrium, which
shows that these attractors are different from self-excited
attractors. Most of the work done in understanding of hid-
den attractors is with integer-order derivatives, though the
investigations of hidden attractors in a chaotic system can
be done very efficiently using noninteger derivatives. The
investigation of hidden chaotic attractors in fractional-
order systems is the best way to go deeper into a new intrigu-
ing and underexplored subject with great importance.
Therefore, it has a great importance to realize the hidden
attractors with fractional derivatives [28]. The investigation
fractional-order dynamical systems with hidden attractors
having one stable equilibrium [29], no-equilibria [30], a line
or surfaces of equilibria [31], and even fractional-order
hyper-chaotic systems [32] have been reported in the litera-
ture. Also, different families of hidden attractors have been
studied extensively [33].

Motivated from the above works, we consider two differ-
ent conservative four-dimensional chaotic systems with frac-
tional order Caputo derivative. We study the hidden

attractors present in these two systems for particular values
of the control parameters. The numerical algorithm used
for the solution has many advantages. This method is con-
sistent, stable, and convergent [34]. Here, we consider two
different four-dimensional dynamical systems [35] with
Caputo fractional derivative as

CDϖ
t x tð Þ = dxy,CDϖ

t y tð Þ = xz,CDϖ
t z tð Þ

= −xy + cw,CDϖ
t w tð Þ = −dxy − cz,

ð1Þ

CDϖ
t x tð Þ =myw,CDϖ

t y tð Þ = yz,CDϖ
t z tð Þ

= −y2 + nw,CDϖ
t w tð Þ = −mxy − nz:

ð2Þ

2. Preliminaries

Some important and helpful definitions and lemmas [36, 37]
are stated below.

Definition 1. The integral of function defined by Riemann-
Liouville, h ∈ Lð½0, 1�, RÞ of order 0 < n < 1 as

ðn
1
h tð Þ = 1

Γ nð Þ
ð1
1
t − αð Þn−1h αð Þd αð Þ, ð3Þ

in such a way that the integral in the right side exists.

Definition 2. Fractional derivative in Caputo sense for �h ∈
C½0, b� for order 0 < α < 1 as

CDϖ
t
�h tð Þ =

1
Γ 1 − ϖð Þ

ðt
0

ĥ αð Þ
t − αð Þϖ , 0 < ϖ < 1,

dĥ
dt

, ϖ
!
= 1:

0
BBBBB@ ð4Þ

Lemma 3. The given results satisfied the problems related to
noninteger order

CDϖ
t
�h tð Þ = x tð Þ, 0 < ϖ ≤ 1,

�h 0ð Þ = �h0,

(
ð5Þ

�h tð Þ = �h0 +
1

Γ ϖð Þ
ðt
0
t − αð Þϖ−1x αð Þdα: ð6Þ

3. Existence Theory

Using fixed point theory, we investigate the existence and
uniqueness of the solutions of the considered fractional-
order systems. For the sake of convenience, consider the sys-
tem (1) in the form

CDϖ
t x tð Þ =Π1 t, x, y, z,wð Þ,CDϖ

t y tð Þ =Π2 t, x, y, z,wð Þ,CDϖ
t z tð Þ

=Π3 t, x, y, z,wð Þ,CDϖ
t w tð Þ =Π4 t, x, y, z,wð Þ,:

ð7Þ
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For

Π1 t, x, y, z,wð Þ =myw,Π2 t, x, y, z,wð Þ = yz,Π3 t, x, y, z,wð Þ
= −y2 + nw,Π4 t, x, y, z,wð Þ = −mxy − nz:

ð8Þ

Consider system 1 in the form

CDϖ
t α tð Þð Þ = ψ t, α tð Þð Þ,

α 0ð Þ = α0 ≥ 0,

(
ð9Þ
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Figure 2: The bifurcations in system (1) versus parameter c with fractional orders (a) ϖ = 1, (b) ϖ = 0:99, and (c) ϖ = 0:98.
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Figure 1: The Lyapunov spectra versus time ðtÞ with fractional order ϖ = 0:98: (a) Lyapunov spectra of system 1 with c = 2, d = 5, (b)
Lyapunov spectra of system 2 with m = 2, n = 5.
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if

α tð Þ = x, y, z,wð ÞT ,
α0 = x 0ð Þ, y 0ð Þ, z 0ð Þ,w 0ð Þð ÞT ,
ψ t, α tð Þð Þ = Πi t, x, y, z,wð Þð ÞT , i = 1, 2, 3, 4,

