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In this paper, we introduce a new scheme and prove convergence results for nonexpansive mappings as well as for weak
contractions in the frame of Banach spaces. Moreover, we prove analytically and numerically that the proposed scheme
converges to a fixed point of a weak contraction faster than some known and leading schemes. Further, we prove that the new
scheme is almost stable with respect to weak contraction. For supporting the main results, we give a couple of nontrivial
numerical examples, and the visualization is shown by using the Matlab program. Finally, the solution of a nonlinear fractional
differential equation is approximated by operating the main result of the paper.

1. Introduction

Throughout the paper, ℤ+
0 denotes the set of nonnegative

integers. Let E be a nonempty subset of a Banach space Z ,
K : E⟶ E is a mapping and FðKÞ = fw ∈ E : Kw =wg.
A mapping K : E⟶ E is said to be nonexpansive if for
each x, y ∈ E,

Kx −Kyk k ≤ x − yk k: ð1Þ

A self-mapK on E is said to be a weak contraction [1] if
for all x, y ∈ E∃ a constant δ ∈ ð0, 1Þ and some L ≥ 0 such
that

Kx −Kyk k ≤ δ x − yk k +L x −Kyk k,
Kx −Kyk k ≤ δ x − yk k +L y −Kxk k:

ð2Þ

Theorem 1 (see [1]). Let K : Z ⟶Z be a weak contrac-
tion with δ ∈ ð0, 1Þ and some L ≥ 0 such that

Kx −Kyk k ≤ δ x − yk k +L x −Kxk k, ∀x, y ∈Z: ð3Þ

Then, K has a unique fixed point, and Picard sequence
converges to the fixed point.

But if we take an initial guess different from a fixed point
in case of nonexpansive mapping, it is to be noted that the
Picard iterative scheme fails to converge to the fixed points
of such mappings; hence, we need some other iterative
schemes. In the sequel, many authors gave the generaliza-
tions of nonexpansive mapping and proved existence and
convergence results in linear space, e.g., see [2].

However, to find the fixed points of numerous nonlinear
mappings is not an easy task. So, to overcome this kind of
problem, several researchers constructed iterative schemes
to approximate fixed points of mappings. A few of them
are Picard-S [3], Thakur-New [4], and others [5–10].

Here, we consider some iterative schemes which are fre-
quently used to approximate the fixed points of nonlinear
mappings introduced by Picard [11], Mann [12], Ishikawa
[13], Noor [14], and Agarwal et al. (S) [15], respectively,
where the sequence fτng is developed by an arbitrary point
τ0 ∈ E as follows:

τn+1 =Kτ0, n ∈ℤ+
0 ,f ð4Þ

τn+1 = 1 − θnð Þτn + θnKτn, n ∈ℤ+
0 ,f ð5Þ
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τn+1 = 1 − θnð Þτn + θnKσn,
σn = 1 − μnð Þτn + μnKτn, n ∈ℤ+

0 ,

(
ð6Þ

τn+1 = 1 − θnð Þτn + θnKσn,
σn = 1 − μnð Þτn + μnKξn,
ξn = 1 − γnð Þτn + γnKτn, n ∈ℤ+

0 ,

8>><
>>: ð7Þ

τn+1 = 1 − θnð ÞKτn + θnKσn,
σn = 1 − μnð Þτn + μnKτn, n ∈ℤ+

0 ,

(
ð8Þ

where fθng, fμng, and fγng are sequences in ð0, 1Þ.
Motivated by the previous work, we define a new itera-

tive scheme for finding the fixed point of a weak contraction,
where the sequence fτng is developed iteratively by τ0 ∈ E
and

τn+1 =K 1 − θnð Þσn + θnKσnð Þ,
σn = 1 − μnð ÞKτn + μnKξn,
ξn = 1 − γnð Þτn + γnKτn, n ∈ℤ+

0 ,

8>><
>>: ð9Þ

where fθng, fμng, and fγng are sequences in ð0, 1Þ.
Our main focus is to consider those iterative schemes

which save time when we approximate fixed points of map-
pings. Berinde [16] gave the following definitions about the
rate of convergence of iterative schemes which is defined
as follows:

Definition 2. Let fαng and fβng be two sequences of positive
numbers that converge to α and β, respectively. Assume that

ℓ = lim
n⟶∞

αn − αj j
βn − βj j : ð10Þ

(i) If ℓ = 0, then fαng converges to α faster than fβng to
β

(ii) If 0 < ℓ <∞, then fαng and fβng have the same rate
of convergence

Definition 3. Consider fτng and fσng as two fixed point iter-
ative schemes both converging to the same point t of a map-
ping with error estimates

τn − tj j ≤ αn,
σn − tj j ≤ βn:

ð11Þ

If lim
n⟶∞

αn/βn = 0, then fτng converges faster than fσng.

