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High-dimensional fractional equation investigation is a cutting-edge discipline with considerable pragmatic and speculative
consequences in engineering, epidemiology, and other scientific disciplines. In this study, a hybrid Jafari transform mixed with
the Adomian decomposition method for obtaining the analytical solution to Burgers’ problem is provided. Burgers’ equation is
a vital mathematical expression that appears in a variety of computational modelling fields, including fluid mechanics,
nonlinear acoustics, gas dynamics, and traffic flow. By considering a hybrid transform, semianalytical techniques are
constructed for the Caputo and Atangana-Baleanu fractional derivative operators. Besides that, existence and uniqueness
analyses are carried out with the aid of the Banach contraction-fixed point theory. To obtain the models’ findings, we
employed the Jafari transform on fractional-order Burger equations (BEs), supplemented by the inverse Jafari transform. The
projected findings for the fractional BEs have been depicted visually. Ultimately, numerical figures are provided to validate the
practicality and efficacy. The solution obtained by employing the supplied methodologies has been validated to have the
appropriate rate of convergence to the precise solution. The main advantage of the suggested method is the relatively small

number of computations performed. It can also be used to address fractional-order scientific issues in a multitude of fields.

1. Introduction

Fractional calculus (FC) is a novel scientific and technical
area of investigation that is broadly utilized in applied math-
ematics, pharmacology, information theory, fluid, gas turbu-
lence, mathematical biology, and related domains [1, 2]. The
topic of FC has subsequently gained a lot of attention.
Numerous researchers have made significant contributions
to this topic by developing multiple fractional expressions
in diverse publications. The findings of advanced calculus
are frequently far more comprehensive than those of classi-
cal calculus. Furthermore, fractional differential formula-
tions have greater characteristics than integer-order ones,
including Caputo [3], Caputo and Fabrizio [4], and Atangana
and Baleanu [5]. The noted Caputo order has significant dif-

ficulties as well, including the fact that their kernel is singular.
This flaw has an impact on simulating major challenges. To
address the aforementioned issues, the authors [5] proposed
an innovative formulation that has fractional order relying
on the Mittag-Leffler (ML) function. It is worth noting that
their fractional integral is the fractional average of the sup-
plied function’s Riemann-Liouville fractional integral and
the function themselves [6-9]. In regard to the improve-
ments listed previously, the derivative has been shown to be
particularly effective in heat-like research and structural
research [10, 11]. This special generation of derivatives con-
taining fractional orders is both a filtration derivative and a
fractional derivative.

Recently, the research design of fractional derivatives
[3-5] has become increasingly appropriate for simulation,
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permitting fractional differential equations to be progres-
sively implemented in all disciplines of science, with increas-
ing feasibility, effectiveness, and precision. Researchers are
continuously exploring different ways of evaluating the
credibility and validity of fractional differential equations
(FDEs). Some prevalent numerical/analytical methodologies
are the Adomian decomposition method (ADM) [12],
Adams-Bashforth Moulton (ABM)[13], Hirota bilinear
method (HBM) [14], Exp-function method (EFM)[15],
variation iteration method (VIM) [16], Newton polynomial
approach (NPA) [17], finite volume method (FVM) [18],
finite difference method (FDM) [19], residue power series
method (RPM) [20], and so on.

The purpose of this paper is at employing the Jafari
decomposition approach to nonlinear fractional coupled
BEs as follows:

2 2
Df1f+faa_f+ E:i{af af})

_—t —
u, gau2 Re | ow?  ou’

5 og oJg 1 |d’g d'g
Dlg 1 8 - _J%8.98
t8r " {Buf " ou’

it - R , 0<6,6,<1.
ou, gau2 Re } <Opors

(1)

Model (1) of dissipation seems to be a very prominent
unsteady flow system. Various scholars have contemplated
investigating this notion as a framework of vibration propa-
gation in order to gain scientific understanding. The distinc-
tive functionality of model (1) is the simplest computational
description of the rivalry between viscosity propagation and
nonlinear convection. It comprises the simplest fundamental
versions of the decomposition factor g(of/ou,) and the non-
linear convection-diffusion factor f(0f/ou, ), where 7" = [f, g|
and Re is the Reynolds number employed to imitate the
practical properties of signal oscillations and hence influence
the behaviour of the system. Cole [21] examined BE alge-
braic features. Dynamical processes are crucial in science
and numerical methods. In applied sciences, the significance
of attaining the exact or estimated outcomes of partial differ-
ential equations is in order to examine innovative strategies;
this is currently a contentious issue for accomplishing the
exact or analytical results [22-24]. For this goal, several
approaches for getting the varied reported performance of
diverse scientific models that represented using nonlinear
PDEs have been presented. Bateman [25] created a promi-
nent framework and established consistent conclusions that
are applicable to various viscous dissipations. Burgers [26]
subsequently proposed it as the most distinguished frame-
work for addressing computational instability challenges.

During Gorge Adomian’s meteoric rise in 1980, the
Adomian decomposition approach established a well-
known methodology. This has been increasingly incorpo-
rated into a broad range of nonlinear systems, including
the Black-Scholes model [27] and the Swift-Hohenberg
[28]. The ADM has been shown to be strongly related to a
wide range of integral transforms [27, 28]. Jafari [29]
recently proposed a hybrid integral transform known as
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the Jafari transform. The capacity to recapitulate numerous
prior transforms is the transformation’s key characteristic
(see Remark 8).