8>><
>>: ð10Þ

where ð⋆ÞT represents the transpose. Using Lemma 3, the
solution of Eq. (9) can be written as

α tð Þ = α0 +
1

Γ ϖð Þ
ðt
0
t − ϕð Þϖ−1ψ ϕ, α ϕð Þð Þdϕ: ð11Þ

Let us define a Banach space B = L4 with the norm kαk
= supt∈½0,b�jαðtÞj, and define the operator Θ : B⟶ B as

Θ α tð Þ½ � = α0 +
1

Γ ϖð Þ
ðt
0
t − ϕð Þϖ−1ψ ϕ, α ϕð Þð Þdϕ: ð12Þ

Consider that αðt, ϕðtÞÞ satisfies the growth and
Lipschitz conditions.

There exist constants Mψ > 0 and Cψ > 0, the given
growth condition satisfies

ψ t, α tð Þð Þj j ≤Mψ + Cψ αj j, t ∈ 0, b½ �: ð13Þ

There exist a constant Lψ > 0 such that for each α1, α2
∈ Cð½J, R�Þ,

ψ t, α1 tð Þð Þ − ψ t, α2 tð Þð Þj j ≤ Lψ α1 tð Þ − α2 tð Þj j: ð14Þ

For the uniqueness of the solution of system (1), we use
of the following lemma and theorems.

Table 1: Linear stability analysis of system (1).

Ei
Eigen values (λpq, p = 1, 2, 3, 4, 5 and q =

1, 2, 3). Stability

[0,0,0,0] λ11,12 = ±2i, λ13,14 = 0 Unstable

[0,1,0,0] λ21 = 2, λ22,23 = ∓2i, λ24 = 0 Unstable
spiral

[0,0,1,0] λ31,32 = ∓2i, λ33,34 = 0 Unstable

Table 2: Linear stability analysis of system (2).

Ei
Eigen values (λpq, p = 1, 2, 3, 4, 5 and

q = 1, 2, 3). Stability

[0,0,0,0] λ11,12 = ∓5i, λ13,14 = 0 Unstable

[1,0,0,0] λ21,22 = ±5i, λ22 = −5i, λ23,24 = 0 Unstable,
undamped
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Figure 3: The bifurcations in system (2) versus parameter n with fractional orders (a) ϖ = 1, (b) ϖ = 0:99, and (c) ϖ = 0:98.
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Lemma 4 (see [38]). If B represents a Banach space and Θ
: B⟶ B be completely-continuous such that Xρ = fα ∈ B
: α = ηΘα, η ∈ ½0, 1�g is bounded, then, Θ has at least one
fixed point.

Theorem 5. Suppose C1 holds, also consider that ψ : ½0, b�
× B⟶ R be a continuous function, then, system (1) has at
least one solution.

Proof. Suppose that Xρ = fα ∈ B : kαk ≤ ρg. Where Xρ ≠∅
closed and convex subset of B. For the continuity of Θ, con-
sider fαng is a sequence in Xρ, such that αn ⟶ α as n
⟶∞. Suppose for t ∈ ½0, b�, we have

Θ αn½ � −Θ α½ �k k = sup
t∈ 0,b½ �

Θ αn tð Þ½ � −Θ α tð Þ½ �j j

= sup
t∈ 0,b½ �

ðt
0

t − ϕð Þϖ−1
Γ ϖð Þ ψ ϕ, αn ϕð Þð Þ − ψ ϕ, α ϕð Þð Þ½ �dϕ

����
����

≤
Lψ
Γ ϖð Þ sup

t∈ 0,b½ �

ðt
0
t − ϕð Þϖ−1 αn ϕð Þ − α ϕð Þj jdϕ::

ð15Þ

As ψ continuous, so by Lebesgue dominant convergence
theorem, we have

Θ αn½ � −Θ α½ �k k⟶ 0, asn⟶ 0: ð16Þ
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Figure 4: The behavior of different state variables of the system 1 with fractional order ϖ = 1 and the parameters are considered as c = d = 2.
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Hence, Θ is continuous. Moreover, to show that Θ is
bounded or ΘðXρÞ ⊂Xρ, taking

Θ α½ �k k = sup
t∈ 0,b½ �

Θ α tð Þ½ �j j = sup
t∈ 0,b½ �

∣
ðt
0

t − ϕð Þϖ−1
Γ ϖð Þ ψ ϕ, α ϕð Þð Þdϕ½ j

≤
bϖ

Γ ϖ + 1ð Þ Mψ + Cψ αk k� �
≤ ρ:

