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The purpose of this article is to introduce locally α-ζ-multivalued contraction and rational Ćirić type α-ζ-multivalued contraction
in the context of F-metric spaces and prove some endpoint results. We provide a nontrivial example to show the authenticity of
our main result. Our results generalize some well-known results of literature. We also present some endpoint results in both
graphic F-metric spaces and ordered F-metric spaces. As an application of our main result, we investigate the solution of an
integral equation.

1. Introduction

In 2010, Amini-Harandi [1] showed that a multivalued map-
ping has a unique endpoint if and only if this multivalued
mapping has the approximate endpoint property. Hussain
et al. [2] established some approximate endpoints of the
multivalued almost I-contractions in complete metric
spaces. Later on, Moradi and Khojasteh [3] proved a result
for generalized weak contractive multifunctions.

On the other hand, Samet et al. [4] introduced the
notion of α-admissibility and α-ζ-contraction in 2012. Asl
et al. [5] extended this notion of α-admissibility to α∗

-admissibility and proved some results for multivalued map-
pings. In 2015, Mohammadi and Rezapour [6] improved the
α-admissibility concept and obtained endpoint of α-ζ-mul-
tivalued contraction. Later on, Choudhury et al. [7] used
the notion of α-admissibility and proved end point results
of multivalued mappings without continuity. Very recently,
Isik et al. [8] proved endpoint results for α-ζ-contraction
in the newly introduced space of Jleli and Samet [9] which
is named as F-metric space (F-MS). In this artilce, we give
locally α-ζ-multivalued contraction and rational Ćirić type
α-ζ-multivalued contraction in the framework of F-metric
space and generalized the main result of Isik et al. [8].

2. Preliminaries

LetM=∅ and T : M⟶ 2M (nonempty subsets ofM) be a
multivalued mapping. A point σ ∈M is professed to be an
endpoint (fixed point) of T if T σ = fσgðσ ∈T σÞ. Now,
let ðM, dÞ be a metric space, then T is said to satisfy the
approximate fixed point property if

inf
σ∈M

sup
y∈T σ

d σ, yð Þ = 0: ð1Þ

Let CBðMÞ represents the set of all nonempty, closed,
and bounded subsets of M. The Hausdorff metric H is
defined on CBðMÞ as follows:

H A, Bð Þ =max sup
σ∈A

d σ, Bð Þ, sup
y∈B

d y, Að Þ
( )

: ð2Þ

In 2012, Samet et al. [4] used the following set Ψ of non-
decreasing functions ζ : ½0,∞Þ⟶ ½0,∞Þ satisfying

〠
∞

n=1
ζn tð Þ <∞, for all t > 0, ð3Þ
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and introduced α-ζ-contraction. Clearly, ζðtÞ < t for all t > 0
([30]).

Samet et al. [4] also initiated the concept of α-admissi-
bility of a single valued mapping in this way.

Definition 1 (see [4]). Let α : M ×M⟶ ½0,∞Þ and let T
: M⟶M, then T is said to be α-admissible if ∀σ, y ∈M
, αðσ, yÞ ≥ 1 implies αðT σ,T yÞ ≥ 1.

They gave the following property of M that is M is α
-regular, if for each sequence fσng in M with αðσn, σn+1Þ
≥ 1, and σn ⟶ σ, then αðσn, σÞ ≥ 1, ∀n:

In 2013, Asl et al. [5] extended this concept to multiva-
lued mapping and gave the notion of α∗-admissibility as
follows.

Definition 2 (see [5]). Let α : M ×M⟶ ½0,∞Þ and let T
: M⟶CBðMÞ, then T is said to be α∗-admissible if for
all σ, y ∈M, αðσ, yÞ ≥ 1 implies α∗ðT σ,T yÞ ≥ 1, where α∗

ðA, BÞ = inf fαða, bÞ: a ∈ A, b ∈ Bg, for all A, B ∈CBðMÞ.

In 2015, Mohammadi and Rezapour [6] extended the
above notion in this way.

Definition 3 (see [6]). Let α : M ×M⟶ ½0,∞Þ and T

: M⟶ 2M, then T is α -admissible provided that for all
σ ∈M and y ∈T σ with αðσ, yÞ ≥ 1, then αðy, zÞ ≥ 1, for all
z ∈T y.

They proved endpoint results for α-ζ-multivalued con-
traction by using the following property.

A multivalued mapping T : M⟶CBðMÞ is said to
satisfy the property (BS), if for all σ ∈M, there exists y ∈
T σ such that HðT σ,T yÞ = supb∈T ydðy, bÞ. Isik et al. [8]
used the property (SBS) of Mohammadi and Rezapour
[6] to prove their results, that is, for each sequence fσng with

d σn,T σnð Þ ≤ d σn, σn+1ð Þ + ζ d σn, σn+1ð Þð Þ, ð4Þ

for all n and σn ⟶ σ, then dðσn,T σnÞ ≤ dðσn, σÞ + ζðd
ðσn, σÞÞ, for all n ≥N .