Due to the aforesaid tendency, we employ the Jafari
transform decomposition methodology (JTDM) to deter-
mine the required clarification of the fractional-order BEs.
To generate a new algorithmic strategy, the Jafari transform
incorporated the ADM in an effective way. The Jafari
transform is a modification of many previous formulae; see
Remark 8. Both the recommended techniques produce
analytical findings in the format of a convergent series.
The Atangana-Baleanu fractional derivative operator in the
Caputo interpretation is used to explain the quantitative
categorizations of the BEs. The proffered methodologies
are well represented in modelling and compilation investiga-
tions. The obtained method is a valuable tool for evaluating
the behaviour of systems that are difficult to numerically
analyze, notably for fractional PDEs. Fractal-fractional
phenomena can be investigated using the approximate
expression.

2. Preliminaries

In this part, we revisit certain key concepts, ideas, and termi-
nologies connected to fractional derivative formulations
involving the power law and ML as a kernel, as well as the
Jafari transform’s specific ramifications.

Definition 1 (see [3]). The fractional derivative of Caputo
(CED) is specifically defined as follows:

1t £
I(r 6)[ ) du, ro1<o<n
c - o t- r
‘DYf(t) = . o(t-u)
= f(v), 5=r.
T '

(2)

Definition 2 (see [5]). The ABC is specifically defined as
follows:

wenlisw) - 5 [ for, [ oew)

m

where fe Al(a,, a,)(Sobolevspace), a, < a,,8 €[0,1], and
ABC(9) indicates the normalization function as ABC(5) =
ABC(0) = ABC(1) = 1.

Definition 3 (see [5]). The ABC fractional integral operator is
expressed in the following form:

- 1-6 o
ABCT0 _

o 1) = 355 TeaBce)

: Jt f(u,)(t-u,)* " du,.

M

(4)
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Definition 4 (see [29]). Consider an integrable mapping f(t)
defined on a set &, and then,

P ={f(t): AIM >0,k > 0, |f(t)| < M exp (xt), ift>0}.

()

Definition 5 (see [29]). Assume that the functions @(p),
¥(p): R* > R* such that ¢(p) + 0Vp € R*. The Jafari inte-
gral transform of the function f(t) expressed by Q(p) is
stated as

00

JE(0), P} =QUp) = 0(p) | (0 exp (¥ (o)t (6)

0

Theorem 6 (see [29]) (convolution property). The following
is valid for the Jafari integral transform:

J{f, £} = #p)czl(p) £ Qy(p). @)

Definition 7. The following is the Jafari transform of the
CFD operator:

I{iD{(E0). P} =¥ (p)QUP) - ()
: 621 PO (p) 9 (0),r 1< 8 <1, @, ¥ > 0.
(®)

Remark 8. Definition 7 refers to the following resulting
assumptions:

(1) Choosing @(p) =1 and ¥(p) = p, then, this leads to
the Laplace transform [30]

(2) Choosing @(p)(1/p) and ¥(p)=1/p, then, this
leads to the a-Laplace transform [31]

(3) Choosing ®@(p)=1/p and ¥(p)=1/p, then, this
leads to the Sumudu transform [32]

(4) Choosing ®@(p) = 1/p and ¥(p) =1, then, this leads
to the Aboodh transform [33]

(5) Choosing @(p) = p and ¥(p) = p?, then, this leads
to the Pourreza transform [34, 35]

(6) Choosing @(p) = p and ¥(p) = 1/p, then, this leads
to the Elzaki transform [36]

(7) Choosing @(p) =u; and ¥(p)=p/u,, then, this
leads to the natural transform [37]

(8) Choosing @(p) = p* and ¥(p) = p, then, this leads
to the Mohand transform [38]

(9) Choosing @(p) =1/p* and ¥(p) =1/p, then, this
leads to the Swai transform [39]

(10) Choosing @(p) =1and ¥(p) = 1/p, then, we get the
Kamal transform [40]

(11) Choosing @(p)=p* and ¥(p)=1/p, then, this
leads to the G_transform [41, 42]

Definition 9 (see [43]). The ABC fractional derivative opera-
tor has the following Jafari transform:

ABC(8)7" (p)
5+ (1-8)¥(p)

JCORETON

¥(p)
Remark 10. Definition 9 leads to the following conclusions:

1{§%DY(£(0). p }(8) =
)

(1) Choosing @(p) =1 and ¥(p) = p, then, this leads to
the Laplace transform of the ABC fractional deriva-
tive operator [44]

(2) Choosing @(p) = p and ¥(p) = 1/p, then, this leads
to the Elzaki transform of the ABC fractional deriv-
ative operator [45]

(3) Choosing @(p)=¥(p)=1/p, then, we get the
Sumudu transform of the ABC fractional derivative
operator [46]

(4) Choosing @(p) =1 and ¥(p) = p/u,, then, we get the
Shehu transform of the ABC fractional derivative
operator [46]

Definition 11 (see [47]). The ML function for a single param-
eter is defined as

K

Es(z) = Zm

x=0

8,2, €CR(S) 0.  (10)

3. Analysis of Semianalytical Techniques

In this part, we illustrate an explanation of the generic
methodology for the subsequent system via the Jafari
transform.