Now, we discuss another concept related to iterative
schemes called stability. Let fτng be a theoretical sequence
and ftng an approximate sequence which is due to rounding
errors and numerical approximation of functions. We say

that the approximate sequence ftng converges to the fixed
point of mapping K if and only if the given fixed point iter-
ative scheme would be stable. Because of this fact, the con-
cept of stability for a fixed point iterative scheme was
coined by Ostrowski [17] which defined as follows.

Definition 4 (see [17]). Let τn+1 = f ðK , τnÞ be an iteration
procedure, converging to a fixed point w, which is said to
be K -stable or stable with respect to K , if for ϵn = ktn+1
− f ðK , tnÞk, n ∈ℤ+

0 , we have lim
n⟶∞

ϵn = 0⇔ lim
n⟶∞

tn =w,

where ftng is an approximate sequence in a subset E of a
Banach space Z .

In 1998, a weaker concept of stability, called almost sta-
bility, was coined by Osilike [18] which is defined as follows.

Definition 5 (see [18]). Let τn+1 = f ðK , τnÞ be an iteration
procedure, converging to fixed point w, which is said to be
almost K -stable or almost stable with respect to K , if for
ϵn = ktn+1 − f ðK , tnÞk, n ∈ℤ+

0 , we have ∑∞
n=0ϵn <∞⇒

lim
n⟶∞

tn =w.

Remark 6 (see [18]). It can be easily seen that any K-stable
iteration procedure is almostK -stable, but reverse may fail.

Lemma 7 (see [19]). Let 0 ≤ δ < 1 and fϵng and fung be any
two sequences of nonnegative numbers satisfying un+1 ≤ δun
+ ϵn, n ∈ℤ

+
0 . If ∑

∞
n=0ϵn <∞, then ∑∞

n=0un <∞.

2. Preliminaries

Definition 8. A self-mapping K on a Banach space Z is said
to be demiclosed at y, if for any sequence fτng which con-
verges weakly to x, and if the sequence fKðτnÞg converges
strongly to y, then KðxÞ = y:

Definition 9. A sequence fτng in a normed spaceZ is said to
be weakly convergent (denoted by ⇀ ) if ∃ an element x ∈Z
such that

lim
n⟶∞

K τnð Þ =K xð Þ, ∀K ∈Z∗: ð12Þ

Definition 10. A Banach space Z is said to satisfy Opial’s
property [20] if for any fτng⇀ f in Z ⇒ lim

n⟶∞
inf kτn − f k

< lim
n⟶∞

inf kτn − gk for all g ∈Z with g ≠ f .

Lemma 11 (see [21]). Let E be a nonempty closed and convex
subset of a uniformly convex Banach space Z and K a non-
expansive mapping on E. Then, I −K is demiclosed at zero.

Lemma 12 (see [22]). Let Z be a uniformly convex Banach
space and 0 < a ≤ ωn ≤ b < 1 for all n ∈ℕ. Assume that fτng
and fσng are two sequences in Z such that lim

n⟶∞
sup kτnk

≤ ω, lim
n⟶∞

sup kσnk ≤ ω, and lim
n⟶∞

sup kωnτn + ð1 − ωnÞ
σnk = ω holds, for some ω ≥ 0. Then, lim

n⟶∞
kτn − σnk = 0.
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Definition 13 (see [23]). A mapping K : E⟶ E is said to
satisfy property ðAÞ, if ∃ a nondecreasing mapping ψ : ½0,
∞Þ⟶ ½0,∞Þ with ψð0Þ = 0 and ψðzÞ > 0, ∀z > 0, such that
dðx,KxÞ ≥ ψðdðx, FðKÞÞÞ, ∀x ∈ E.

3. Convergence Result for Weak Contractions

Throughout this section, we presume that E is a nonempty
closed and convex subset of a normed linear space Z and
K : E⟶ E a weak contraction satisfying (3) with FðKÞ
≠∅.

Theorem 14. Let fτng be a sequence developed by new itera-
tive scheme (9), then fτng converges to a fixed point of K .

