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This paper is aimed at establishing the generalized forms of Riemann-Liouville fractional inequalities of the Hadamard type for a
class of functions known as strongly exponentially (a, h —m)-p-convex functions. These inequalities provide some general
formulas from which one can get associated inequalities for various types of exponentially convex and strongly convex
functions. Refinements of well-known inequalities are also deducible from the established theorems.

1. Introduction

The notion of convexity is utilized significantly for finding
solutions of essential mathematical problems in subjects of
science and engineering. Leading with major developments
in several branches of mathematics, convexity made its
way in statistics, geometric function theory, graph theory,
and economics. In recent decades, classes of functions
related to convex functions are frequently used in proving
new fractional integral inequalities in the form of numer-
ous refinements and generalizations of classical
inequalities.

Let I be an interval of real numbers. A function f : I
—> R satisfying f(xt+ (1-1¢)y) <tf(x)+ (1 -¢)f(y), for
all x,y el and t € [0, 1], is called convex function.

A convex function satisfies the well-known Hadamard
inequality:

(5 s = [ra< T I0 g
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If f is concave function, then, (1) holds in a reverse
order. The inequality (1) had/has been studied by many

researchers and consequently obtained a lot of its variants
by introducing new classes of functions. For example, in
[1], it is studied for s-convex functions; in [2], it is studied
for (p — h)-convex functions; in [3, 4], it is studied for har-
monically convex functions; in [5], it is studied for strongly
harmonically convex and strongly p-convex functions. Our
goal in this paper is to study the inequality (1) for strongly
exponentially («, h — m)-p-convex functions.

Definition 1 (see [6]). A function f : (0,b] — R is called
strongly exponentially (a, h-m)-p-convex with modulus c
>0, if f is nonnegative and
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holds, while J C R is an interval containing (0,1) and h : ]
— R is a nonnegative function along with x,y, m™y,
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(txP + m(1 - t)y?)"P € (0,b), t € (0,1), pe R\ {0}, and (a,
m) €[0,1].

By using (2), one can find various classes of functions
closely related with the convex function and strongly convex
functions already defined by different authors. Strongly con-
vex functions provide the refinements of convex functions.

In [2], Theorem 5, if we take Ic(0, ), p € R\ {0}, and
h(t) =t, then, we have the following theorem.

Theorem 2. Let f :[a, b] C (0,00) — R be a positive function
such that f € L,[a, b]. If f is a p-convex function on [a, b], p
€ R\ {0}. Then, the following integral inequality holds:
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Our aim in this paper is the derivation of compact forms
of Hadamard-type inequalities for strongly exponentially («
, h — m)-p-convex functions via Riemann-Liouville fractional
integrals involving monotone functions. The established for-
mulas will generate Hadamard-type inequalities for frac-
tional Riemann-Liouville integrals which have been
published by various authors in the recent past (see Remarks
11 & 23). Also, Hadamard-type inequalities are deducible for
some new classes of functions (see Corollaries 12-32). In the
following, we give the definition of Riemann-Liouville frac-
tional integrals:

Definition 3. Let f € L,[a, b]. Then, Riemann-Liouville frac-
tional integral operators of order y for a function f, where
R(u) >0, are given by

I f(x) = %#)r(x -t f(t)dt, x>a,
. (4)
b

I f(x) = ﬁj (t—x)*'f(t)dt, x<b

Next, we give Hadamard-type inequalities via Riemann-
Liouville fractional integrals of convex functions as follows:

Theorem 4 (see [7]). Let f : [a, b] — R be a positive func-

tion with 0<a<b and f € L[a,b]. If f is a convex function

on [a, b, then, the following fractional integral inequality
holds:

(7)s

with u> 0.

s s i ) LI,

(5)
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Theorem 5 (see [8]). With the assumptions given in Theorem
4, one can have the fractional integral inequality as follows:

a+b 21T (u+ 1)
f( 2 ) < (b-a) I[g(a+h)/2)*f(b) +I‘[(4(a+b)/2)-f(a)

<

>

~~
&
N+
-
=

(6)
with u> 0.

Theorem 6 (see [7]). Let f : [a,b] — R be a differentiable
mapping on (a, b) with a <b. If |f'| is convex on [a, b], then,
the following fractional integral inequality holds:

’f (a) ;f (b) _ ZT( (bﬂjal)z‘ (1. (b) +1’£—f(a>]’

< s (17 3 [r@l+ 1 o))

The definition of k-fractional Riemann-Liouville integral
operators is given as follows:

Definition 7 (see [9]). Let f € L,[a, b], k> 0. Then, k-frac-
tional Riemann-Liouville integrals for a function f of order
y where R(u) > 0 are given by

f (= s | -0 0, x> .
)= s K“ )R (0dt, x<b,
where I',(.) is defined as follows:
r=[Ceme . m>o )

The generalized form of Riemann-Liouville fractional
integrals is given in the following definition:

Definition 8 (see [10]). Let f € L;[a, b]. Also, let y be an
increasing and positive monotone function on (g, b, having
a continuous derivative ' on (a,b). The left-sided and
right-sided fractional integrals of a function f with respect
to another function y on [a, b] of order y where R(pu) >0
are given by

170 = 1o [V 00 -y i x>a
b
1Y F(x) = ﬁj v (O -y f(Odt x<b
(10)

The definition of the k-analogue of the abovementioned
definition is given as follows:
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Definition 9 (see [11]). Let f,y, u be the same as in the
abovementioned definition. Then, for k > 0, the k-analogue
of (10) and is given by

et (3) = kfkl(#) rw’m (W) —w(e) O f(dt, x>a,
o 1 b’ (ulk)-1
s >Jw(t)(w(t)—w(x)) f(dt, x<b.