Dof(u,, t) + f(uy, t) + Nf(u,, t) = F(u;,t), t>0,0<5<1,
(11)

with ICs
f(u;,0) =9 (u,), (12)

where & denotes being linear and ./ is nonlinear, whilst
h(u,, ) represents the source terms.
Considering the Jafari transform to (11), we obtain

][fo(ul,t)+2f(u1,t)+Nf(u1,t) = J[F(u, ). (13)



Now, implement the differentiation property of Jafari
transform in regard of CFD and then utilize the ABC frac-
tional derivative operator as follows:

V(P (w,.p) = P(p) Y V) (0)
+J[Rf(u,, t) + Nf(u,, t)] + J[F(uy, 1)),
(14)
and
¥9(p)ABC(9) B(p) ¥°(p)ABC(d)
5107 P H )5 (-0 (p)
+J[8f(u,, t) + Nf(uy, t)]
+J[F(uy, t)].
(15)
The inverse Jafari transform of (14) and (15) gives
flu = |0(p) L ¥(p) 000+ T, t>}]
-1 1 =
-7 |}P‘%p) ][Sf(ul, t) +Nf(u1,t)]] ,
(16)
and
w71 | 20P) 3+ (1-8)¥°(p)
flu, 0 =] W(P)f( ) Y,g(p)ABC( 7w )]]

(17)

The Jafari decomposition method solution f(u;,t) is
described by the subsequent infinite series

f(u,, t) Zf (u;, t) (18)

Consequently, the nonlinear component N(u,, t) can be
analyzed utilizing the Adomian decomposition approach

Nf(u, t)= Y A(f,f, ), r=0,1-,  (19)

M8

r=0

where

A (£ £, 0e) = 1[;&(26“)] , r>0. (20)
=0
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Plugging (17) and (18) into (15) and (16), respectively,
we get

Zofr(“pt) =G(u,)+G(u)-J"

: . (21)
70 J lﬂf(ul,t) + ZOA, )
and
Z(;fr(“l’ t)=%(u,) + %(“1) -7
|8+ (1-8)¥(p) N G
“ABCE) P ) ]lﬁf(ul, t) + ;)Ar
(22)

As a result, the iterative approach for (19) and (21) is
constructed as

fy(u,t) = G(u) + G(u,), r=0,

£ (0, t)=-J ‘Pal(p) [B(f(ul, ) + ;)A r>1,

O N e T 1{8@( b0+ DA r2
(23)

4. Mathematical Formulation of the Jafari
Transform Decomposition Approach

The following classifications will reveal how the essential
prerequisites ensure the development of a unique solution.
In the case of JTDM, we predict the existence of solutions
that are accompanied by [48].

4.1. Uniqueness Results. In this part, we will present the
uniqueness analysis for the JTDM and JTDM . fractional
operator.

Theorem 12. The JTDM . solution of (23) is unique when
0<e<l, where e=((Y,+Y,+ Y)t0)/([(5+1)).

Proof. Given that all continuous mappings on the Banach
space are represented by Q= (Cl[I],||.||). Further, surmise
that =0, T] have the norm ||.||. Presently, we specify a
mapping % : Q— U as

fr+1 (ul’ t)
=f(u, t)+]J!

1 -

i) [ O]+ P 0]+ NE 0] | 20
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where  R[f(u,,t)] = (0°f(u,,t))/(du?) and P[f(u,,t)] =
(0f(uy, t))/(0u,). Either, surmise that £[f(u,,t)] and M[f
(u,,t)] are also Lipschitzian with |Pf —Pﬂ< Y,|f- £ and
|Rf - RE} < Y,|f-£], where Y, and Y, are Lipschitz con-
stants and f, £ are distinguishable functional variables.

|| %t - %K

]*1

= max
tel

q/ﬁl(p) ][Q[f(ul, t)] + P[f(ul, t)] + N[f(ul’ t)]]‘|

L y[e(ku,, 0] + BlEu,, ) +N[f<u1,t>1]] ‘

¥ (p)

-1

¥ (p)

JIR[f(uy, 1)) - S[f(upt)]]]

T [Plf(u,, )] - P[£<upt>H]

¥ (p)

SULLCE —N[&uptm] '

i I —f<u1,t>|]

+Y,J7!

iy (00 t>|]

g 1
+Y5) [@—(P)llf(upt) —ﬁ(upt)IH

1
= n}gx(yl +Y, +Y5)) [‘I"S(p)”f(ul’ t) - £<“1>t)|]

B lw%(p)lnf(upt) - f(ul,t>||]

_ 1| 2(p)
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[[£(w;, ) —£(u,, D).

(25)

As 0 <e< 1, s0, % is contraction. As a conclusion of the
Banach contraction fixed point theorem, (11) is unique. This
yields the intended outcome. O

Theorem 13. The JTDM . solution of (23) is unique
when 0<e< 1, where e= (Y, + Y, + Y;){(8)/([(8+1)) +
(1-6)}.

Proof. Given that all continuous mappings on the Banach
space are represented by U =(C[I], ||.||), further, surmise

5
that I=[0, T] have the norm ||.||. Presently, we specify a
mapping % : U+ U as
o+ (1-9)¥(p) (P)
f SO =f(u, t) + ,t
o0 = 07 O g )
+P[f,(u,, t
where  g[f(u,,t)] = (3’f(u,, t))/(du?) and P[f(u,,t)]=
(of(u,,t))/(0u,). Either, surmise that f[f(u,,t)] and M

[f(uy, t)] are also Lipschitzian with |Pf— Pfl < Y,|f- £ and
|Rf - RE| < Y,|f— £, where Y, and Y, are the Lipschitz
constant, respectively, and f, f-are distinguishable functional
variables.

|zt - ot
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ABC(0)¥°(p)

ax ]_1
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As 0 <e< 1, so0,  is contraction. As a conclusion of the
Banach contraction fixed point theorem, (11) is unique. This
yields the intended outcome. O

4.2. Convergence Analysis. This section consists of the con-
vergence analysis based on JTDM,. and JTDM ypc.

Theorem 14. The JTDM . solution of (11) is convergent.