ð17Þ

Since kΘ½α�k ≤ ρ, it shows that Θ is bounded. Now to
show that Θ is relatively compact, we need to prove that Θ
is equi-continuous operator. For this, let us take t1, t2 ∈ ½0,
b�, so we have

Θ α t2ð Þ½ � −Θ α t1ð Þ½ �j j ≤
ðt1
0

1
Γ ϖð Þ t1 − ϕð Þϖ−1 − t2 − ϕð Þϖ−1� �

ψ ϕ, α ϕð Þð Þj jdϕ

+
ðt2
t1

t2 − ϕð Þϖ−1 ψ ϕ, α ϕð Þð Þj jdϕ

≤
Mψ + Cψρ
� �

Γ ϖð Þ
ðt1
0

t1 − ϕð Þϖ−1 − t2 − ϕð Þϖ−1� �
dϕ

�

+
ðt2
t1

t2 − ϕð Þϖ−1dϕ
#

≤
Mψ + Cψρ
� �
Γ ϖ + 1ð Þ tϖ1 − tϖ2 + t2 − t1ð Þϖ� �

:

ð18Þ

Hence, we see that kΘ½αðt2Þ� −Θ½αðt1Þ�k⟶ 0 as t2
⟶ t1, which show Θ is equi-continuous. Using Arzelaá
theorem, the operator Θ has at least one fixed point. Hence,
the considered system has at least one solution.

Next, we need to show the uniqueness of the solution to
system (1). For this, we use of the following theorem.

Theorem 6. Let C2 holds, then the solution of the considered
system (1) is unique if Lψσ < 1, where

σ = aϖ

Γ ϖ + 1ð Þ : ð19Þ

Proof. For the proof of the above theorem let α1, α2 ∈ B, then
from the definition of Θ, we have

Θ α1 tð Þ½ � −Θ α2 tð Þ½ �j j ≤ 1
Γ ϖð Þ

ðt
0
t − ϕð Þϖ−1 ψ ϕ, α1 ϕð Þð Þ − ψ ϕ, α2 ϕð Þð Þj jdϕ

≤
Lψ
Γ ϖð Þ

ðt
0
t − ϕð Þϖ−1 α1 ϕð Þ − α2 ϕð Þj jdϕ

≤
Lψb

ϖ

Γ ϖ + 1ð Þ α1 − α2k k:

ð20Þ

On the other hand

Θ α1 tð Þ½ � −Θ α2 tð Þ½ �j j ≤ Lψσ α1 − α2k k: ð21Þ

Hence, by the Banach contraction principle, the consid-
ered system (1) has a unique solution in B.

4. Lyapunov Spectra

This section presents the Lyapunov spectra of the models
under consideration. It is observed that there exist two
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Figure 5: The behavior of different state variables of system 1 with fractional order ϖ = 0:99 and the parameters are considered as c = d = 2.
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positive Lyapunov exponents for models 1 and 2 with frac-
tional order ϖ = 0:98 as shown in Figure 1. The existence
of two positive different exponents gives the hyperchaotic
nature of the systems. For more details on the technique
applied here for the analysis of Lyapunov exponents, we
refer to [39]. The Lyapunov exponents obtained for model
(1) are L1 = 0:6257,L2 = 0:1684,L3 = −0:1790L4 = −
0:6152, while the exponents obtained for model (2) are L1
= 0:2503,L2 = 0:2649,L3 = −0:1926L4 = −2:3488.

5. Bifurcation

The bifurcation demonstrates a topological or qualitative
change during the evolution of the dynamical system by

fluctuating the bifurcation parameter gradually. A bifurca-
tion diagram can illustrate the presence of a limit cycle, peri-
odic orbit, or chaotic orbit. It delivers a graphical intimation
of the system’s solutions through a parametric range. In
order to study the bifurcations in system (1) and system
(2), we consider the time t = 100, step-size h = 0:01, and dif-
ferent fractional orders. The bifurcations in the system (1)
are projected in Figure 2, while bifurcations in the system
(2) are projected in Figure 3.