(11)

Using the fact that I (u) = k71T (u/k) in (10) after
replacing u by p/k, we get

KRR £ (x) =
K f () =

el f(x),

Wl (). "

For further detailed study on fractional integrals, we
refer the readers to [12, 13]. In the next section, we formu-
late the Hadamard-type inequalities for strongly exponen-
tially (&, h — m)-p-convex function via integrals (10) which
are compact forms of a plenty of well-known Hadamard-
type inequalities holding for classes of convex, strongly con-
vex, and exponentially convex functions. Specifically, one
can have refinements of the inequalities proved in recent
decades. Several special case inequalities in the form of cor-
ollaries are also given.

2. Main Results

We will use the following notations for terms which will
appear frequently in the results of this section

Gun (V9 (@), ¥ () = cm [ (p + 1) (9 (b) = ¥ (@) +2

(V) ) 420900 - v7(@)

m

(52-mw)].

Rt (V7 (0), ¥ (6) =i [92(””’ () e

+mg,(n)H (%) (v (b) - (V/P(u)/mz))z}

en((yr(@)/m?)+y? (b))
1
J h(t)H(t)t* ' dt,
0

Fyun(¥7(0).¥7(8)) = om s + 1) (w7 (6) = ¥7(@))* + (4 + 500+ )
m

- 0)) 4203 X (9(0) - ¥ (@)

-mm)) |

A @), £y ) = 0 5) T

a)
+ mg3(;7)H(2) f;/;(( )))} Joh(t"‘)t"fldt,

Byt (f(¥(@)). f(w (b)) = mu {w(")h (%) %

+ mg3(11)H(%> ‘%} J.;H(t)t“’ldt.
(13)

Theorem 10. Let f, v : [a?, mb*] C (0,00) — R, range (v)
C [a?, mb®] be the positive functions such that f € L,[a’, m
V], and v be a differentiable and strictly increasing. If f is
strongly exponentially (a, h — m)-p-convex function on [aP,
mb¥) such that p,n e R and p# 0, then, for (a,m) € (0, 1%,
the following fractional integral inequalities hold:

(i) Ifp>0,

(o)

- mw{gﬁl)(a ) {gz < )XIWW“ oAl

et o ()15 gy o0 (v (V1) )|

—Aﬁ,'fmn(f(w(u))»f(w(b))) + Byl (f(W(a)), f(y(D)))
Rzﬁmn(wp(a)’ V/P(b))’

P (b))g, (m)h(1/2*)H(1/2)
(u+D)(p+2)

~(my? (1))

(14)

with u>0, H(t)=h(1-1t%), ¢(t) =y (t) for all t€[a’,m

bf| and
V@G s,
g; (1’,) = e—W(mWP(b>+<wp<a)/m))’ lf n < 0,
e 1m N iy <o,
9,(n) = _ "
@) ifn>0,
1'f11 <0,

e m(b)
g3(’1) - { e"l(V’P(a>/m)”P) l'f;/] S0

(ii) For p <0, one can have



f (w"(a) + mwp(b)> "\ | (V@) yP(0))g, ()h(1/2%)H(1/2)
2 (u+1)(p+2)

S(mw(g‘m(a)) [gz(’”h@ Ve o9 (my? (1))

a0 (3) 00 (v (57
Aﬁffmn(f( (@) f(y(b))) + Bﬁfmq(f(w(a)),f(w(b)))
= R (V7 (@), ¥ (b)),

(16)

with u>0, H(t) =
a’] and

h(1-t%), ¢(t)=yP(t) for all t € [mb’,

W @+ (0) if <0,
gm=< ,
NP @ @m) s o)
g HmyP (b)1lp if >0,
g =9 _ ' (17)
e ’W/(“)’ lf- ;/I < 0’
if >0,

),
g3(’7) - { e_’/l(v’P(a)/m)up, l](ﬂ <0

Proof. (i) The following inequality holds for a strongly expo-
nentially (a, h — m)-p-convex function

; ( (wf’<x) oy (y)) ”") <h (zi) U

et (2) 1000 _ amb ) V)
2

) e (x)+y2 (y))

(18)

By setting y(x) = (y*(a)t + m(1— (b)), y(y)=
((y?(a)im)(1—1t) +y?(b)t)"? in (18) and then integrating
on [0, 1] after multiplying with #~, one can get