Proof. Surmise that Q,=Y" _ f.(u;,t). Furthermore, in
order to show that {Q,} is Cauchy sequence in U, by analyz-
ing a model consisting of Adomian polynomials, we obtain

Now,
Q- Q) = max|, - Q,

Z fu,, t)

m=q+1

=max

2 ’(m:1>2$3>"'))
tel

-1

< max|J
tel
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Take n=g+1; then,

||Qq+1 - QqH Ssuéq - Qq—IH SszHQq—l - Qq—ZH

ot - (30)
< '“SeqHQl _QO

>

where e=((Y; +Y,+Y;)t)/(I(§+1)). Analogously, we
have

1Qe = Qull = 1Qgir = Qg +11Qquz = Qg [ ++[ Qe = Q|

< [eT+ et ++e71]|Q, - Q|

1-¢m1
<él f]|.
(S5 s

As 0 <e< 1, we have (1 — 1) < 1. Accordingly,

~ &l
HQr_QqHSI—_e max||fy (32)

Therefore, ||f;]| < co (since f(u,,t) is bounded). Addi-
tionally, as g~ co, then, ||Q, - Qq|| 0. As a result, {Q,}

is a Cauchy sequence in K. Thus, the series Y 2 f, is con-
vergent. O

Theorem 15. The JTDM 4 solution of (11) is convergent.
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Proof. Surmise that Q,=Y" _ f.(u,t).
order to show that {Q,} is a Cauchy sequence in U, by
analyzing a model consisting of Adomian polynomials, we
obtain

Furthermore, in

r-1
R(Q)=4,+) A,
p=0
(33)
r-1
Z’V(Qr) = Ar + ~c
c=0
Now,
2.~ ~msx(a,- @,
= max mzzw fu,t)], (m=1,2,3,---)
1[0+ (1-80)%(p) | §
< Irtlgx WI |:mz+1 g[fr—l (ul t)}:|:|
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Take n=g+1; then,

- 0=l 22100l
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<eg
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where e= (Y, + Y, + Y3){(8/T(8+ 1)) + (1
gously, we have

-6)}. Analo-

Har_ Qq” < Haqﬂ - QqH + Héqﬂ - Qq+1||+"'+||©r - QHH
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1-¢1
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As 0<e< 1, we have (1 -¢"1) < 1. Accordingly,

(36)

1Q = Q| < —— max|fy]]. (37)

1—¢€ tel

Therefore, ||f;]| < co (since f(u,,t) is bounded). Addi-
tionally, as g+ oo, then, ||Q, - QqH 0. As a result, {Q,}
is a Cauchy sequence in K. Thus, the series Y . f, is conver-
gent. O

5. Solutions of Fractional-Order
Burgers Equation

In this part, we demonstrate how to use the aforementioned
strategies to derive analytical findings for the Burgers equa-
tions under various initial guesses.

Example 16. Let us surmise the generic form of BEs (1) as
follows:

2 2
Dif faa_f+ Ezi{ﬂ+ﬂ},

2 p
ou; Ouj

s g og 1 [d’g Oo'g
D ? f_ — = 0 = 9 b b 1)
vet ou, gau2 Re | ou? i ou3 0<8,,0, <

(38)



having ICs
3 1
f > )0 === >
(w,12,0) = 4 = 4+ exp (((0.03125) Re) — 4w, + 4u))
u;,u,,0 3+ !
8w, 1 0) =3 4(1 +exp (((0.03125) Re) — 4u, +4u,))’
(39)

where Re denotes the Reynolds number.
In the exact solution of (38) when 8, =6, =1, then,

3 1
f > )t === '
(0828 = 4~ 4T+ exp (((0.03125) Re) — 4u, + 4w, 1))
1
g(u,uy, t)= -

il 4(1 +exp (((0.03125) Re) — 4u, + 4u, — t))

(40)

Case 17 (Caputo fractional operator). Applying the Jafari
transform on (38), we have

5, of of | 1 _[df of
ot o] ey - ol + )
og 1 _|o'g Og
][ tg} +][ }+I[ auj ]{E)u1 auz}

It follows that

(41)

my;—1

w0 (p)J[f(uy, w5 p)] = D(p) Y. PO (p)) (wy, uy, 0)

k=1
of of 1 _[0o* 0°f
=J|f—|-T|g=—| + =I5 + =5
ou, ou,| Re |ou? 0ul
z lPS —x—1

_ le08] 1 _[o’g o'g
1| ’[ uz] —’{a—a—

The aforementioned equation can be written as

P (p)I[g(u;, uy, p) (ul’“2>0)

(42)

Jf(uy, up, p)]
_2(p) F - 1 }
¥(p) [4 4(1+exp (((0.03125) Re) —4u, +4u,))

1 of 1 of
_ | = el
WO, (p) ][ auj wd (P)]{gauj

L1 I azf+azf
Reydi(p)” | 0w} = oud [’
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J[g(uy,uy, p)]
_P(p) F N 1 ]
¥(p) |4 4(1+exp (((0.03125) Re) —4u, +4u,))

1 g 1 ag}
_ f98 | _ 95
v (o) [ auj v (o) [g 3,

1 1 d’g O'g
+——J =+ —= .
Rew?:(p)" | 0uj  Ouj

Further, implementing the inverse Jafari transform on
(43), then, it diminishes to