For more details in this direction, we refer the readers
(see [10–14]).

Recently, Jleli and Samet [9] introduced an interesting
generalization of metric space which is called F-metric
space (F-MS) as follows.

LetF be the class of f : ℝ+ ⟶ℝ such that f (σ1)<f (σ2),
for fσng ⊆ℝ+, limn⟶∞σn = 0⇔limn⟶∞ f ðσnÞ = −∞:

Definition 4 (see [9]). Let M=∅, and let dF : M ×M⟶
½0,+∞Þ. Suppose that there exists f ∈F and α ∈ ½0, +∞Þ
such that

ðD1ÞdFðσ, yÞ = 0⇐⇒σ = y, for all ðσ, yÞ ∈M ×M

ðD2ÞdFðσ, yÞ = dFðy, σÞ, for all ðσ,yÞ ∈M ×M

ðD3Þ for every ðσ, yÞ ∈M ×M, for every N ∈ℕ, N ≥ 2
and for every ðσiÞNi=1 ⊂M with ðu1, uNÞ = ðσ, yÞ, we have

dF σ, yð Þ > 0⇒ f dF σ, yð Þð Þ ≤ f 〠
N−1

i=1
dF ui, ui+1ð Þ

 !
+ α ð5Þ

Then, ðM, dFÞ is called an F-MS.

Theorem 5 (see[9]). Let ðM, dFÞ be an F -MS and let
T : M⟶M. Suppose that these assertions hold:

(i) ðM, dFÞ is F-complete

(ii) there exists k ∈ ð0, 1Þ such that

dF T σð Þ,T yð Þð Þ ≤ kdF σ, yð Þ ð6Þ

Then, there exists σ∗ ∈M such that T σ∗ = σ∗ which is
unique.

Hussain and Kanwal [15] utilized an F-metric space and
generalized the above result by considering the notion of α-ζ
-contraction to prove a fixed point theorem. Many
researchers (see [16–18]) worked in this newly generalized
space.

Very recently, Isik et al. [8] introduced the notion of
Hausdorff metric HF(.,.) on CBðMÞ influence by F-met-
ric dF as follows:

HF A, Bð Þ =max supσ∈AdF σ, Bð Þ, supy∈BdF y, Að Þ
n o

, ð7Þ

for all A, B ∈CBðMÞ, where dFðσ, BÞ = inf y∈BdFðσ, yÞ and
obtained endpoint results for α-ζ-multivalued contraction
in this way.

Theorem 6. Let ðM, dFÞ be an F -MS and T : M⟶C

BðMÞ be an α -admissible mapping which satisfies the prop-
erty (BS). Suppose there exists α : M ×M⟶ ½0,+∞Þ and
ζ ∈Ψ such that

α σ, yð Þ ≥ 1⇒HF T σð Þ,T yð Þð Þ ≤ ζ dF σ, yð Þð Þ: ð8Þ

Also, suppose that these assertions hold:

(i) ðM, dFÞ is F-complete

(ii) αðσ0, σ1Þ ≥ 1for an σ0 ∈M and σ1 ∈T ðσ0Þ
(iii) M is α-regular

Then, T has an endpoint.

3. Main Results

Definition 7. Let ðM, dFÞ be an F-MS. A mapping T : M
⟶ 2M is called a locally α - ζ -multivalued contraction if
there exists ζ ∈Ψ and α : M ×M⟶ ½0, +∞Þ such that
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α σ, yð Þ ≥ 1⇒HF T σð Þ,T yð Þð Þ ≤ ζ dF σ, yð Þð Þ, ð9Þ

for σ, y ∈ �Bðσ0, rÞ:

Now, we state our main result regarding the existence of the
endpoint of an α-ζ-multivalued contraction on the closed
ball �Bðσ0, rÞ which is very advantageous in the perception
that it needs the contractiveness of the multivalued mapping
T : M⟶CBðMÞ only on the closed ball instead of the
whole space.

Theorem 8. Let ðM, dFÞ be an F-MS and T : M⟶CB

ðMÞ be an α-admissible, locally α - ζ -multivalued contrac-
tion such that T satisfies the property (BS) and for σ0 ∈
M, there exists σ1∈T σ0 such that

ζi d σ0, σ1ð Þð Þ < r, ð10Þ

for all n = 0, 1, 2,⋯ and r > 0: Also, suppose that the follow-
ing assertions hold:

(i) ðM, dFÞ is F-complete

(ii) αðσ0, σ1Þ ≥ 1 for an σ0 ∈M and σ1 ∈T ðσ0Þ
(iii) M is α-regular

Then, T has an endpoint.