6. Equilibria and Linear Stability Analysis

Consider that _q = gðqÞ q ∈ Rn posses an equilibrium point
r, i.e., gðrÞ = 0. Then, q = r is a solution for all t. Sometimes,
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Figure 6: The behavior of different state variables of system 1 with fractional order ϖ = 0:98 and the parameters are considered as c = d = 2.
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it is important to have the information whether the solution
of a system is stable, i.e., whether it persists essentially
unchanged on the infinite interval ½0,∞Þ under small
changes in the initial data. Therefore, one uses the stability
based on the equilibrium points to understand the evolution
of the system with time, whether the system is stable or
unstable. To study the stability of the considered system,
we first find the equilibrium points, then we calculate the
eigenvalues from the Jacobian matrices of both systems
under study on the basis of which we study the stability of
the systems. Since we know that if a hidden oscillation
attracts all nearby oscillations, then, it is called a hidden
attractor. For our considered systems, we see that the equi-

librium point E0 attracts the trajectories towards it, which
shows that this is a hidden fixed point attractor.

6.1. Equilibria and Stability Analysis of Model (1). The equi-
librium points for system (1) can be obtained by taking
L.H.S of system (1) as 0.

0 = dxy,
0 = xz,
0 = −xy + cw,
0 = −dxy − cz:

0
BBBBB@ ð22Þ
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Figure 7: The behavior of different state variables of system 1 with fractional order ϖ = 1 and the parameters are considered as c = 2, d = 5.
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So, the equilibrium points obtained are

E0 = 0,0,0,0ð Þ,
E1 = 0, z,0,0ð Þ,
E2 = 0, 0, z, 0ð Þ:

0
BB@ ð23Þ

The Jacobian of system (1) can be written as

−yd xd 0 0
z 0 x 0
−y −x 0 c

−yd −xd −c 0

2
666664

3
777775: ð24Þ

The linear stability analysis of system (1) based on the
equilibrium points is presented in Table 1.
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Figure 8: The behavior of different state variables of system 1 with fractional order ϖ = 0:99 and the parameters are considered as c = 2, d = 5
.
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6.2. Equilibria and Stability Analysis of Model (2). The equi-
librium points for system (2) can be obtained by taking
L.H.S of system (2) as 0.

0 =myw,
0 = yz,
0 = −y2 + nw,
0 = −mxy − nz:

0
BBBBB@ ð25Þ

So, the equilibrium points obtained are

E0 = 0,0,0,0ð Þ,
E1 = z,0,0,0ð Þ:

 
ð26Þ

The Jacobian of system (2) can be written as

0 wm 0 ym

0 z y 0
0 −2y 0 n

−ym −xm −n 0

2
666664

3
777775: ð27Þ
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Figure 9: The behavior of different state variables of system 1 with fractional order ϖ = 0:98 and the parameters are considered as c = 2, d = 5
.
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The linear stability analysis of system (2) based on the
equilibrium points is presented in Table 2.

7. Numerical Scheme

In this section, we present the numerical solutions to the
considered models (1) and (2). To solve model the consid-
ered systems numerically, we first apply fractional integral
to model (1), gives

x tð Þ = x 0ð Þ + IαF1 t, xð Þ, y tð Þ = y 0ð Þ + IαF2 t, yð Þ, z tð Þ
= z 0ð Þ + IαF3 t, zð Þ,w tð Þ =w 0ð Þ + IαF4 t,wð Þ,

ð28Þ

where

F1 t, xð Þ =myw,F2 t, yð Þ = yz,F3 t, zð Þ
= −y2 + nw,F4 t,wð Þ = −mxy − nz:

ð29Þ

Replacing t with tn in the above equations, we obtain

x tnð Þ = x 0ð Þ + IαF1 tn, xð Þ, y tnð Þ
= y 0ð Þ + IαF2 tn, yð Þ, z tnð Þ
= z 0ð Þ + IαF3 tn, zð Þ,w tnð Þ
=w 0ð Þ + IαF4 tn,wð Þ:

ð30Þ
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Figure 10: The behavior of different state variables of system 2 with fractional order ϖ = 1 and the parameters are considered as m = n = 5.
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Figure 11: The behavior of different state variables of system 2 with fractional order ϖ = 0:99 and the parameters are considered asm = n = 5
.
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Figure 12: The behavior of different state variables of system 2 with fractional order ϖ = 0:98 and the parameters are considered asm = n = 5
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Figure 13: The behavior of different state variables of system 2 with fractional order ϖ = 1.
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Figure 14: The behavior of different state variables of system 2 with fractional order ϖ = 0:99 and the parameters are considered as m =
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Figure 15: The behavior of different state variables of system 2 with fractional order ϖ = 0:98 and the parameters are considered as m =
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Introducing tn = nh, here, h is the step size. Then, the
above integral equations are rewritten as