Proof. From (9), for any w ∈ FðKÞ,

ξn −wk k = 1 − γnð Þτn + γnKτn −wk k ≤ 1 − γnð Þ τn −wk k
+ δγn τn −wk k = 1 − 1 − δð Þγnð Þ τn −wk k,

σn −wk k = 1 − μnð ÞKτn + μnKξn −wk k
≤ δ 1 − μnð Þ τn −wk k + δμn ξn −wk k
≤ δ 1 − 1 − δð Þμnγnð Þ τn −wk k,

τn+1 −wk k = K 1 − θnð Þσn + θnKσnÞð Þ −wk k
≤ δ 1 − θnð Þσn + θnKσn −wk k
≤ δ2 1 − 1 − δð Þθnð Þ 1 − 1 − δð Þμnγnð Þ τn −wk k:

ð13Þ

By using the fact that 0 < ð1 − ð1 − δÞθnÞ ≤ 1 and 0 < ð1
− ð1 − δÞμnγnÞ ≤ 1, we have

τn+1 −wk k ≤ δ2 τn −wk k: ð14Þ

Inductively, we get

τn+1 −wk k ≤ δ2 n+1ð Þ τ0 −wk k: ð15Þ

Since 0 < δ < 1, fτng converges to w.
Now, we prove almost stability of new iterative scheme

(9) with respect to a weak contraction.

Theorem 15. Let fτng be a sequence developed by iterative
scheme (9), then fτng is almost K-stable.

Proof. Consider ftng an approximate sequence of fτng in E.
Suppose sequence defined by (9) is τn+1 = f ðK , τnÞ con-
verging to a fixed point w (by Theorem 14) and ϵn =
ktn+1 − f ðK , tnÞk, n ∈ℤ+

0 . Now, we will prove that ∑∞
n=0

ϵn <∞⇒ lim
n⟶∞

tn =w:

Let ∑∞
n=0ϵn <∞, then by iterative scheme (9), we have

tn+1 −wk k ≤ tn+1 − f K , tnð Þk k + f K , tnð Þ −wk k
= ϵn + f K , tnð Þ −wk k ≤ ϵn + δ2 1 − 1 − δð Þθnð Þ
� 1 − 1 − δð Þμnγnð Þ tn −wk k:

ð16Þ

Since 0 < ð1 − ð1 − δÞθnÞ ≤ 1 and 0 < ð1 − ð1 − δÞμnγnÞ
≤ 1 and using (16), we get

tn+1 −wk k ≤ ϵn + δ2 tn −wk k: ð17Þ

Define un = ktn −wk, then

un+1 ≤ δ2un + ϵn: ð18Þ

Since ∑∞
n=0ϵn <∞, by Lemma 7, we have ∑∞

n=0un <∞.
This implies lim

n⟶∞
un = 0, i.e., lim

n⟶∞
tn =w: This shows that

new iterative scheme (9) is almost K-stable.
There is analytical comparison of the rate of convergence

of iterative schemes with new iterative scheme (9) for weak
contraction.

Theorem 16. Suppose that the sequence fτ1,ng is introduced
by Picard (4), fτ2,ng by Mann (5), fτ3,ng by Ishikawa (6),
fτ4,ng by Noor (7), fτ5,ng by Agrawal (8), and fτng by (9)
iterative scheme which converges to the same point w. Then
iterative scheme (9) converges faster than all the schemes
(4)–(8) to a fixed point of K .

Proof. Using equation (15) of Theorem 14, we have

τn+1 −wk k ≤ δ2 n+1ð Þ τ0 −wk k = αn, n ∈ℤ+
0 : ð19Þ

From equation (7), we get

ξn −wk k = 1 − γnð Þτn + γnKτn −wk k
≤ 1 − 1 − δð Þγnð Þ τn −wk k: ð20Þ

It can be easily seen that 0 < ð1 − ð1 − δÞγnÞ ≤ 1, so we
get

ξn −wk k ≤ τn −wk k: ð21Þ

Using (21), we obtain that

σn −wk k = 1 − μnð Þτn + μnKξn −wk k ≤ 1 − μnð Þ τn −wk k
+ δμn ξn −wk k ≤ 1 − μnð Þ τn −wk k
+ δμn τn −wk k ≤ 1 − 1 − δð Þμnð Þ τn −wk k:

ð22Þ

Again, it can be easily seen that 0 < ð1 − ð1 − δÞμnÞ ≤ 1,
so we get

σn −wk k ≤ τn −wk k: ð23Þ
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Using (23), we obtain that

τn+1 −wk k = 1 − θnð Þτn + θnKσn −wk k ≤ 1 − θnð Þ τn −wk k
+ δθn σn −wk k ≤ 1 − θnð Þ τn −wk k
+ δθn τn −wk k ≤ 1 − 1 − δð Þθnð Þ τn −wk k:

ð24Þ

By using the fact that 0 < ð1 − ð1 − δÞθnÞ ≤ 1, we have

τn+1 −wk k ≤ τn −wk k: ð25Þ

Inductively, we get

τn+1 −wk k ≤ τ0 −wk k: ð26Þ

Let

τ4,n −w
�� �� ≤ τ4,0 −w

�� �� = α4,n, n ∈ℤ+
0 : ð27Þ

Then

αn
α4,n

= δ2 n+1ð Þ τ0 −wk k
τ4,0 −w

�� �� : ð28Þ

Thus, fτng converges faster than fτ4,ng to w because
ð0 < δ < 1Þ, then αn/α4,n ⟶ 0 as n⟶∞.