! f<(wp(a) +2me<b>) ”P> sh(zia)

Jlf((llfp(“)t +m(l - t)wp(h)))”"> t*dt + mH (1>
2

. (v (@tem(1-t)ye (b))

(P @my =1 +yr@)n') 1\ /1
XJ - #dt —emh( — |H( =
0 (P (@)m) (1-t)+y2 (b)) F 2% 2
Jl (1= (¥ (a)m) — my? () + H(y? () = ¥2(@))*
0 ((1=1) (v (@)/m) tmye (b)) +1(y? (b)+y (a)))1P '

(19)

Setting w(u) = yP(a)t + m(1 - t)yP(b) and y(v) = (vP(a
Vim)(1—t)+yP(b)t in (19) and multiplying by u, after
applying Definition 3, the following inequality can be
obtained:
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1//17( +mu/P UP F( +1)
/ (( ) )~ )

a0 (2) o U= 8)(my? (0) + g o) H

(3) <t -0 (V2]

Cum(WF (@), yF (b)) g, (n)h(1/2%)H(1/2)
(u+1)(pu+2) '

3

(20)

Now, by using definition of strongly exponentially (e, h
—m)-p-convex function for f and then integrating the
resulting inequality on [0,1] after multiplying with !,
one can get

anh (55 [ £ (09 @ = ) )4 mg,

o (3) [ (s m - owr ) et

Aoy ([ (¥(@)), £ (y (b)) . Byiomnf (¥(@)), f (w (D))
u Z

(21)

Again, using substitution as considered in (20) leads to
the second inequality of (14)

(ii) The proof is followed on same lines as the proof of (i)

O

Remark 11. The aforementioned version of the Hadamard
inequalities gives (i) [4], Theorem 4 for p=-1,m=a=1,h
=y =1, and c=#9=0; (ii) [3], Theorem 2.4 for p=-1, m=
a=p=1, h=y=1I, and c=x=0; (iii) [14], Theorem 3.10
for h=y =1 and c=#=0; (iv) [15], Corollary 2.2 for a =p
=1,y¥=1I,and c=%=0; (v) Theorem 2 fora=m=p=1, h
=y =1, and c=#=0; (vi) [16], Theorem 2.1 for a = p—
h=y=1I, and c=%=0; (vii) [14], Theorem 2.2 for v =
and ¢=#=0; (viii) Theorem 1 for a=py=m=1, h= 1//=I
and c=#=0; (ix) [17], Theorem 2.1 for a=py=m=1, p=
-1, h(t) =¢, y=1,and c=1n=0; (x) [1], Theorem 2.1 for «
=u=m=p=1, h(t)=+¢, y=1I, and c=%=0; and (xi) [6],
Theorem 3 for w =1. Moreover, the refinements of all the
deduced results will occur for ¢ > 0.

Corollary 12. (i) For p > 0, one can have for the strongly («
,h—m)-p-convex function the following fractional integral
inequality:
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f((w"(a) + me(b))“P> , (W (a) Y7 (0) (112 H(1/2)

2 (+D)(u+2)
< iyt [1(5) <8 o >0 Oy (0)
w0 (22)

<A25mo(f(w(ﬂ))»f(1//( )+ Byt (f (¥(@)), f(w(b)))
= Ry o (¥ (2), yP (b))
(22)

Proof. The abovementioned inequality can be deduced by
setting # =0 in (14).

(ii) For p < 0, one can have for the strongly (&, h — m)-p
-convex function the following fractional integral inequality:

yP(a) + my? (0)\ P cum(¥(a), Y2 (b)) h(12%)H(172)
()

2 (u+1)(u+2)
s%{h(l)xﬂ oy D) (¥ (my? (1))
)

< Agﬁmo(f(llj(a))’f(v/( )+ Begimo(f (w(@)), f (w()))

= Riyimo (¥ (2), ¥ (b))

O

Proof. The abovementioned inequality can be deduced by
setting # =0 in (16). O

Corollary 13. (i) For p >0, one can have for the strongly
exponentially (h—m)-p-convex function the following frac-
tional integral inequality:

() e

a), y*(b))g, (m)h*(112)
H+1)(H+2)

‘(rm%( iy 9200} o o (7 ()
(5 -9+
A?fmm(w(a)),f(w(b))) Bl V(@) F((0)))
Rg’[ljmr]( (“)>‘/’P(b))

(24)

Proof. The abovementioned inequality can be deduced by
setting a =1 in (14).

(ii) For p < 0, one can have for the strongly exponentially
(h — m)-p-convex function the following fractional integral
inequality:

p+1)(p+2)

(12)T(u+1)

: mw DX g U = 8) (07 0P 0)

+m g, () H G)Ii ( ) ‘V’;}S“ )ﬂ

A'f,’fmq(f(w(a))’f(w( )+ B’I,’fmq(f(w(a )-f(y(b))

Y@ PN (@) ¥ (D), (I 12)
f (( ; >>+ —
h
74

(25)
O

Proof. The abovementioned inequality can bed deduced by
setting « = 1 in (16). |

Corollary 14. (i) For p >0, one can have for the strongly
exponentially (s, m)-p-Godunova-Levin function the follow-
ing fractional integral inequality:

s ( (wP(a) + me(b)) “P) , Gun(¥(@). ¥ (b))g,

2 (u+1)(u+2)
< Syt g 92 e 90 01)
g I,

()]

(m)2*

I(u+1)

<A (FW(@)): f(w(0))) + Bt (f(w(@)), f(w(b)))
_thx,umn (‘//P( ) V/P( ))
(26)

Proof. The abovementioned inequality can be deduced by
setting a =1 and h(t) =t in (2.1).