(44)

f(u;, uy, p)
e
¥(p) |4 4(1+exp (((0.03125) Re) - 4u, +4u,))
g 1 j fof of 1 aszr o*f
wip) | o Bou, Relow " awd[|[’
(45)
g(u;, uy, p)
T ——
¥(p) |4 4(1+exp (((0.03125) Re) — 4u; +4u,))

a1 1 og dog 1 |o’g og
- £28 g% )98 I8l

) {‘P‘sz(p)]{ au1+g8u2 Re Bu§+au§
(46)

In this case, we hypothesize that the undefined functions
f(u,,u,,t) and g(u;, u,,t) can be described as an infinite
series of the mode as follows

Zf (uj,u,,t)
Zgr (up,uy, t)

= ZSEO'Q{:’ fgu1 = Zf:oggp gfuz =
=22, indicate the Adomian polynomials

lll, 112,
(47)

g(u, u,, t)

It is clear that fful

zs:o(gr’ ggu2
and are referred to as the nonlinear factors.

In view of the Adomian polynomials, (45) can be
described as

Zfr+l(ul’u2’t)
r=0
3 1
"4 4(1+exp (((0-03125) Re) — 4u, + 4u,))
[ee] (e8]
]1{l{/81 ][Z)ﬂ +Z(;‘%

- ﬁ {l;)frulu1 + rZofruzuz}‘| }
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Z 8 (U, uy, t)
r=0
"4 4(1+exp (((0.03125) Re) —

. 1 (S8 (o)
{w ]Lz(;%r+ ;9,

-]
*(p)
1 0 0
+ R_e {rzogrulu1 + l;)gruzuz}‘| }

Analyzing term by term (48), we may immediately get
the iterative terms indicated as follows:

4u, +4u,))
(48)

fo(up, . t)
3 1

4 4(1+exp (((0.03125) Re)

—4u; +4u,)) ’

go(up, uy, t)
3, 1
4 4(1 +exp (((0.03125) Re)

—4u, +4u,))’

f,(uy, uy, 1)
Re.exp (((0.125) Re)(u; —u,)) to
1281 + exp (((0.125) Re)(u, — u,))]* (6, +1)

g1 (u, uy t)
Re.exp (((0.125) Re)(u; - u,)) t%

~128[1 +exp (((0.125) Re)(u; —u,))* (8, +1)°
f,(up, w,, 1)
_ Re.exp (((0.125) Re)(u; —u,)) 2%
4096[1 + exp (((0.125) Re)(u, —u,))]* (28, +1)
x { (Re)*(~exp (((0.125) Re)(u, —u,)))
+ (exp (((0.125) Re)(u; —uy)) — 1)
+exp (((0.125) Re)(u; —uy))},
g (up, wy, t)
_ Re.exp (((0.125) Re)(u; —u,)) 20
4096[1 + exp (((0.125) Re)(u, —u,))]* T'(26,+1)
g (oo ((5)-w))
+ (exp (((0.125) Re)(u; —uy)) — 1)
+exp (((0.125) Re)(u; - uz))}.
(49)

Proceeding in the analogous manner, the additional
factors of f, and g,, (r>3) of the JTDM solution can be

attained effortlessly. As a result, we arrive to the mathemat-
ical formulation as

f(u,u,, t)

=) f(u;,u,,t)
r=0

=fy(u, uy, t) + £ (u, u,, t) + £, (u, uy, t)+, -,

f(u,u,,t)

_3 1

"4 4(1+exp (((0.03125) Re) — 4u, +4u,))
Re.exp (((0.125) Re)(u; —u,)) o
128[1 +exp (((0.125) Re)(u; — )] T(8; +1)

~ Reexp (((0.125) Re)(u; —u,)) 20

4096[1 + exp (((0.125) Re)(u; —u,))]* (26, +1)

x {(Re)?(~exp (((0.125) Re)(u; — uy)))

+ (exp (((0.125) e)(ul ~u,))-1)

+exp (((0.125) Re)(u, — uy))

)~
ast

(50)

and

g(u;, uy, t)
o0
= Z g(up,uy, t)
r=0

=go(upuy, t) + g (), Uy, £) + 8, (up, wy, t)+, -+,

g(uy, uy, t)
3 1
=1 " 4(1+ exp (((0.03125) Re) — 4u, + 4u,))
_ Reeexp (((0.125) Re)(u; —u,)) %
128[1 +exp (((0.125) Re)(u; —uy))}* T(6,+1)
_ Reexp (((0.125) Re)(u; —u,)) %
4096[1 + exp (((0.125) Re)(u; —u,))]* (28, +1)

(o ((‘ff) )

+ (exp (((0.125) Re)(u; —u,)) — 1)

+exp (((0.125) Re)(u, —uz))}+~--+.