By applying a similar approach, we can also show that
the rate of convergence of all the other leading iterative
schemes to w is slower than iterative scheme (9).

We embellish the following example to support our
assertion.

Example 17. Let Z =ℝ2 be a Banach space with respect to
the norm kxk = kðx1, x2Þk = jx1j + jx2j and E = fx = ðx1, x2Þ
: ðx1, x2Þ ∈ ½0, 1� × ½0, 1�g be a subset of Z . Let K : E⟶ E

be defined by

K x1, x2ð Þ =

1
2 sin x1ð Þ, 14 sin x2ð Þ

� �
, if x1, x2ð Þ ∈ 0, 12

� �
× 0, 12

� �
,

1
2 x1,

1
4 x2

� �
, if x1, x2ð Þ ∈ 1

2 , 1
� �

× 1
2 , 1

� �
:

8>>><
>>>:

ð29Þ

Then K is a weak contraction satisfying (3) for δ = 1/2
= L, but K is not a contraction mapping.

By Matlab 2015a, we exhibit that new iterative scheme
(9) converges to a fixed point w = ð0, 0Þ of the mapping K

faster than the iterative schemes Picard, Mann, Ishikawa,
Noor, and S with initial point τ0 = ð0:20,0:40Þ and control
sequences θn = 0:35, μn = 0:45, and γn = 0:75, n ∈ℤ+

0 , which
can be easily seen in Tables 1 and 2 and Figure 1.

4. Convergence Results for
Nonexpansive Mapping

Throughout this section, we presume that E is a nonempty,
closed, and convex subset of a uniformly convex Banach
space Z and K : E⟶ E is a nonexpansive mapping.
Now, we prove the following useful lemmas which are used
to prove the next results of this section.

Lemma 18. Let fτng be a sequence developed by new iterative
scheme (9), then lim

n⟶∞
kτn −wk exists for all w ∈ FðKÞ.

Proof. Suppose w ∈ FðKÞ and fτng ∈ E. From (9), we have

ξn −wk k = 1 − γnð Þτn + γnKτn −wk k ≤ τn −wk k, ð30Þ

Table 1: Comparison of speed of the convergence of different iterative schemes.

Iter. Picard Mann Ishikawa

1 (0.200000, 0.400000) (0.200000, 0.400000) (0.200000, 0.400000)

2 (0.099335, 0.097355) (0.164767, 0.294074) (0.156965, 0.282817)

⋮

19 (0.000001, 0.000000) (0.006241, 0.001655) (0.002593, 0.000796)

20 (0.000000, 0.000000) (0.005149, 0.001221) (0.002037, 0.000564)

⋮

54 (0.000000, 0.000000) (0.000007, 0.000000) (0.000001, 0.000000)

55 (0.000000, 0.000000) (0.000006, 0.000000) (0.000000, 0.000000)

⋮

67 (0.000000, 0.000000) (0.000001, 0.000000) (0.000000, 0.000000)

⋮

68 (0.000000, 0.000000) (0.000001, 0.000000) (0.000000, 0.000000)

69 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

70 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)
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σn −wk k = 1 − μnð ÞKτn + μnKξn −wk k
≤ 1 − μnð Þ τn −wk k + μn ξn −wk k
≤ 1 − μnð Þ τn −wk k + μn τn −wk k ≤ τn −wk k:

ð31Þ
Using (31), we get

τn+1 −wk k = K 1 − θnð Þσn + θnKσnð Þ −wk k
≤ 1 − θnð Þσn + θnKσn −wk k ≤ 1 − θnð Þ σn −wk k

+ θn σn −wk k = σn −wk k ≤ τn −wk k,
ð32Þ

which exhibit that fkτn −wkg is decreasing and
bounded below. Therefore, lim

n⟶∞
kτn −wk exists.

Lemma 19. Let FðKÞ ≠∅ and fτng be the iterative scheme
developed by equation (9). Then lim

n⟶∞
kτn −Kτnk = 0.