(ii) For p < 0, one can have for the strongly exponentially
(s, m)-p-Godunova-Levin function the following fractional
integral inequality:

v?(a) + my? ()N P | Gun (W7 (a), ¥7(6))g, ()2
f(( 2 ) >+ (+1)(u+2)
< I(u+1) . -
< S 6] @) LSy 9 (v (my? ()
g, I+ 9) (v ( )))}
< AL (F((@), £ (w(5))) + Byt (F(w(@)), f(w(b)))
— R0 (¥ (a), P (b))
(27)

O

Proof. The abovementioned inequality can be deduced by
setting « =1 and h(t) =t* in (16). O

Corollary 15. (i) For p >0, one can have for the strongly
exponentially (s, m)-p-convex function in the third sense the
following fractional integral inequality:



; ( (wp(a)+mwp(b)>“f’) . Cun(¥* (@), ¥ (9))g,(n)
2 22 (u+1)(u+2)
- I(p+1) (m
< ) @ (92 U 2O (' 0)

+m g ()T ey (o9 ( B (‘/’P(“)>)]

<A (f(w(a), f(w(D))) + Baib) (f(w(a)), f(w(b)))
= R (9P (a), y? (b))
(28)

Proof. The abovementioned inequality can be deduced by
setting o = 1 and h(t) = £ in (14).

(i) For p < 0, one can have for the strongly exponentially
(s, m)-p-convex function in third sense the following frac-
tional integral inequality:

f(CpP(a) o) “P) .

Cum (WP (@), ¥P (b)) g, (1)
25(u+1)(p+2)
Ip+1)

< T,y [0 U = O om0

+m gy (I ) (f 2 ) (w_l (@>>}

<A§ylm’n (f(w(a), f(y(b))) +B£,§1mi3 (f(y(a)), f(y(b)))
- RO (yP (a), P (b))

(29)
O

Proof. The abovementioned inequality can be deduced by
setting a =1 and h(t) = in (16). O

Corollary 16. (i) For p >0, one can have for the strongly

exponentially (a, m)-p-convex function the following frac-
tional integral inequality:

f((wwo + me(b)) “P) , Gen(W(a) ¥ (0))g, ()2 - 1)
2 2%u+1)(u+2)

= (mwpzéfjlig(a))y {gz(”l)lﬂw (f ¢)(

g (1) (2~ DY ¢>( )]
<AL (F(w(@), S (WD) + ST (w(@). Sv()
RO 4 @),y ()

G111

"(my? (b))

(30)

Proof. The abovementioned inequality can be deduced by
setting h(t) =t in (14).
(ii) For p < 0, one can have for the strongly exponentially

(ar, m)-p-convex function the following fractional integral
inequality:
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¥ (0)g, () (2" - 1)
22“ (ut1)(p+2)

s ( (V’P )+ my? (b UP)

r
S T SO i o D (1)
gy ()@ DI (o ¢>( =
A;“;i,,:ﬁ(f(w(a)),f(w(b))) B (@) S (v )
= Rigimn (W7(a), ¥ (b))
(1)

Proof. The abovementioned inequality can be deduced by
setting h(t) =t in (16). O

Corollary 17. (i) For p >0, one can have for the strongly

exponentially p-convex function the following fractional inte-
gral inequality:

f<<wp<a> . wP(b))””) R

Fp+1)

cg,(n) (4 -+ 2) (y? (b) - y*(a))®
Hu+1)(p+2)
© (yr(b) -y (a))”

i (920 g o) (P 0))
+ 95 oy (2 8) (v (¥())]

<AL (F (@), f(W(b))) + By (F(w(@)), f(w (D))
~RU (9P (a), yP (b))

(32)

Proof. The abovementioned inequality can be deduced by
setting a =m =1 and h(t) =t in (14).