(51)

Case 18 (ABC fractional operator). Applying the Jafari
transform on (38) with respect to ABC-fractional derivative
operator sense as

¥ (p)ABC(p)
&+ (1-8)¥ (p)

- @(p) Z lIU(S_K_I(/’)f(K) (up,1,,0)

k=1

JIf(u;,uy, )]
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¢ af g of 1 I ! 62‘*(1_52)5”62@)]
au,| " |Bou,| " Re P (p)ABC(p) (56)
azf o*f ¥9:(p)ABC 0 0 o’g
3 2 AR e, p) (e g B 0B T8
oup 0wy | 8, +(1-6,)¥%(p) ou, ou, ou?  oul
Z K- 1 ul, u,,0) In this case, we hypothesize that the undefined functions
f(u,,u,,t) and g(u;, u,,t) can be described as an infinite
series of the mode as follows:
=128 yg 8y e, O
- aul u, ow 0w’
(52) f(u,u,,t) Zf (ug,u,,t)
(57)
The aforementioned equation can be written as g(u;, u,, t) Z g (u, u, t)
J[£(uy, uy, p)]

It is clear that ff, =Y, fg, =.%%, gf,,

(o}
_ 2(p) 220 88y, = 2ro9P; indicate the Adomian polynomials

3 1
T ¥(p) [4 ~ 4(1 +exp (((0.03125) Re) - 4u, +4u2))}

and were referred to as the nonlinear factors.

6 +(1- 8,)¥* (p) In view of the Adomian polynomials, (55) can be
¥ (p)ABC(p) described as
faf+ af_1182f+62f o
bu, "Eau, R \aw T aud[ | 5 (a6
r=0
(53) 3 1
"4 4(1+exp (((0.03125) Re) — 4u, +4u,))
J[g(uy uy, p)] ] +( -8)¥* (p)
_o(p)[3, ! 3 (p)ABC(p)
¥(p) [4 4(1+exp (((0.03125) Re) —4u, +4u,))
1 o0 (&9
1-6,)¥% - —
_62+( 82) (p)I lzd +Z‘% Re {Z rulu]+§fru2uz}] }’
¥ (p)ABC(p) .
+g— — —] + 2 .
du, °ou, o oul .
(54) Z 8ev1 (U Uy 1)
r=0
Further, implementing the inverse Jafari transform on = 3 + 1
(53), then, it diminishes to 4 4(1+exp (((0.03125) Re) — 4u, +4u,))
L8 (1-0)P ()
f(uy, uy, p) ¥ (p)ABC(p)
= {@(P) { 1 H 0 o | (@ o
¥(p) |4 4(1 +exp (((0.03125) Re) — 4u; + 4u,)) . Z G, + Z D, + e ZngIUI + Z Eruu, )
_r . 81 11/6, (P) r=0 r=0 € r=0 r=0
av51 p)ABC(p) (59)
¢ of *f  0f Analyzing term by term (58), we may immediately get
’ ou, a_uz Re | 0u? * o2 ’ the iterative terms indicated below
(5 . 0ol 1
ot )= 5 4(1 +exp (((0.03125) Re) — 4u, +4u,))’
g(up, uy, p)

_y1[20) |3, ! (up,upt)= > + !
"7 [W(p) |4 4(1 +exp (((0.03125) Re) — 4u, +4u,)) ol 12 )= 4 7 41 + exp (((0.03125) Re) — 4u, +4u,))
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Re.exp (((0.125) Re)(u; —u,))
128[1 + exp (((0.125) Re)(u; —u,))]?

{% +(1—61)},

Re.exp (((0.125) Re)(u; —u,))
128[1 + exp (((0.125) Re)(u, — u,))]2

t%
{remre-a}
f,(u,uy,t)=— Re.exp (((0.125) Re)(u; —u,))
2\Up Uy, 4096]1 + exp (((0.125) Re)(u,; _u2>>]4

8t t
'{r(zal w1 PO e

+(1—51)2}

x {(Re)*(~exp (((0.125) Re)(u; —uy)))
+ (exp (((0.125) Re)(u; —u,)) - 1)
+exp (((0.125) Re)(u; —w,)) },

Re.exp (((0.125) Re)(u; —u,))
4096[1 + exp (((0.125) Re)(u; —u,))]*

782@2 +28,(1-0 e
(28, + 1) 2 2)r(52+1)

+(1 —82)2}
oo () -w)

+ (exp (((0.125) Re)(u; —u,)) - 1)

+exp (((0.125) Re)(u; - uz))}.

fi(upuy, t) = -

g (u,uy,t)=

g(u,uy,t)=—

(60)

Proceeding in the analogous manner, the additional
factors of f, and g, (r>3) of the JTDM solution can be
attained effortlessly. As a result, we arrive to the mathemat-
ical formulation as

(o]
f(u), uy, 1) Z f(uy, u,, t)
r=0
=fy(u, 0, t) +f, (u, u,, t) + £, (u, uy, )+, -+,
1
f(ul,uz,t) =

4 4(1 +exp (((0.03125) Re) — 4u, + 4u,))
_ Reeexp (((0.125) Re)(u; —u,))
128[1 + exp (((0.125) Re)(u, — u,))]?

11

_ Reeexp (((0.125) Re)(u; —u,))
4096[1 + exp (((0.125) Re)(u, - u,))]*
61t61 51 5
'{71—'(281+ )+25( )T(81+ ) +(1-6,) }
x { (Re)*(~exp (((0.125) Re)(u; — u,)))
+ (exp (((0.125) R )( w))-1)
+exp (((0.125) Re u,))

)=
pho
(61)

and

(9]

g(up,wy, t) = Z g(u;, uy, t)

= go(up, Uy, t) + g (uy, wy, ) + gy (g, wy, )+, -+,
3 1
4 " 2T+ exp (((0.03125) Re) — 4u, + 4u,))
_ Reeexp (((0.125) Re)(u; —u,))

128[1 + exp (((0.125) Re)(u, — u,))]?