Proof. Since lim
n⟶∞

kτn −wk exists by Lemma 18 and it is

given that FðKÞ ≠∅ with w ∈ FðKÞ. Presume that lim
n⟶∞

kτn −wk = c:
By the inequalities (30) and (31), we get

lim
n⟶∞

sup ξn −wk k ≤ c, ð33Þ

lim
n⟶∞

sup σn −wk k ≤ c, ð34Þ

Table 2: Comparison of speed of the convergence of different iterative schemes.

Iter. Noor S New scheme

1 (0.200000, 0.400000) (0.200000, 0.400000) (0.200000, 0.400000)

2 (0.154063, 0.280745) (0.091532, 0.086097) (0.034027, 0.013435)

⋮

8 (0.032294, 0.033698) (0.000873, 0.000010) (0.000001, 0.000000)

9 (0.024894, 0.023670) (0.000402, 0.000002) (0.000000, 0.000000)

⋮

17 (0.003104, 0.001403) (0.000001, 0.000000) (0.000000, 0.000000)

18 (0.002392, 0.000985) (0.000000, 0.000000) (0.000000, 0.000000)

⋮

50 (0.000001, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

51 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

⋮

69 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

70 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

(Number of iterations)

1 6 11 16 21 26 31 36 41 46 51 56 61 66 70

(V
al

ue
 o

f |
|τ

n-
t||

)

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Picard
Mann
Ishikawa

Noor
S
New scheme

Figure 1: Graphical representation of iterative schemes.
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respectively. Since K is nonexpansive mapping, we have

Kτn −wk k ≤ τn −wk k, Kσn −wk k ≤ σn −wk k, Kξn −wk k
≤ ξn −wk k:

ð35Þ

Using (35), we get

lim
n⟶∞

sup Kτn −wk k ≤ c, ð36Þ

lim
n⟶∞

sup Kσn −wk k ≤ c, ð37Þ

lim
n⟶∞

sup Kξn −wk k ≤ c: ð38Þ

Since

τn+1 −wk k = K 1 − θnð Þσn + θnKσnð Þ −wk k
≤ 1 − θnð Þσn + θnKσn −wk k ≤ 1 − θnð Þ σn −wk k

+ θn σn −wk k ≤ σn −wk k:
ð39Þ

Now,

c = lim
n⟶∞

inf τn+1 −wk k ≤ lim
n⟶∞

inf σn −wk k: ð40Þ

So that (33) and (40) give

lim
n⟶∞

σn −wk k = c, ð41Þ

c = lim
n⟶∞

σn −wk k = lim
n⟶∞

1 − μnð ÞKτn + μnKξn −wk k
= lim

n⟶∞
1 − μnð Þ Kτn −wð Þ + μn Kξn −wð Þk k

ð42Þ
by using Lemma 12 and Inequality (36) and (38), we have

lim
n⟶∞

Kτn −Kξnk k = 0: ð43Þ

Now,

σn −wk k = 1 − μnð ÞKτn + μnKξn −wk k ≤ Kτn −wk k
+ μn Kξn −Kτnk k ≤ Kτn −wk k,

ð44Þ

which gives

c ≤ lim
n⟶∞

inf Kτn −wk k, ð45Þ

using (36) and (45), we get

lim
n⟶∞

Kτn −wk k = c: ð46Þ

On the other hand, we have

Kτn −wk k ≤ Kτn −Kξnk k + Kξn −wk k
≤ Kτn −Kξnk k + ξn −wk k: ð47Þ

Applying liminf on both sides, we get

c ≤ lim
n⟶∞

inf ξn −wk k, ð48Þ

by using (34) and (48), we have

lim
n⟶∞

ξn −wk k = c: ð49Þ

So,

c = lim
n⟶∞

ξn −wk k = lim
n⟶∞

1 − γnð Þτn + γnKτn −wk k
= lim

n⟶∞
1 − γnð Þ τn −wð Þ + γn Kτn −wð Þk k:

ð50Þ

Using Lemma 12 and Inequality (50), we get

lim
n⟶∞

τn −Kτnk k = 0: ð51Þ

Now, we prove a weak convergence result for nonexpan-
sive mapping.

Theorem 20. Presume that Z enjoys Opial’s condition, then
the sequence fτng developed by iterative algorithm (9) con-
verges weakly to a point of FðKÞ.

Proof. Let fτng be a sequence with two subsequences fτnj
g

and fτnkg and l and m are two weak subsequential limits
of fτnj

g and fτnkg, respectively. From Lemmas 18 and 19,

we get lim
n⟶∞

kτn −wk exists and lim
n⟶∞

_kτn −Kτnk = 0,
respectively. Now, we have to show that fτng cannot have
different weak subsequential limits in FðKÞ. Also, from
Lemma 11, I −K is demiclosed at 0. This implies that
ðI −KÞl = 0, i.e., l =K l, similarly m =Km. We have to
show that l =m.