(ii) For p <0, one can have for strongly exponentially p
-convex function the following fractional integral inequality

yr(a) +yP (DN 7 | cgi(m) (1 — g+ 2) (WP (b) — y(a))*
())-

Ap+1)(u+2)
r 1

S gt B iy (o907 W (E)
g I i (2 8) (v (v (0)))]

< AT (FW (@), F(w(b))) + BYon (F (w(@)), f(w (D))
~ R (WP (@), yP (b))

(33)

Proof. The abovementioned inequality can be deduced by
setting e =m =1 and h(t) =t in (16). O
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Corollary 18. For the strongly exponentially (o, h — m)-HA-
convex function, the following inequality holds:

f( 2y(a)y(b) ) , cmh(1/2)H(1/2) { (w(b w(za )

v+ my(a)) " D+ 2)
o ~50) *5t0~ 5) " (v~ 0
< T D) {h( >WW e ¢( (%»

-my(a )) :
+mtt H G) (o) )<W7 (ﬁ(a))ﬂ

<A2,’fmq(f (y(a)), f( (b)) + Bty (f ((@)), f(w(D)))
1

(34)

Proof. The abovementioned inequality can be deduced by
setting p = -1 in (16). O

Corollary 19. For the strongly exponentially (e, m)-HA-con-
vex function, the following inequality holds:

2p(@y(b) . emg, () - 1) Yo
(50 viam) * e D3 [” l

y(6) ~y(@m®\*  2uy(@) - y(5) (¥(b) - y(a))
2y ) * }

1 2)a
< [ e

(
g, )@ = 11 o0 (v (1))
<AL (@), Sy B) + B ((w(a)). S
R (4P @) v )

W11

(35)

Proof. The abovementioned inequality can be deduced by
setting p=—1 and h(t) = ¢ in (16). O

Corollary 20. For the strongly exponentially (s, m)-HA-con-
vex function, the following inequality holds:

2y(a)y () cmg, (1) y(o) - y(@)\’

H(Fame) * F s D3 [“(“ D%ty
y(b) —y(a)m*\*  2u(y(a) —y (b)) (y(b)y(a)m’)

2 ) * ]

< s D gatmttt ey Fo9) (v ()

+m’“193(’7) Ly e ¢)< <mvf(“)>]

o (FW(@)), F(w(5))) + By o) (f(w(a)), f(w (D))

1-ty°

o (W7 (@), 97 (D))

(36)

Proof. The abovementioned inequality can be deduced by
setting p=—1, a=1, and h(t) =¢# in (16). O

Corollary 21. For the Godunova-Levin type of strongly expo-
nentially (s, m)-HA-convex function, the following inequality
holds:

2p(@y(b) \, g, mem 1y
(07 o) * G 3 [“(“ (5~ ¥@)

(o) (55 v0) v )

2r D(y(a)y(b))* L m
- (%) z(mfp()a)gﬂ)) {92“7)1“’1/%» (fo ¢)<w <W >

m +1 x Wl/ . ° ~1 1
0 00 )|
ot (W (@), Fw (D)) + By (f(w(@)), fF(w(D))
R (¥ (@), ¥ (b))

Ly,mn

<A

(37)

Proof. The abovementioned inequality can be deduced by
setting p=—-1, a=1, and h(t) =t in (2.2). O

The second variant of Hadamard inequality for strongly

exponentially (a, h —m)-p-convex function is proved as
follows.

Theorem 22. Under the assumption of Theorem 10, the fol-
lowing fractional integral inequalities hold:

(i) For p > 0, one can have

Fum(¥P(a), yP (b)) g, (m)h(1/2*)H(1/2)
Hp+1)(p+2)

f< (e ) ”") ;

2T (u+1) 1
= (my?(b) —yP (@) {92(’7)}‘ (?) *Lyos yr@pemyr )2

Y (f 0 9) (7 (my? (b)) + m"”H( )gsW (vra)
+my? (b))12m) uy(f o ¢) < - <@) )}

<Al (F(w(@), f(w (b)) +BEil (f(w(a)), f(w(b)))
—R’;;’m,,w"(u),wf’(b)),
(38)

with u>0, H(t) =
and

h(1-1%), ¢(2) =

Z!® for all z € [aP, mbP|
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e 1 @y (b)) if >0,
gi(m)=9 ’ , )
e my? O+ (@)/m) - if < 0,
e O i <o,
9,(n) = (39)
@), if >0,
e (b)) ifn<o,
g3(’7> - e"’l(‘(/‘p(“)/’”)up’ zf . )

(ii) For p <0, one can have

Fym(WP (a), y#(b))g,(n)h(1/2%)H(1/2)
Hpu+1)(pu+2)

2I(p+1) 1
< ) v [92(’”'1 (2)
((W"( YemyP (b))/2)” (fe ¢)( (mll/p(b)))

P(a
+m’“1H< >g3(71)1l4v/((w( a)+my? (b))/2m)* (fe ¢)< 1(%()))}
< AR (FW(@), f(W (b)) + Biptn, (f(¥(a)), f(y(b)))
(v

= Ryl (W7 (a), ¥ (b)),
(40)
with u> 0, ¢(z) =z"? for all z € [mb’, a?] and
@ 0), ifn<o,
gm=< ,
ey @) ity )
e O i s 0,
9,(n) = (41)
@), ifn<o,
67”W(b), 1f ;/] > 0’
93(7]) - e"’I(V’P(a)/m)HP’ zfr] <0

Proof. (i) Let y(x) = (((y*(a)t)/2) + m((2 - t)12)y?(b))"",
w(y) = ((v*(a)im)((2 = 1)12) + ((y? (b)1)/2))"" in (18) and
integrating the resulting inequality over the interval [0, 1]
after multiplying with !, we get

i s < (w"(a) +2mwp<h>> “P)