5,t%
e 08
Re.exp (((0.125) Re)(u; — u,))

©4096[1 + exp (((0.125) Re)(u, — u,))]*

X —62t52 +28,(1-6 e
I(28,+1) 2 2>F(62+1)

g(u,u,,t)=

+(1-6,)° }
(0 (o (7))
+ (exp (((0.125) Re)(u; —u,)) - 1)

+exp (((0.125) Re)(u, —uz))}+--~+.

(62)
Example 19. Let us surmise the generic form of BEs (1) as

of of 0 f O°f

Dif-2f " g Z 00 L 07
ou, gau2 ou? " ou}
Dig-2f 08 g 08 _ U8B T8 s 5y
t8 ou, gau2 o’ ouj’ Pz e
(63)
having ICs
f(u,u,,0) =1—tan (1 -u, +2u,),

(64)
g(u,u,,0)=1+2tan (1 -u, +2u,),

where Re denotes the Reynolds number.
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For the exact solution of (63) when &, =3J, =1, then,

f(u,u,, t)=1-tan h(1 —u, +2u, +2t),
(65)

g(u,, u,,t) =1+2 tanh (1 —u; +2u, +2t).

Case 20 (Caputo fractional operator). Applying the Jafari
transform on (18), we have

It follows that

m;—1

PO (P)J[f(u;, uy, p)] = D(p) Z po! (P)f(x) (u;,1,,0)

k=1
PSP B o of 82f
21|t ] M
my—1
P (p)J[g(uy, uy, p)] - D(p) Y. ¥ (p)g™ (uy, u,,0)
k=1

og og o’'g g
]{ a“l} ' ][ga“j ’ I{au% ' ou3

The aforementioned equation can be written as

(67)

8w 0] = P (1=t 1 -+ 20,)
2 of 2 of
B | el D, | P
iy o) .5 S

N 1 J o . o
¥ (p)” | Ouf 0w [’
[0}
a0 )] = (142 tan (1 -+ 20)

2 og 2 g
R B DS | Pt -3
") I[ 5u1] T¥(p) ][g 3u2]

2 2
+ #] a_% + a_% .
o (p)” | oup 0w

Journal of Function Spaces

Further, implementing the inverse Jafari transform on
(68), then, it diminishes to

f(u;, uy, p)
_ 12
- L”(pﬁ

1
L1 of of [0 Of
gl y2g— s L
+J lpél(p)][ ou, " gau2 " ou? * ou}
g(up, uy, p)

—_1% —2tan -u u
=] L’(P)(l 2t h(l 1 +2 2))]

L) 1 og og |’ O
A8 4og o )20 T
+J {lyﬁz(p)] ou, " gau2 " ou? ’ ou3

(69)

—tan h(1—u, + 2u2))}

In this case, we hypothesize that the undefined functions
f(u,,u,,t) and g(u;, u,,t) can be described as an infinite
series of the mode as follows

Zf u1>u2) >
Zgr ul’u2’

It is clear that ff, =2, fg, =32\ B, gf, =
20 88y, = 2ro9P; indicate the Adomian polynomials
and were referred to as the nonlinear factors.

In view of the Adomian polynomials, (69) can be
described as

f(u,,u,,t)
(70)

g(u, u,,t)

Z 1 (U, Uy, t)

=(1-tan h(1-u, +2u,))

{wn {22&7 +22@ + Z -

2 e (W05, 1)

r=0

S}

=(1+2tan h(l —u,; +2u,))
N J12) 642 Dot Y rw + D 8w, | ¢
b4 ( ) r=0 r=0 r=0 t r=0 e
(71)

Analyzing term by term (71), we may immediately get
the iterative terms indicated as follows:

fy(u, uy,t) = (1 -tan h(1l - u, +2u,)),

go(u, u,,t) = (1+2tan (1 —u; +2u,)),
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TasBLE 1: The exact, JTDM, and JTDM . solutions of f(u,, u,, t) of Example 16 for multiple fractional orders considering different values
of u, and t when u, =0.5 and Re =75.