Let on contrary l ≠m, by Opial’s condition, we have

lim
n⟶∞

τn − lk k = lim
nj⟶∞

τnj
− l

��� ��� < lim
nj⟶∞

τnj
−m

��� ���
= lim

n⟶∞
τn −mk k = lim

nk⟶∞
τnk −m

�� ��
< lim

nk⟶∞
τnk − l

�� �� = lim
n⟶∞

τn − lk k,
ð52Þ

which is absurd, hence l =m. Consequently, fτng⇀ l ∈
FðKÞ.

There is a strong convergence result for nonexpansive
mapping.

Theorem 21. Let fτng be the sequence developed by equation
(9). Then lim

n⟶∞
inf dðτn, FðKÞÞ = 0 if and only if fτng
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converges to a point of FðKÞ, where dðτn, FðKÞÞ = inf
f∥τn −w∥ : w ∈ FðKÞg.

Proof. If the sequence fτng converges to a point w ∈ FðKÞ,
then it is obvious that lim

n⟶∞
inf dðτn, FðKÞÞ = 0.

Now, for the first part taking lim
n⟶∞

inf dðτn, FðKÞÞ = 0
for any fixed point w ∈ FðKÞ. From Lemma 18,

lim
n⟶∞

τn −wk k ð53Þ

exists ∀w ∈ FðKÞ; therefore, lim
n⟶∞

dðτn, FðKÞÞ = 0.
Now, our assertion is that fτng is a Cauchy sequence in

E. Since lim
n⟶∞

dðτn, FðKÞÞ = 0, and for a given α > 0, there
exists w0 ∈ℤ

+
0 such that for all n ≥w0

d τn, F Kð Þð Þ < α

2 ,

inf τn −wk k: w ∈ F Kð Þf g < α

2 :
ð54Þ

Precisely, inf fkτw0
−wk: w ∈ FðKÞg < α/2. Therefore,

there exists w ∈ FðKÞ such that

τw0
−w

�� �� < α

2 : ð55Þ

Now, for m, n ≥w0,

τn+m − τnk k ≤ τn+m −wk k + τn −wk k ≤ τw0
−w

�� ��
+ τw0

−w
�� �� = 2 τw0

−w
�� �� < α:

ð56Þ

Thus, fτng is a Cauchy in E. Since E is closed, lim
n⟶∞

τn = q for some q ∈ E. Now, lim
n⟶∞

dðτn, FðKÞÞ = 0 implies

dðq, FðKÞÞ = 0; hence, we get q ∈ FðKÞ.
We now prove a strong convergence result by applying

property ðAÞ.

Theorem 22. Let K : E⟶ E be a nonexpansive mapping
with property ðAÞ. Then fτng defined by (9) converges
strongly to a fixed point of K .

Proof. From equation (51) of Lemma 19, we have

lim
n⟶∞

τn −Kτnk k = 0: ð57Þ

Using (57) and property ðAÞ, we get

0 ≤ lim
n⟶∞

ψ d τn, F Kð Þð Þð Þ ≤ lim
n⟶∞

τn −Kτnk k = 0,

lim
n⟶∞

ψ d τn, F Kð Þð Þð Þ = 0:
ð58Þ

Since ψ enjoy the conditions ψðzÞ > 0 and ψð0Þ = 0, ∀z
> 0, then we obtain

lim
n⟶∞

d τn, F Kð Þð Þ = 0: ð59Þ

So by Theorem 21, we obtain the desired result.

5. An Illuminate Numerical Example

The purpose of this section is to present a numerical exam-
ple to compare the rate of convergence for nonexpansive
mapping.

Example 23. Suppose Z =ℝ3 a Banach space with usual
norm and let K : Z ⟶Z be a mapping defined as

K xð Þ =K x1, x2, x3ð Þ = 0, x1, x2ð Þ, ∀x = x1, x2, x3ð Þ ∈Z:

ð60Þ

Then K is nonexpansive, but not contraction.

Proof. Let x = ðx1, x2, x3Þ and y = ðy1, y2, y3Þ∈Z . Then

Kx −Kyk k = 0, x1, x2ð Þ − 0, y1, y2ð Þk k
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − y1ð Þ2 + x2 − y2ð Þ2

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − y1ð Þ2 + x2 − y2ð Þ2 + x3 − y3ð Þ2

q
= x1, x2, x3ð Þ − y1, y2, y3ð Þk k = x − yk k:

ð61Þ

Hence, K is a nonexpansive mapping, but not contrac-
tion.