Proof. Choose σ0 ∈M and σ1 ∈T σ0 such that αðσ0, σ1Þ ≥ 1.
It follows directly from (10); we have

d σ0, σ1ð Þ < r, ð11Þ

which implies that

σ1 ∈ �B σ0, rð Þ: ð12Þ

It follows from (10) that

α σ0, σ1ð Þ ≥ 1⇒H T σ0,T σ1ð Þ ≤ ζ d σ0, σ1ð Þð Þ: ð13Þ

Since T satisfies the property (BS), so ∃σ2 ∈T σ1 such
that HFðT σ1,T σ2Þ = supb∈T σ2

dFðσ2, bÞ. Now, from (13),
we have

d σ1, σ2ð Þ ≤ sup
b∈T σ1

dF σ1, bð Þ =HF T σ0,T σ1ð Þ

≤ ζ d σ0, σ1ð Þð Þ < r:
ð14Þ

This implies that

σ2 ∈ B σ0, rð Þ: ð15Þ

Since T is α-admissible, αðσ1, σ2Þ ≥ 1, so t follows from
(9) that

α σ1, σ2ð Þ ≥ 1⇒H T σ1,T σ2ð Þ ≤ ζ d σ1, σ2ð Þð Þ: ð16Þ

Continuing this process, we obtain a sequence fσng in
�Bðσ0, rÞ such that σn+1 ∈T σn, αðσn, σn+1Þ ≥ 1 and HFðT

σn,T σn+1Þ = supb∈T σn+1
dFðσn+1, bÞ, for all n. If σn = σn+1

for some n ∈ℕ, then we get that HFðfσn+1g,T σn+1Þ =
supb∈T σn+1

dFðσn+1, bÞ =HFðT σn,T σn+1Þ = 0. It implies
that σn+1 is an endpoint. Hence, we suppose that σn ≠ σn+1,
for all n ∈ℕ.

Now, since αðσn−1, σnÞ ≥ 1, so

dF σn, σn+1ð Þ ≤ sup
b∈T σn

dF σn, bð Þ =HF T σn−1,T σnð Þ

≤ ζ dF σn−1, σnð Þð Þ ≤ ζ2 dF σn−2, σn−1ð Þð Þ
≤⋯≤ ζn dF σ0, σ1ð Þð Þ,

ð17Þ

for all n ≥ 0. Assume that ð f , αÞ ∈F × ½0,+∞Þ be such
that (D3) is satisfied and fix ε > 0. By (F 2),∃δ > 0 such that

0 < t < δ⇒ f tð Þ < f εð Þ − α: ð18Þ

Suppose that N ∈ℕ be such that 0 <∑i≥Nζ
i−1ðdFðσ1,

σ2ÞÞ < δ. Hence, by (17), (18) and (F1), we have

f 〠
m−1

i=n
dF σi, σi+1ð Þ

 !
≤ f 〠

m−1

i=n
ζi−1 dF σ1, σ2ð Þð Þ

 !

≤ f 〠
i≥N

ζi−1 dF σ1, σ2ð Þð Þ
 !

< f εð Þ − α,

ð19Þ

for m > n ≥N: Using (D3) and (19), we obtain that dFðσn,
σmÞ > 0 where m > n ≥N which implies that

f dF σn, σmð Þð Þ ≤ f 〠
m−1

i=n
dF σi, σi+1ð Þ

 !
+ α < f εð Þ, ð20Þ

which implies by (F1) that dFðσn, σmÞ < ε, for allm > n ≥N:
This proves that fσng is F-Cauchy. Because of F-com-
pleteness of M, there exists σå ∈ �Bðσ0, rÞ such that σn ⟶
σå. We shall prove that σ∗ is an endpoint of T . We assume
on the contrary that T σ∗ ≠ fσ∗g. ThenHFðfσ∗g,T σ∗Þ > 0
. Since M is locally α-regular, so αðσn, σ∗Þ ≥ 1, for all n ∈ℕ.
Then, by (9) and (F1), we have

f HF σnf g,T σnð Þð Þ = f HF T σn−1,T σnð Þð Þ
≤ f HF T σn−1,T σ∗ð Þð

+HF T σn,T σ∗ð ÞÞ + α

≤ f ζ dF σn−1, σ∗ð Þð Þð
+ ζ dF σn, σ∗ð Þð ÞÞ
+ α⟶ −∞,

ð21Þ

as n⟶∞: Thus,

lim
n⟶∞

HF σnf g,T σnð Þ = 0: ð22Þ
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On the other side,

f HF σ∗f g,T σ∗ð Þð Þ
≤ f HF σ∗f g, σnf gð Þ +HF σnf g,T σnð Þð

+HF T σn,T σ∗ð ÞÞ + α

≤ f d σ∗, σnð Þ +HF σnf g,T σnð Þð
+ ζ dF σn, σ∗ð Þð ÞÞ⟶ −∞,

ð23Þ

as n⟶∞, that is a contradiction. Hence, fσ∗g =T σ∗.