IαF1 tn, xð Þ = hα kαnF1 0ð Þ + 〠
n

j=1
k αð Þ
n−jF1 t j, xj

� �" #
,

IαF2 tn, yð Þ = hα kαnF2 0ð Þ + 〠
n

j=1
k αð Þ
n−jF2 t j, yj

� 	" #
, ð31Þ

IαF3 tn, zð Þ = hα kαnF3 0ð Þ + 〠
n

j=1
k αð Þ
n−jF3 t j, zj

� �" #
,

IαF4 tn,wð Þ = hα kαnF4 0ð Þ + 〠
n

j=1
k αð Þ
n−jF4 t j,wj

� �" #
: ð32Þ

where

kαn =
n − 1ð Þα − nα n − α − 1ð Þ

Γ 2 + αð Þ , ð33Þ

if n = 1,2,3, ::⋯ , then parameter k can be expressed as given

kα0 =
1

Γ 2 + αð Þ and k
α
n =

n − 1ð Þα+1 − 2nα+1 + n + 1ð Þα+1
Γ 2 + αð Þ :

ð34Þ

Now transferring the numerical approximations in the
above equation, we get the following scheme, which is the
implicit form of the fractional-order chaotic system
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Figure 16: The time-series behavior of different state variables of system 1 with fractional order ϖ = 0:98 and the parameters c = d = 2.
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x tnð Þ = x oð Þ + hα kαnF1 0ð Þ + 〠
n

j=1
k αð Þ
n−jF1 t j, xj

� �" #
,

y tnð Þ = x 0ð Þ + hα kαnF2 0ð Þ + 〠
n

j=1
k αð Þ
n−jF2 t j, yj

� 	" #
, ð35Þ

z tnð Þ = x 0ð Þ + hα kαnF3 0ð Þ + 〠
n

j=1
k αð Þ
n−jF3 t j, zj

� �" #
,

w tnð Þ = x 0ð Þ + hα kαnF4 0ð Þ + 〠
n

j=1
k αð Þ
n−jF4 t j,wj

� �" #
, ð36Þ

where

F1 t j, xj
� �

=myjwj,F2 t j, yj = yjzj
�

,F3 t j, zj
�

= −yj2 + nwj,F4 t j,wj = −mxjyj − nzj
�

:
ð37Þ

Following the technique presented above, we obtain the
numerical solution to model (2) as

x tnð Þ = x oð Þ + hα kαnG1 0ð Þ + 〠
n

j=1
k αð Þ
n−jG1 t j, xj

� �" #
, ð38Þ

y tnð Þ = x 0ð Þ + hα kαnG2 0ð Þ + 〠
n

j=1
k αð Þ
n−jG2 t j, yj

� 	" #
, ð39Þ
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Figure 17: The time-series behavior of different state variables of system 1 with fractional order ϖ = 0:98 and the parameters c = 2, d = 5.
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z tnð Þ = x 0ð Þ + hα kαnG3 0ð Þ + 〠
n

j=1
k αð Þ
n−jG3 t j, zj

� �" #
, ð40Þ

w tnð Þ = x 0ð Þ + hα kαnG4 0ð Þ + 〠
n

j=1
k αð Þ
n−jG4 t j,wj

� �" #
, ð41Þ

where

G1 t j, xj
� �

=myjwj, G2 t j, yj = yjzj, G3
�

t j, zj
�

= −yj2 + nwj, G4 t j,wj = −mxjyj − nzj
�

:
ð42Þ

8. Numerical Simulation and Discussions

The numerical simulations of the numerical scheme pro-
vided above are presented in this section. We also show

phase portraits to investigate the behavior and effects of a
few key parameters and fractional orders on the dynamics
of models (1) and (2). We consider four different sets of
parameters with fixed initial conditions throughout the sec-
tions as ½x, y, z, w� = ½−1, 1,−1, 1�. For the simulation pur-
pose, we have considered the time t = 30. The step-size is
considered to be h = 0:001 which makes the number of iter-
ations to be 3 × 104. The MATLAB-R13b software is used for
the simulation purpose. Further, the subfigures ðaÞ, ðbÞ, ðcÞ
, ðdÞ, and ðeÞ show the state variables x − y, x − z, x − w, y −
z, and z −w, respectively.