Now, by taking control sequences an = 0:5, bn = 0:4, and
cn = 0:3 with initial guess x1 = 0:5, x2 = 0:25, and x3 = 0:15,
we can show that new iterative scheme (9) converges faster
than all other leading iterative schemes which is shown in
Tables 3 and 4 and Figure 2.

6. Application to Nonlinear Fractional
Differential Equation

In recent years, many authors pointed out that derivatives
and integrals of noninteger order are very suitable for the
description of properties of various real materials, e.g., poly-
mers. It has been shown that new fractional order models
are more adequate than previously used integer order
models. Fractional derivatives provide an excellent instru-
ment for the description of memory and hereditary proper-
ties of various materials and processes. This is the main
advantage of fractional derivatives in comparison with clas-
sical integer order models, in which such effects are in fact
neglected. The advantages of fractional derivatives become
apparent in modelling mechanical and electrical properties
of real materials, as well as in the description of rheological
properties of rocks, and in many other fields. Most nonlinear
fractional differential equations have no exact solution, so
the approximate solution or numerical solution may be a
good choice [24]. Related to this topic, we may refer the
readers to [25–27] and the references therein.
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Table 4: Numerical comparison of iterative schemes.

Iter. Ishikawa Mann

1 (0.500000, 0.250000, 0.150000) (0.500000, 0.250000, 0.150000)

2 (0.250000, 0.275000, 0.250000) (0.250000, 0.375000, 0.200000)

3 (0.125000, 0.212500, 0.257500) (0.125000, 0.312500, 0.287500)

⋮

29 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000001)

30 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)

(Number of iterations)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30

0

0.1

0.2

0.3

0.4

0.5

0.6

New scheme
S

Ishikawa
Mann

(V
al
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 o

f |
|τ

n-
t||

)

Figure 2: Graphical representation of iterative schemes.

Table 3: Numerical comparison of iterative schemes.

Iter. New scheme S

1 (0.500000, 0.250000, 0.150000) (0.500000, 0.250000, 0.150000)

2 (0.000000, 0.000000, 0.220000) (0.000000, 0.400000, 0.300000)

3 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.320000)

4 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)

Table 5: By using new iterative scheme observation between approximate solution and exact solution.

S.no. t x tð Þ τ1 τ3 τ5 τ7 τ10

1 0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

2 0.1 -0.03804451 -0.03804451 -0.03804451 -0.03804451 -0.03804451 -0.03804451

3 0.2 -0.07003487 -0.07003487 -0.07003487 -0.07003487 -0.07003487 -0.07003487

4 0.3 -0.09478803 -0.09478803 -0.09478803 -0.09478803 -0.09478803 -0.09478803

5 0.4 -0.11165674 -0.11165674 -0.11165674 -0.11165674 -0.11165674 -0.11165674

6 0.5 -0.12026046 -0.12026046 -0.12026046 -0.12026046 -0.12026046 -0.12026046

7 0.6 -0.12040960 -0.12040960 -0.12040960 -0.12040960 -0.12040960 -0.12040960

8 0.7 -0.11207095 -0.11207095 -0.11207095 -0.11207095 -0.11207095 -0.11207095

9 0.8 -0.09534778 -0.09534778 -0.09534778 -0.09534778 -0.09534778 -0.09534778

10 0.9 -0.07046638 -0.07046638 -0.07046638 -0.07046638 -0.07046638 -0.07046638

11 1.0 -0.03776548 -0.03776548 -0.03776548 -0.03776548 -0.03776548 -0.03776548
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Consider the following fractional differential equation:

cDβ = f t, x tð Þð Þ 0,≤t ≤ 1, 1 < β ≤ 2ð Þ,

x 0ð Þ = 0, x 1ð Þ =
ðη
0
x sð Þds 0 < η < 1ð Þ,

8><
>: ð62Þ

where cDβ denotes the Caputo fractional derivative of order
β and f : ½0, 1� ×ℝ⟶ℝ is a continuous function.

In this section, we approximate the solution of problem
(62) via new scheme (9) with Z = C½0, 1� which is a Banach
space of continuous function from ½0, 1� into ℝ endowed
with the maximum norm.

ðC1Þ Assume that

f t, að Þ − f t, bð Þj j ≤ Γ β + 1ð Þ
5 a − bj j ð63Þ

for all t ∈ ½0, 1� and a, b ∈ℝ.