Definition 9. Let ðM, dFÞ be an F-MS. A mapping T : M
⟶ 2M is called a rational Ćirić type α - ζ -multivalued con-
traction if there exists two functions α : M ×M⟶ ½0,+∞Þ
and ζ ∈Ψ such that

α σ, yð ÞHF T σð Þ,T yð Þð Þ ≤ ζ RF σ, yð Þð Þ, ð24Þ

for ðσ, yÞ ∈M ×M, where

RF σ, yð Þ =max dF σ, yð Þ, dF σ,T σð ÞdF y,T yð Þ
1 + dF σ, yð Þ

� �
: ð25Þ

Theorem 10. Suppose that ðM, dFÞ be an F-MS and T

: M⟶CBðMÞ be an α -admissible and rational Ćirić type
α - ζ -multivalued contraction such that T satisfies the prop-
erty (BS). Also, suppose that these conditions hold:

(i) ðM, dFÞ is F-complete

(ii) αðσ0, σ1Þ ≥ 1 for an σ0 ∈M and σ1 ∈T ðσ0Þ;
(iii) T is continuous

Then, T has an endpoint.

Proof. Choose σ0 ∈M and σ1 ∈T σ0 such that αðσ0, σ1Þ ≥ 1.
Since T satisfies the property (BS), there exists σ2 ∈T σ1
such that

HF T σ1,T σ2ð Þ = sup
b∈T σ2

dF σ2, bð Þ: ð26Þ

Since T is α-admissible, αðσ1, σ2Þ ≥ 1. Continuing this
process, we obtain a sequence fσng such that σn+1 ∈T σn,
αðσn, σn+1Þ ≥ 1 and

HF T σn,T σn+1ð Þ = sup
b∈T σn+1

dF σn+1, bð Þ, ð27Þ

for all n. If σn = σn+1 for some n ∈ℕ, then we get that

HF σn+1f g,T σn+1ð Þ = sup
b∈T σn+1

dF σn+1, bð Þ

=HF T σn,T σn+1ð Þ = 0:
ð28Þ

It implies that σn+1 is an endpoint. Hence, we suppose
that σn ≠ σn+1, for all n ∈ℕ.

Note that

dF σn, σn+1ð Þ ≤ sup
b∈T σn

dF σn, bð Þ =HF T σn−1,T σnð Þ

≤ α σn−1, σnð ÞHF T σn−1,T σnð Þ ≤ ζ RF σn−1, σnð Þð Þ
= ζ max dF σn−1, σnð Þ, dF σn−1,T σn−1ð ÞdF σn,T σnð Þ

1 + dF σn−1, σnð Þ
� �� �

≤ ζ max dF σn−1, σnð Þ, dF σn−1, σnð ÞdF σn, σn+1ð Þ
1 + dF σn−1, σnð Þ

� �� �
≤ ζ max dF σn−1, σnð Þ, dF σn, σn+1ð Þf gð Þ,

ð29Þ

for all n ≥ 2. If max fdFðσn−1, σnÞ, dFðσn, σn+1Þg = dFðσn,
σn+1Þ, then

dF σn, σn+1ð Þ ≤ ζ dF σn, σn+1ð Þð Þ < dF σn, σn+1ð Þ, ð30Þ

which is a contradiction. So, we have

max dF σn−1, σnð Þ, dF σn, σn+1ð Þf g = dF σn−1, σnð ÞÞ, ð31Þ

which implies

dF σn, σn+1ð Þ ≤ ζ dF σn−1, σnð Þð Þ: ð32Þ

Continuing in this way, we obtain that

dF σn, σn+1ð Þ ≤ ζ dF σn−1, σnð Þð Þ ≤ ζ2 dF σn−2, σn−1ð Þð Þ
≤ ζ3 dF σn−3, σn−2ð Þð Þ ≤⋯≤ ζn dF σ0, σ1ð Þð Þ,

ð33Þ

for all n ≥ 2 which yields that

〠
m−1

i=n
dF σi, σi+1ð Þ ≤ 〠

m−1

i=n
ζi dF σ0, σ1ð Þð Þ, ð34Þ

for m > n ≥ 2: Suppose that ε > 0 be arbitrary. Next, let ð f ,
αÞ ∈F × ½0,+∞Þ be such that (dF3) is satisfied. By (F2),
there exists δ > 0 such that

0 < t < δ⇒ f tð Þ < f εð Þ − α: ð35Þ

Suppose that N ∈ℕ be such that ∑i≥Nζ
iðdFðσ1, σ2ÞÞ < δ.

Hence, by (24), (35) and (F1), we have

f 〠
m−1

i=n
dF σi, σi+1ð Þ

 !
≤ f 〠

m−1

i=n
ζi dF σ0, σ1ð Þð Þ

 !