1\ /(@ @)02) + m(@ - 2)pe ()"
“x)],

u-1
(P ()2 +m((2-0)2)ye (b)) et

Lf(( 2-1)/2) + ((wp(h)t)/z))l/p L
+mH( )J ( S((wP (ayim)((2=1)12)+((y* ( >t” dt

P (b)t)/2))""?
- cmh( ) (l>
2

L(2)(¥ (b) — yP (@) + (2= )2) (W (a)/m) = my? (B))* oy
0 e(((=0)72) (v (@)/m) ey (6))+(112) (97 (0)+yP (@)™ '

(42)

Journal of Function Spaces

Setting w(u) = ((y*(b)t)/2) + m((2 - t)/2)y?(b) and y(
v)=(yP(a)/m)((2-1)/2) + ((y*(b)t)/2) in (42), then, by
applying Definition 3, we get the following inequality:

yP(a) ¢ myP GNP 2T )
/ (( 2 ))‘(mwp(b)—w(a»“

.{h(l)gz(m B ey o 9) (7 (my? (8)))

1 p
gy () H (E) x Ig’"((w”(a)+mw(b))/2m)’ (fe9) (1//71 (%@) )}

Fum(WP(a), y*(b))g, (n)h(1/2%)H(1/2)
4p+1)(u+2) '

(43)

Now, again, using strongly exponentially (a, h—m)-p
-convexity of f and integrating the resulting inequality over
[0, 1] after multiplying with 47!, we get

s (35) (557 +m (35 ) ) "o
+mgs(n HG) f (ng“ +m(?)w"(b)>up>t’“dt
Aflfm,,(f(llf(ﬂ)),f(w( ) Bﬁﬁmq(f(llf(“)),f(w(b)))
Rﬁfmn(wp(agl, v(b) '
u

(44)

Again, using substitution as considered in (42) leads to
the second inequality of (38)

(ii) The proof is followed on the same lines as the proof
of (i) O

Remark 23. The aforementioned version of the Hadamard
inequalities give (i) [18], Theorem 2.4 for c=0 and y=1;
(ii) [14], Theorem 2.4 for c=# =0 and y = I; (iii) [19], The-
orem 7 fora=m=1,c=%=0, and h(t) =¢t; (iv) [19], Theo-
rem 7 fora=m=1,c=x=0, and h=y =1I; (v) Theorem 3
fora=m=p=1,c=1n=0,and h=y =1I; (vi) [20], Theorem
21fora=1=p,c=n=0,and h=y =1I; (vii) [21], Theorem
4 for a=m=1, p=-1, c=9=0, and h=y=1I; (viii) [3],
Theorem 2.4 for p=-1, a=pu=m=1, c=9=0, and h=vy
=1I; (ix) [22], Theorem 7 for a=u=m=p=1, c=1n=0, h(
t)=t", and v =1I; (x) [23], Theorem 3.1 for a=p=m=1,
p=-1,c=n=0, h(t)=t", and v =1I; (xi) Theorem 1 for «
=pu=m=1, c=n=0, and h=y=1I; (xii) [24], Theorem
23 fora=p=m=1,n=0, and h=y =1I; (xiii) [25], Theo-
rem 6 for a=pu=m=p=1,1=0,and h=y =1 (xiv) [17],
Theorem 2.1 for a=pu=m=1, p=-1, c=y=0, h(t)="¢,
and v =1I; (xv) [1], Theorem 2.1 for a=pu=p=m=1,c=9
=0, h(t)=+¢, and w=1I; and (xvi) [5], Theorem 2.1 for «
=u=m=1, p=-1, #=0, and h=y =1 Moreover, the
refinements of all the deduced results will occur for ¢ > 0.
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Corollary 24. (i) For p > 0, one can have for the strongly («
,h—m)-p-convex function the following fractional integral
inequality:

(@) + my? (0)\ P\ (WP (@), ¥ (B)h(112%)H(1/2)
f<( ) ) B+ D(E+2)
r 1
< o) ary () * o U v 0)

el (22)]

—Aﬁfmo(f(ll/(a))»f(w(b))) Byimo(f(¥(@)), f (y(8))
(x,‘u,m,o(wp(a)’ Wp(b))

(45)

Proof. The abovementioned inequality can be deduced by
setting # =0 in (14).