Theorem 24. Let Z = C½0, 1� and K : Z ⟶Z be an oper-
ator defined by

K x tð Þð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, x sð Þð Þds − 2t

2 − η2ð ÞΓ βð Þ
�
ð1
0
1 − sð Þβ−1 f s, x sð Þð Þds + 2t

2 − η2ð ÞΓ βð Þ
�
ðη
0

ðs
0
s −mð Þβ−1

�
f m, x mð Þdmð Þds,

ð64Þ

t ∈ ½0, 1�, ∀x ∈Z . Assume that the condition ðC1Þ is
satisfied. Then the new scheme (9) converges to a solution of
the problem (62), say x∗ ∈Z .

Proof. Observe that x∗ ∈Z is a solution of (62) if and only if
x∗ is a solution of the integral equation

x tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f s, x sð Þð Þds − 2t

2 − η2ð ÞΓ βð Þ
�
ð1
0
1 − sð Þβ−1 f s, x sð Þð Þds + 2t

2 − η2ð ÞΓ βð Þ
�
ðη
0

ðs
0
s −mð Þβ−1 f m, x mð Þð Þdm

� �
ds:

ð65Þ

Now, let t ∈ ½0, 1� and x, y ∈Z . Using ðC1Þ, we get

Kx tð Þ −Ky tð Þj j
= 1

Γ βð Þ
ðt
0
t − sð Þβ−1 f s, x sð Þð Þds − 2t

2 − η2ð ÞΓ βð Þ
����
�
ð1
0
1 − sð Þβ−1 f s, x sð Þð Þds + 2t

2 − η2ð ÞΓ βð Þ
�
ðη
0

ðs
0
s −mð Þβ−1 f m, x mð Þð Þdm

� �
ds −

1
Γ βð Þ

�
ðt
0
t − sð Þβ−1 f s, y sð Þð Þds + 2t

2 − η2ð ÞΓ βð Þ
�
ð1
0
1 − sð Þβ−1 f s, y sð Þð Þds − 2t

2 − η2ð ÞΓ βð Þ
�
ðη
0

ðs
0
s −mð Þβ−1 f m, y mð Þð Þdm

� �
ds
����

≤
Γ β + 1ð Þ

5 x − yk k sup
t∈ 0,1ð Þ

1
Γ βð Þ

ðt
0
t − sj jβ−1ds + 2t

2 − η2ð ÞΓ βð Þ
�

�
ð1
0
1 − sj jβ−1ds + 2t

2 − η2ð ÞΓ βð Þ
ðη
0

ðs
0
s −mj jβ−1dmds

�
≤ x − yk k:

ð66Þ

Thus, for t ∈ ½0, 1� and for each x, y ∈Z , we get

Kx −Kyk k ≤ x − yk k: ð67Þ

(t)

0.2 0.4 0.6 0.80 0.1 0.3 0.5 0.7 0.9 1

So
lu

tio
n

–0.14

–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

0

x (t)
New iterative scheme

Figure 3: Exact solution and approximated solution of problem (68).
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Thus, K is nonexpansive mapping. Hence, iterative
scheme (9) converges to the solution of (62).

Now, for the effectiveness of Theorem 24, we present the
following example.

Example 25.

cD1:25 = sin tð Þ 0 ≤ t ≤ 1ð Þ,

x 0ð Þ = 0, x 1ð Þ =
ð0:5
0
x sð Þds:

8><
>: ð68Þ

The exact solution of problem (68) is given by

x tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 sin sð Þds − 2t

2 − η2ð ÞΓ βð Þ
�
ð1
0
1 − sð Þβ−1 sin sð Þds + 2t

2 − η2ð ÞΓ βð Þ
�
ðη
0

ðs
0
s −mð Þβ−1 sin mð Þdm

� �
ds:

ð69Þ

The operator K : C½0, 1�⟶ C½0, 1� is defined by

K x tð Þð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 sin sð Þds − 2t

2 − η2ð ÞΓ βð Þ
�
ð1
0
1 − sð Þβ−1 sin sð Þds + 2t

2 − η2ð ÞΓ βð Þ
�
ðη
0

ðs
0
s −mð Þβ−1 sin mð Þdm

� �
ds:

ð70Þ

Taking initial hypothesis τ0ðtÞ = tð1 − tÞ, t ∈ ½0, 1�, β =
1:25 and η = 0:5, choose control sequences θn = 0:95, μn =
0:65 and ξn = 0:50, n ∈ℤ+

0 . It is shown in Table 5 and
Figure 3 that iterative scheme (9) converges to the exact
solution of problem (68) for the operator constructed in
(70).

7. Conclusion

In this paper, convergence and stability results of a new three
step iterative scheme has been studied. Further, the solution
of a fractional differential equation is approximated by
applying Theorem 24. For nonlinear mappings, we com-
pared the rate of convergence of remarkable iterative
schemes analytically and numerically. To support the main
result, we gave nontrivial examples.
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