≤ f 〠
i≥N

ζi dF σ0, σ1ð Þð Þ
 !

< f εð Þ − α,

ð36Þ
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for m > n ≥N: Using (D3) and (36), we obtain that dFðσn,
σmÞ > 0 where m > n ≥N which implies that

f dF σn, σmð Þð Þ ≤ f 〠
m−1

i=n
dF σi, σi+1ð Þ

 !
+ α < f εð Þ, ð37Þ

which implies by (F1) that dFðσn, σmÞ < ε, for all m >
n ≥N: This proves that fσng is F-Cauchy. As M is F

-complete, so ∃σå ∈M such that σn ⟶ σå. We shall prove
that σ∗ is an endpoint of T . We assume on contrary that
T σ∗ ≠ fσ∗g. Then, HFðfσ∗g,T σ∗Þ > 0. Now, we have

f HF σnf g,T σnð Þð Þ
= f HF T σn−1,T σnð Þð Þ
≤ f HF T σn−1,T σ∗ð Þ +HF T σn,T σ∗ð Þð Þ + α:

ð38Þ

Note that we used the property (BS) in the above
inequality. Taking the limit in both sides of the above
inequality and using continuity assumption of T , we get
limn⟶∞ f ðHFðfσng,T σnÞÞ = −∞ which implies that
limn⟶∞HFðfσng,T σnÞ = 0. Hence,

f HF σ∗f g,T σ∗ð Þð Þ
≤ f HF σ∗f g, σnf gð Þ +HF σnf g,T σnð Þð

+HF T σn,T σ∗ð ÞÞ + α

≤ f d σ∗, σnð Þ +HF σnf g,T σnð Þð
+HF T σn,T σ∗ð ÞÞ⟶ −∞,

ð39Þ

as n⟶∞, that is a contradiction. Hence, fσ∗g =T σ∗.

Example 1. Consider the set M = f1, 2, 3g. Suppose that the
mapping dF : M ×M⟶ ½0, +∞Þ be given by

dF 1, 1ð Þ = dF 2, 2ð Þ = dF 3, 3ð Þ = 0,

dF 1, 2ð Þ = dF 2, 1ð Þ = 1
2 ,

dF 2, 3ð Þ = dF 3, 2ð Þ = 2
3 ,

dF 1, 3ð Þ = dF 3, 1ð Þ = 4
3 :

ð40Þ

So, ðM, dFÞ is an F-metric on M with f ðtÞ = ln ð ffiffi
t

p Þ
and α = ln

ffiffiffiffiffiffiffi
7/6

p
. Now, define T : M⟶CBðMÞ by T ð1Þ

=T ð2Þ = f1g and T ð3Þ = f1, 2g. Taking ζðtÞ = ð3/4Þt, we
have

HF T 1ð Þ,T 2ð Þð Þ = 0,

HF T 1ð Þ,T 3ð Þð Þ = dF 1, 2ð Þ = 1
2 ≤

3
4
4
3 = 3

4RF 1, 3ð Þ,
ð41Þ

where

RF 1, 3ð Þ =max dF 1, 3ð Þ, dF 1,T 1ð Þð ÞdF 3,T 3ð Þð Þ
1 + dF 1, 3ð Þ

� �

=max dF 1, 3ð Þ, dF 1, 1ð ÞdF 3, 1, 2f gð Þ
1 + dF 1, 3ð Þ

� �
,

HF T 2ð Þ,T 3ð Þð Þ = dF 1, 2ð Þ = 1
2 ≤

3
4
2
3 = 3

4RF 2, 3ð Þ,
ð42Þ

where

RF 2, 3ð Þ =max dF 2, 3ð Þ, dF 2,T 2ð Þð ÞdF 3,T 3ð Þð Þ
1 + dF 1, 3ð Þ

� �

=max dF 1, 3ð Þ, dF 2, 1ð ÞdF 3, 1, 2f gð Þ
1 + dF 2, 3ð Þ

� �
:

ð43Þ

Therefore,

α σ, yð ÞHF T σð Þ,T yð Þð Þ ≤ ζ RF σ, yð Þð Þ, ð44Þ

where

RF σ, yð Þ =max dF σ, yð Þ, dF σ,T σð ÞdF y,T yð Þ
1 + dF σ, yð Þ

� �
, ð45Þ

for all σ, y ∈M. Taking αðσ, yÞ = 1 for all σ, y ∈M, T sat-
isfies all of the conditions of Theorem 10 and soT has an end-
point. Here, T ð1Þ = f1g.

4. Endpoint Theorem in Graphic F-Metric
Spaces

In the present section, we will discuss the existence of end-
points on an F-MS equiped with a graph G, i.e, (F-GMS).