The dynamics of model (1) for c = d = 2 are shown in
Figures 4–6. The attractor to which the system progress is
hidden is noticed when the fractional order ϖ = 1. It is
observed that when the fractional order is ϖ = 0:99, the sys-
tem eventually approaches a fixed point, which is a type of
attractor known as a fixed point attractor. Similarly, decreas-
ing the order ϖ to 0:98 increases the visibility of the
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Figure 18: The behavior of different state variables of system 2 vs. time t with fractional order ϖ = 0:98 and the parameters n =m = 2.
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attractor. Model (1) is shown in Figures 7–9 with c = 2, d = 5.
The fractional-order is set to ϖ = 1 in Figure 4, demonstrat-
ing the classical behavior of model (1). When the fractional
order is set to ϖ = 0:99 as shown in Figure 8, the model (1)
progresses to the fixed point attractor. The fixed point
attractor is best visualized in Figure 9 by reducing the order
ϖ to 0:98. It is observed from the simulations that fractional
operators show significant impact on the dynamics of non-
linear dynamical systems especially chaotic systems, where
one can see new type of attractors that are hidden with that
of integer order derivatives. In these simulations, one thing
is clear that these systems dynamically evolve towards the
equilibrium point E0, which shows that the systems become
stable at lower fractional orders.

The dynamics of model (2) with c = d = 2 are shown in
Figures 10–12. In Figure 10, the fractional-order is set to ϖ
= 1, demonstrating the model’s classical behavior (2). The
fractional-order is ϖ = 0:99 in Figure 11, where it is noticed

that the fractional-order has a better effect on the dynamics
of the model (2). The attractor with the fractional order ϖ
= 0:98 may be seen in Figure 12. As the fractional-order
decreases, the system tends to reach equilibrium points.

The parameters for Figures 13–15 are c = 2, d = 5, which
shows the behavior of model (2). It is also noticed that
changes in fractional order have a significant impact on the
dynamics of the model (2). The system rapidly progresses
to its attractor at ϖ = 0:98, as shown in the figures.

8.1. Time Series Analysis. In mathematics, a time series is a
collection of data points that are indexed in time order. A
time series is a collection of points taken over a period of
time at uniformly spaced intervals. As a result, it is a collec-
tion of discrete-time information. Ocean tide heights, sun-
spot counts are a few examples of time series. Time series
analysis depicts the behavior of state variables for each small
value of time in the case of dynamical systems. Studying the
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Figure 19: The behavior of different state variables of system 2 vs. time t with fractional order ϖ = 0:98 and the parameters n = 2,m = 2.
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time series data makes it simple to study the system’s stabil-
ity and instability. Furthermore, oscillations that develop in
a system’s dynamics can be easily investigated by studying
the system’s time series behavior.

In Figures 16 and 17, the dynamics of different state var-
iables of model (1) are presented with the parameters c = d
= 2 and c = 2, d = 5, respectively. Similarly, in Figures 18
and 19, the dynamics of different state variables of model
(2) are demonstrated with the parameters m = n = 2 and m
= 2, n = 5. It is observed that both the systems oscillate rap-
idly when ϖ = 1. When consider the fractional-order ϖ =
0:99, the system oscillations decrease as compared to the
integer-order. It can be seen that the system evolves towards
its fixed point, which realizes the hidden attractors present
in the systems. Further decreasing the fractional-order ϖ to
0:98, one can see that the system advances to its stable state
more rapidly as compared to the ϖ = 0:99.

9. Conclusion

We have investigated four-dimensional continuous chaotic
models with Caputo’s fractional derivative. The dynamical
features such as Lyapunov spectra, phase portrait, and time
series analysis are investigated. More than one positive expo-
nents for each system revealed that systems are hyperchao-
tic. The phase portraits are presented to investigate the
behavior and effect of some important parameters and frac-
tional orders on model dynamics. It is revealed that, for frac-
tional order, the systems approach to fixed point attractors
and increase the visibility of the attractor by decreasing
fractional-order which shows that change in fractional order
have a significant impact on the systems. It is also revealed
that, when the order of the derivative is equal to one, both
systems oscillate frequently. However, as the fractional order
is reduced, the system oscillations decrease as compared to
the integer-order, and the system moves towards its fixed
point. It shows the hidden attractors inherent in the system
and enabled it to develop to a stable state more efficiently.
Hence, it is concluded that fractional models are the most
suitable to study such complexities in dynamical systems.
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