(ii) For p < 0, one can have for the strongly (a, h — m)-p
-convex function the following fractional integral inequality:

yP(a) + myP (DN cum(¥? (@) 7 (b)) h(1/2%)H(1/2)
f(( 2 ) >+ (ut1)(u+2)

< Gttt | (35) <o U+ 90 O 0)
)

+mt H <E> Y

< Agimo(F(¥(@), f(w(0))) + Byl (f(w(a)), f(w(D)))
~ Ryt (W' (a), ¥ (b))
(46)
O

Proof. The abovementioned inequality can be deduced by
setting #=0 in (14); then, one can obtain the required
inequality. |

Corollary 25. (i) For p>0, one can have for the strongly
exponentially (h—m)-p-convex function the following frac-
tional integral inequality:

f<(w<a> +2me<b>)”"> R

2h(1/2)T (u + 1 »
) W [gZ(”) XL yotayrmpn oz U 9) (W7 (my? (8))

£ G (o oy oyromy (f° ¢)( 1<@>>}

<AL (F W (@), f(W (D)) + By (f(w(@)), f(w(D)))
— Ry (v (@), y? (b))

Fum(?(a), y? (b)) g, (n)h*(1/2)
Hu+1)(u+2)

(47)

Proof. If =1 in (38), then, the abovementioned inequality
is obtained.

(ii) For p < 0, one can have for the strongly exponentially
(h — m)-p-convex function the following fractional integral
inequality:

(¥ (@), 97 (0)) g, () (172)

f<<t//"(a) L) “") ;

Aut1)(u+2)
2%h(1/2)r 1 1
= m [92(’7) x IGK((WP(u)erwﬁ(b))/Z)’ (f o @) (v (my? (b))

?(a
+m*g,(n )I!Aw((y/ﬁ(u)-fmvﬂ’ )/2m)* (fe ¢)< I(WT()>>}
< AV (F((@)). F(W(0))) + Byl (F ((@)). f(w(D)))

= R (W7 (@), 47 (b))
(48)

O

Proof. The abovementioned inequality can be deduced by
setting « = 1 in (40). O

Corollary 26. (i) For p >0, one can have for the strongly
exponentially (s, m)-p-convex function the following frac-
tional integral inequality:

f<<wp(a> +2mwp<b>) “") .

24=°r 1
< (mwp(b)(fl;—p(t)l))ﬂ [91(’1)1}&’1»( a)myp(B))/2)° (fed)(v Y(m b))

+ L uoayemyr oyyzmy (F ¢)( (?))}

(
<A1,5m,3 (Fw(@) f(w(B))) + Brioms) (F(w(@)) f(w(b)))
~RYUY (w2 (a), yP (b))

Eyun (¥ (@), P (b)) g, ()
222+ 1) (u+2)

(49)

Proof. The abovementioned inequality can be deduced by
setting o =1 and h(t) =¢* in (38).

(ii) For p <0, one can have for the strongly exponentially
(s, m)-p-convex function the following fractional integral

inequality
f (‘//"(ﬂ) + ”ﬂ//"(b)> AW Fﬂ,mz(sf(a% ¥ (8))g, ()
2 2+ 1)(p+2)

25T+ 1 .
‘W[ﬂﬂﬂum amyproyy (F 2 9) (w7 (mb))

L @y U ° ¢< ( ))}

<A1;,m,3 (F(W(@). F(W())) + By oy (F(w(@)). f(w(b)))
- Rl,y,m,ﬂ (Wp(u)’ l//p(b))

(50)
O

Proof. The abovementioned inequality can be deduced by
setting a =1 and h(t) = in (40). O

Corollary 27. (i) For p >0, one can have for the strongly
exponentially Godunova-Levin type of (s, m)-p-convex func-
tion the following fractional integral inequality:
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yP(a) +my? (b)\ P\ 2%F,,,,(y* (@), y*(b))g, ()
f(( 2 ) >+ Hu+1)(u+2)

s
S gt ) et SO i U+ D 0 )

+m g, ()l u‘l((w’(aﬁmu/i’(b) s2my (f 2 9) (Vﬂ (@) }

<AL (@) f(w(0) + Byt (Fw(@), f(w(b))
~R (yh (@), v (b))

(51)

Proof. The abovementioned inequality can be deduced by
setting a =1 and h(t) =t in (38).

(ii) For p < 0, one can have for the strongly exponentially
Godunova-Levin type of (s, m)-p-convex function the fol-
lowing fractional integral inequality:

yP(a) + myP(D)\ "\ = 2%F,,.(¥*(a),¥*(b))g, (1)
f(( ) ) G DE)

WS (p+1) .

= (my? (b) i//*’( a))F {gZ(”) % (yetay ey ey 2 @) (¥ (myP(0)))

Gy I (o wpomys oyamy = 9) ( (@> }

<AL (Fw(@), F(w() + B (F(w(@), f(w(b)))
~ R (wP (@), (b))

O

Proof. The abovementioned inequality can be deduced by
setting a =1 and h(t) =t* in (40). O

Corollary 28. (i) For p >0, one can have for the strongly
exponentially (a, m)-p-convex function the following frac-
tional integral inequality:

f (w” (a) +my? (b)> "N, @ DE(yP (@), yP (b)), (1)
2 22 (u+ 1)(p+2)
26T (u+1)

S v ) V@ AL (G O))

+m gy () (2% - I, ((w” aysmyo(tyyzmy (f © ¢)< I(V/PYE'“)>>}

<AL (F(w(@), f(w(B))) + Br ) (f(w(@)), f(w(B)))
~RES (v (a), yP (b))
(53)

Proof. The abovementioned inequality can be deduced by
setting h(t) =t in (38).