Jachymski [19] has obtained an extension of Banach’s
contraction principle in metric space equiped with a graph
G. Afterwars, Dinevari and Frigon [20] proved his results
for multivalued mappings. Let ðM, dFÞ be an F-MS. A set
fðσ, σÞ: σ ∈Mg is said to be a diagonal of M ×M, and rep-
resented by Γ. Let G be a graph such that the set VðGÞ =M,
that is, the set of its vertices and the set EðGÞ of its edges
consists of all loops, i.e., Γ ⊆EðGÞ.

Definition 11. [21] Let M=∅ equiped with a graph G and
T : M⟶ 2M. The mapping T is said to preserves edges
weakly if, for all σ ∈M and y ∈T σ with ðσ, yÞ ∈EðGÞ, we
get ðy, zÞ ∈EðGÞ,∀z ∈T y.

We give the following definition from [21] which is
required in our proof.

Definition 12. Let ðM, dFÞ be an F -GMS.
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TheF-GMSM is called EðGÞ-complete if every Cauchy
sequence fσng in M with ðσn, σn+1Þ ∈EðGÞ, for all n ∈ℕ
converges in M.

Definition 13. A mapping T : M⟶CBðMÞ is called a
EðGÞ -continuous mapping if, for any σ ∈M and any
sequence fσng with limn⟶∞dFðσn, σÞ = 0 and ðσn, σn+1Þ
∈EðGÞ for all n ∈ℕ, we have

lim
n⟶∞

HF T σn,T σð Þ = 0: ð46Þ

Definition 14. A multivalued mapping T : M⟶CBðMÞ
is called a rational Ćirić type ðEðGÞ, ζÞ -contraction multi-
valued mapping if there exist a function ζ ∈Ψ such that

σ,y ∈M, σ, yð Þ ∈E Gð Þ⇒HF T σ,T yð Þ ≤ ζ RF σ, yð Þð Þ,
ð47Þ

where RFðσ, yÞ =max fdFðσ, yÞ, ðdFðσ,T σÞdFðy,T yÞÞ/ð
1 + dFðσ, yÞÞg.

Theorem 15. Suppose that ðM, dFÞ be an F-GMS and T

: M⟶CBðMÞ be a rational Ćirić type ðEðGÞ, ζÞ -multi-
valued contraction. Suppose that the following conditions
hold:

ðS1ÞðM, dFÞ is an EðGÞ-complete F-GMS
ðS2ÞT preserves edges weakly
ðS3Þ there exist σ0 and σ1 ∈T σ0 such that ðσ0, σ1Þ ∈Eð

GÞ
ðS4ÞT is an EðGÞ-continuous multivalued mapping
Then, T has an endpoint point in M.

Proof. This result can be obtain from Theorem 10 if we
define a mapping α : M ×M⟶ ½0,∞Þ by αðσ, yÞ = 1, if
ðσ, yÞ ∈EðGÞ and αðσ, yÞ = 0, otherwise.

5. Endpoint Theorem in Ordered F-Metric
Spaces

In 2004, Ran and Reurings [22] gave the idea of orderedmetric
space (OMS) by combing classical metric space ðM, dÞ and
partial order ° on M: Fixed point results in OMS have many
applications in integral and differential equations and other
fields of mathematical analysis (see [23, 24]). In this section,
we will consider (F-OMS), i.e., ðM, dF °Þ where ðM, dFÞ is
an F-MS and ° is a partial order on M and we will derive
some new results from Theorems 8 and 10. Remember that
T : M⟶M is nondecreasing if ∀σ, y ∈M, σ°y⇒T ðσÞ°
T ðyÞ.

Here, we state the following notion motivated from [25].

Definition 16. Let M=∅ with partial order ° on M and T

: M⟶ 2M. Then, T is said to be weakly increasing if, f
or all σ ∈M and y ∈T σ with σ°y, we get that y°z, for all z
∈T y.

Definition 17. Let ðM, dF °Þ be an F -OMS.

The F-OMS M is called ° -complete if every Cauchy
sequence fσng in M with σn

°σn+1, for all n ∈ℕ converges
in M.

Definition 18. A mapping T : M⟶CBðMÞ is said to be
a ° -continuous mapping if, for any σ ∈M and any sequence
fσng with lim

n⟶∞
dFðσn, σÞ = 0 and σn

°σn+1, for all n ∈ℕ, we

get

lim
n⟶∞

HF T σn,T σð Þ = 0: ð48Þ

Motivated from [8], we define the notion of an ordered
rational C′iric′ type ζ -multivalued contraction in an F-
OMS.

Definition 19. A multivalued T : M⟶CBðMÞ is called
an ordered rational C′ iri c′ type ζ -multivalued contraction
if there exists ζ ∈Ψ such that

σ, y ∈M, σ°y⇒HF T σ,T yð Þ ≤ ζ RF σ, yð Þð Þð , ð49Þ

where RFðσ, yÞ =max fdFðσ, yÞ, ðdFðσ,T σÞdFðy,T yÞÞ/
ð1 + dFðσ, yÞÞg.

Theorem 20. Let ðM, dF ,Þ be an F-OMS ° and T : M
⟶CBðMÞ be an ordered rational Ćirić type ζ -multiva-
lued contraction. Assume that these hold:

ðS1ÞðM, dFÞ is an °-complete F-OMS
ðS2ÞT is weakly increasing
ðS3Þ there exist σ0 and σ1 ∈T σ0 such that σ0

°σ1
ðS4ÞT is an °-continuous multivalued mapping
Then, T has an endpoint point in M.

Proof. This result can be obtained from Theorem 10 if we
define a mapping α : M ×M⟶ ½0,∞Þ by αðσ, yÞ = 1, if
σ°y, and αðσ, yÞ = 0, otherwise.

6. Suzuki Type Endpoint Results in F-MS

In 2008, Suzuki [26] obtained a fixed point result as general-
ization of the Banach fixed point theorem. In this section, we
derive endpoint results for rational Suzuki type ζ-multiva-
lued contraction in F-MS as consequence of our result.

Corollary 21. Let ðM, dFÞ be a complete F-MS, ζ ∈Ψ and
T : M⟶CBðMÞ such that dFðσ,T σÞ ≤ dFðσ, yÞ + ζð
dFðσ, yÞÞ implies

HF T σ,T yð Þ ≤ ζ RF σ, yð Þð Þ, ð50Þ

where RFðσ, yÞ =max fdFðσ, yÞ, ðdFðσ,T σÞdFðy,T yÞÞ/ð
1 + dFðσ, yÞÞg, for all σ, y ∈M and T satisfies the prop-
erty (BS). If T is continuous, then T has an endpoint.
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Proof. Define α : M ×M⟶ ½0,∞Þ by

α σ, yð Þ =
1, dF σ,T σð Þ ≤ dF σ, yð Þ + ζ dF σ, yð Þð Þ,
0, otherwise:

(

ð51Þ

It is easy to check that T is α-admissible.Also, for every
σ0 ∈M and σ1 ∈T σ0, we have dFðσ0,T σ0Þ ≤ dFðσ0, σ1Þ
≤ dFðσ0, σ1Þ + ζðdFðσ0, σ1ÞÞ. Hence, αðσ0, σ1Þ = 1. It is very
simple to check that

α σ, yð ÞHF T σ,T yð Þ ≤ ζ R σ, yð Þð Þ, ð52Þ

where RFðσ, yÞ =max fdFðσ, yÞ, ðdFðσ,T σÞdFðy,T yÞÞ/
ð1 + dFðσ, yÞÞg, for all σ, y ∈M. Therefore, by Theorem
10, T has an endpoint.

Corollary 22. Suppose that ðM, dFÞ be a complete F-MS,
r ∈ ½0, 1Þ and T : M⟶CBðMÞ such that 1/ð1 + rÞdFðσ,
T σÞ ≤ dFðσ, yÞ implies that

HF T σ,T yð Þ ≤ rRF σ, yð Þ, ð53Þ

where RFðσ, yÞ =max fdFðσ, yÞ, ðdFðσ,T σÞdFðy,T yÞÞ/ð
1 + dFðσ, yÞÞg, for all σ, y ∈M and T enjoys property (BS

). If T is continuous, then T has an endpoint.

7. Application to Nonlinear Integral Equations

Let CB (ℝ) represents the set of all nonempty closed and
bounded subsets of ℝ and B = CðI,ℝÞ be the space of all
real-valued continuous functions on ½0, 1�: Clearly, B

equiped with theF-metric dF : B ×B⟶ ½0, +∞Þ given by

dF σ, yð Þ = e σ−yk k, if σ=y,
0, otherwise,

(
ð54Þ

where

σ − yk k = sup
t∈I

σ tð Þ − y tð Þj j½ �, ð55Þ

is a F-complete F-metric space (see [15]).
Now, we consider the integral equation

σ tð Þ= t
0K t, s, σ sð Þð ÞdF + g tð Þ, ð56Þ

t ∈ I, where σ ∈B,K : ½0, 1� × ½0, 1� ×ℝ⟶ CBðℝÞ and
g : ½0, 1�⟶ℝ is continuous.

Theorem 23. Suppose that these conditions hold:

(i) for all σ ∈B,K : ½0, 1� × ½0, 1� ×ℝ⟶ CBðℝÞ is such
that Kðt, s, σðsÞÞ is continuous in ½0, 1� × ½0, 1�

(ii) there exists I : ½0, 1� × ½0, 1�⟶ℝ which is continu-
ous that satisfy the property inf t∈I t0Iðt, sÞds = τ > 0

such that for any σ, ℏ ∈B and each kσðt, sÞ ∈ Kσðt, s,
σðsÞÞ, there exists kℏðt, sÞ ∈ Kσðt, s, ℏðsÞÞ such that

kσ t, sð Þ − kℏ t, sð Þj j
≤max σ sð Þ − ℏ sð Þj j, σ sð Þ − kσ t, sð Þj jðf

� ℏ sð Þ − kℏ t, sð Þj jÞ/ 1 + σ sð Þ − ℏ sð Þj jð Þg −I t, sð Þ
ð57Þ

for all t, s ∈ ½0, 1�:

Then, the integral equation (56) has at least one solution
in B.