(ii) For p < 0, one can have for the strongly exponentially
(ar, m)-p-convex function the following fractional integral
inequality:

Journal of Function Spaces

f(("W'W>P> , @ = DE @), v ()g,(1)
2 222 (u+ 1) (pu+2)
= % [gZ(ﬂ)Iﬂ((wP( a)+my? (b))/2)” (fed)y ((mV’P(b)))

+ m,4+1g3(,1)(20¢ - 1)[”"”( P (a)+my? (b))/2m)" (o9 ( : <Wp(a)>>}

<A (F(w(@), F(w(0))) + Bl (F(w(a)), F(w (D))
~RLST (WP (@), v (b))
(54)

Proof. The abovementioned inequality can be deduced by
setting h(t) =t in (40). O

Corollary 29. (i) For p >0, one can have for strongly expo-
nentially p-convex function the following fractional integral
inequality:

; ( (wp(a) . wP(b)) w) ot (e -v@)’)

2 2u+1)(p+2)
S%WW% @rmye 2y F 29 (W (W (b))
+ 3D @y (2 9) (W (v ()))]

<A ;1,1 kf(w(a»,f(w(b))) + By (f(w(@), f(w(b)))
_Rl,y,l,fy (‘Vp(“)’llfp(b))
(55)

Proof. The abovementioned inequality can be deduced by
setting « =m =1 and h(t) =t in (38).

(ii) For p < 0, one can have for the strongly exponentially
p-convex function the following fractional integral inequal-

ity:

(@) sy 7Y o (o) -y @))
()

2 2(u+1)(p+2)
%[w(nﬂﬂw( ooy =9 (07 W7 (0)
5D oy smproryay (F 2 ) (07 (@ ()))]
i;i,,’ (f(w(a)), ( (b>>>+B§,fiJ (f (w(@)). f(w(b)))
R (v (a), v (b))
(56)

Proof. The abovementioned inequality can be deduced by
setting « =m =1 and h(t) =t in (40). O
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Corollary 30. For the strongly exponentially (o, m)-HA
-convex function, the following inequality holds:

2y(a)y(b)
f (w(a) v mw(b)) '
,u +5u+ 8 <

U—a
S2 T(u+1)

(2"~ 1yomg () ¥(h) - y(@))’
22“+2(u+1>w+2> {“ e (i)

y(b) - y(a
a)w(
y(a)y(b))" [

9:(n ) oy )+mu/(a))/2)’(f°¢)

e (fod)

(v G

B (y(a)), flw (b)) - RS (i, i).

Proof. The abovementioned inequality can be deduced by
setting p =—1 and h(¢) = ¢ in (40). O

Corollary 31. For the strongly exponentially (s,
vex function, the following inequality holds:

2y(a)y(b) cmg, (1) y(b) -y(a)\’
(5o omet®) " T 557 [’“‘””( i)
y()

+(#2+5ﬂ+8)< o (()) ) +<2M(M+3)(w(u)—g/(h))>]

27T+ D(y(a)y(b)

T (w(b) -y (a)m)t [ (‘/’
+1 > - !
+mt g5(n) x I((V/(a)+mw(b))/(2‘l/(ﬂ) (bym))* (f o) (V’ 7>>:|

)

<AL (F(w(@), f(w(B))) + Brint (f(w(@)), f(w(b))
_ROUY <;;>
e\ y(a)” y(b)

m)-HA-con-

wy

52('7) (w(b )+mw(a))/2)’(f° ¢)

Proof. The abovementioned inequality can be deduced by
setting p=—-1, «=1, and h(t) =# in (40). O

Corollary 32. For the Godunova-Levin type of the strongly
exponentially (s, m)-HA-convex function, the following
inequality holds:

2y (a)y(b) cmg, (1)
(5 ) " 22“2(;4 . z)w

B {#(w D=7

y(b) - 2u(p+3)(w(a) —y(b))
() (M ) ! ( my(a)y(B) ﬂ
i ) (y(a)y(b

((ﬂ+_)$(/‘§))v;,(4 )i [92(’7) ((y(b)+my(a))/2)” (fo9)

( ( >+m 93Dy ayemy o)1y ( © #)

(G m)ﬂ%’”

31,4(751»1[ (f(w(a)), f(w(b))) - Rm(rfm[) (W(la)’ ﬁ)

f(y(a)). f(y(b)))

(59)
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Proof. The abovementioned inequality can be deduced by
setting p=—1, a=1, and h(t) =t in (40). O

Remark 33. Using (12) with replacement of y by w/k in all
the abovementioned inequalities, the k-fractional versions
of all the abovementioned results can be obtained.

3. Conclusion

Some inequalities of the Hadamard type for the strongly
exponentially (a, h — m)-p-convex functions using general-
ized Riemann-Liouville fractional integrals have been
proved. These inequalities give refinements of different
Hadamard-type inequalities related to various types of con-
vexities. The outcomes of this paper can also provide the k
-fractional versions of established inequalities via parametric
substitution along with constant multiplier.
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