Proof. Suppose that multivalued mapping T : B⟶ CBðBÞ
defined by

T σ = ϖ ∈B : ϖ tð Þ ∈ g tð Þ +
ðt
0
K t, s, σ sð Þð ÞdFs, t ∈ a, b½ �

� �
,

ð58Þ

for all σ ∈B. Evidently, each endpoint of T is a solution of
(56).

Next, consider the set-valued operator Kσðt, sÞ: ½0, 1� ×
½0, 1�⟶ CBðℝÞ, defined by

Kσ t, sð Þ = K t, s, σ sð Þð Þ: ð59Þ

Then, by Michael’s selection theorem, ∃kσðt, sÞ : ½0, 1� ×
½0, 1�⟶ℝ such that kσðt, sÞ ∈ Kσðt, sÞ for each t, s ∈ ½0, 1�:
This implies that gðtÞ + Ð t0kρðt, sÞdFs ∈ Tσ: Hence, Tσ=∅:

Next, we prove that the multivalued function T satisfies
all the conditions of Theorem 10. Let σ, y ∈B and ρðtÞ ∈
T σ: Then, ∃kσðt, sÞ ∈ Kσðt, sÞ for each t, s ∈ ½0, 1� such that

ρ tð Þ = g tð Þ +
ðt
0
kσ t, sð ÞdFs, ð60Þ

for t ∈ ½0, 1�: On the other side, by assumption (ii), ∃
kℏðt, sÞ ∈ Kσðt, sÞ such that (57) holds. Now, by taking

ϖ tð Þ = g tð Þ +
ðt
0
kℏ t, sð ÞdFs, ð61Þ

we get

ϖ tð Þ = g tð Þ +
ðt
0
K t, s, ℏ sð Þð ÞdFs =T ℏ, ð62Þ
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for t ∈ ½0, 1�,

dF ρ, ϖð Þ = e ρ−ϖk k ≤ e
sup
t∈ 0,1½ �

Ð t

0
kσ t,sð Þds−

Ð t

0
kℏ t,sð Þds

�� ��

≤ e
sup
t∈ 0,1½ �

Ð t

0
kσ t,sð Þ−kℏ t,sð Þj jds

≤ e
sup
t∈ 0,1½ �

Ð t

0
max σ sð Þ−y sð Þj j, σ sð Þ−kσ t,sð Þj j ℏ sð Þ−kℏ t,sð Þj jð Þ/ 1+ σ sð Þ−ℏ sð Þj jð Þf g−I t,sð Þj jds

= e
sup
t∈ 0,1½ �

Ð t

0
max σ sð Þ−ℏ sð Þj j, σ sð Þ−kσ t,sð Þj j ℏ sð Þ−kℏ t,sð Þj jð Þ/ 1+ σ sð Þ−ℏ sð Þj jð Þf gj jds−

Ð t

0
I t,sð Þds

≤ e
max σ sð Þ−ℏ sð Þk k, σ sð Þ−kσ t,sð Þj j ℏ sð Þ−kℏ t,sð Þj jð Þ/ 1+ σ sð Þ−ℏ sð Þj jð Þk kf g− inf

t∈ 0,1½ �
Ð t

0
I t,sð Þds

≤ emax σ sð Þ−ℏ sð Þk k, σ sð Þ−kσ t,sð Þj j ℏ sð Þ−kℏ t,sð Þj jð Þ/ 1+ σ sð Þ−ℏ sð Þj jð Þk kf g−τ

≤ emax σ sð Þ−ℏ sð Þk k, σ sð Þ−kσ t,sð Þj j ℏ sð Þ−kℏ t,sð Þj jð Þ/ 1+ σ sð Þ−ℏ sð Þj jð Þk kf g · e−τ

= ζ RF σ, yð Þð Þ,
ð63Þ

where ζðtÞ = e−τt: By interchanging the roles of σ and y, we
get that

HF T σ,T yð Þ ≤ ζ RF σ, yð Þð Þ, ð64Þ

where RFðσ, yÞ =max fdFðσ, yÞ, ðdFðσ,T σÞdFðy,T yÞÞ/
ð1 + dFðσ, yÞÞg, for all σ, y ∈B: Taking αðσ, yÞ = 1, for all
σ, y ∈B, all of the conditions of Theorem 10 are satisfied,
and thus, T has an endpoint, which is a solution of integral
equation (56).
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