u, t VIM [16] 5,=08 5,=09 8, = 1(JTDM,.) 8, = 1(JTDM ) Exact
0.1 0.7288940367 0.7304717694 0.7317182942 0.7326950774 0.7334569903 0.7323601010
0.2 0.7244905939 0.7264485371 0.7281195526 0.7295324719 0.7295324719 0.7281090401
0.2 0.3 0.7172263899 0.7193479362 0.7213252216 0.7231448924 0.7231448924 0.7167589400
0.4 0.6956692898 0.6956692898 0.6576549272 0.6380690943 0.6380690943 0.6378819374
0.5 0.7139883762 0.7160468984 0.7180328004 0.7199199188 0.7199199188 0.7094049908
0.1 0.6523781568 0.6587998081 0.6637696860 0.6637696860 0.6637696860 0.6672200651
0.2 0.6340771846 0.6424628939 0.6494205219 0.6551698837 0.6551698837 0.6537719639
0.4 0.3 0.6176799777 0.6271117813 0.6352922301 0.6423444246 0.6423444246 0.6423444246
0.4 0.6022648786 0.6122191242 0.6211622134 0.6291282309 0.6291282309 0.6250000000
0.5 0.5874586328 0.5975666615 0.6069361144 0.6155213025 0.6155213025 0.6104182514
0.1 0.5411354332 0.5484360252 0.5538986153 0.5580038915 0.5591290591 0.5591290591
0.2 0.5196457108 0.5299324114 0.5381249783 0.5446586051 0.5446586051 0.5492065509
0.6 0.3 0.4993253071 0.5116288663 0.5218489771 0.5303155430 0.5303155430 0.5405950091
0.4 0.4794182423 0.4931204368 0.5049063674 0.5149747051 0.5149747051 0.5332410600
0.5 0.4596433818 0.4742623671 0.4872406024 0.4986360914 0.4986360914 0.5270472386
0.1 0.5061774126 0.5082262729 0.5082262729 0.5108585978 0.5108585978 0.5113381451
0.2 1.119192701 1.077177686 1.038080351 1.002540819 1.002540819 1.002518917
0.8 0.3 0.4941613229 0.4978031514 0.5007813010 0.5032110583 0.5032110583 0.5072177268
0.4 1.267592092 1.233366109 1.198325407 1.162637693 1.162637693 1.162296670
0.5 0.4823885868 0.4868650609 0.4907853335 0.4941788224 0.4941788224 0.5045660696
0.1 0.5009207999 0.5012717327 0.5015297207 0.5017208223 0.5017208223 0.5018081909
0.2 0.4998710565 0.5003839800 0.5007847127 0.5010987130 0.5010987130 0.5014325616
1.0 0.3 0.4988531468 0.4994832916 0.4999970993 0.5004150813 0.5004150813 0.5011346079
0.4 0.4978378804 0.4985549681 0.4991611613 0.4996699272 0.4996699272 0.5008984007
0.5 0.4968152514 0.4975945837 0.4982754230 0.4988632509 0.4988632509 0.5007112274
9 Proceeding in the analogous manner, the additional fac-
f(u, uy, t) =-2sec h(1 —u; +2uw,). 6, +1) tors of f, and g,, (r > 3) of the JTDM solution can be attained
! effortlessly. As a result, we arrive to the mathematical formu-
" lation as
u,u,,t)=4sech(l-u; +2u,). ———,
gl( 1> %2 ) ( 1 2) F(82+1)
[ee]
__ 201 _ f(u;,uy, t) = Zf(“buz’t)
f,(u,u,,t)=-8sec h"(1-u; +2u,) &
2
H(2sec h (1w +2u,) =fo(up, wy, 1) + £, (up, uy, 1) + 5 (u), wy, )+, -+,
+(2sec (1 —u, +2u
( ( ! 2) f(u,uy, t)= (1 —tan h(1l - u; +2u,))
20,
+tan h(l —u, +20y))). —————,
I2é,+1 -2sech(l—u; +2uy). ————
(20, +1) (1=w +2w) o5y
g,(u,,uy, t) =8 sec B> (1 —u, +2u,) +8 sec B (1 -, +2u,)
- (-2 sec *(1-u; +2u,) x (=2 sec h*(1—u, +2u,)
+ (2 sec h*(1-u; +2u,) + (2 sec (1 -u; +2u,)
+2tan h(1 —u, +2u —_— +tan h(1 —u,; +2u —
(1= +20,)) I(26,+1) (1= +20,))) T(28,+1)
(72) (73)
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TaBLE 2: The exact JTDM, and JTDM ,p solutions of g(u,, u,, t) of Example 16 for multiple fractional orders considering different values
of u, and t when u, =0.5 and Re =75.

u, t VIM [16] 5,=08 5,=09 8, = 1(JTDM,.) 8, = 1(J7TDM ) Exact
0.1 0.7711725919 0.7695647581 0.7683013593 0.7673153173 0.7673153173 0.7676398990
0.2 0.7756852399 0.7736621934 0.7719488849 0.7705091069 0.7705091069 0.7718909599
0.2 0.3 0.7796201166 0.7774192502 0.7754645427 0.7737444753 0.7737444753 0.7770472386
0.4 0.7832376385 0.7809877359 0.7789130917 0.7770214225 0.7770214225 0.7832410600
0.5 0.7281682904 0.7121411619 0.6954314260 0.6777823827 0.6777823827 0.6773315511
0.1 0.8488741222 0.8418867225 0.8365997002 0.8325907590 0.8325907590 0.8327799349
0.2 0.8692275994 0.8596182777 0.8518657558 0.8456115855 0.8456115855 0.8462280361
0.4 0.3 0.8881500532 0.8768697846 0.8673764652 0.8594138813 0.8594138813 0.8604182514
0.4 0.9064564989 0.8940898084 0.8833168655 0.8739976461 0.8739976461 0.8750000000
0.5 0.9244608963 0.9114492971 0.8997569768 0.8893628803 0.8893628803 0.8895817486
0.1 0.8893628803 0.9533170921 0.9470446456 0.9424949964 0.9424949964 0.9408709409
0.2 0.9887933510 0.9753820465 0.9651596468 0.9651596468 0.9651596468 0.9651596468
0.6 0.3 1.015562198 0.9985384184 0.9849657751 0.9849657751 0.9849657751 0.9594049909
0.4 1.037816628 1.009794763 0.9811058630 0.9518872337 0.9518872337 0.9516080283
0.5 1.086299440 1.062389774 1.037461777 1.011132498 1.011132498 1.010459936
0.1 0.9949320528 0.9923819637 0.9905903603 0.9893144893 0.9893144893 0.9886618549
0.2 1.002863153 0.9988021771 0.9957649707 0.9934844331 0.9934844331 0.9909449860
0.8 0.3 1.011003834 1.005724345 1.001583048 0.9983467251 0.9983467251 0.9927822732
0.4 1.019436900 1.013169065 1.008046795 1.003901365 1.003901365 0.9942556575
0.5 1.028171604 1.021122691 1.015144457 1.010148353 1.010148353 0.9954339304
0.1 0.9992763753 0.9988363637 0.9985284403 0.9983099389 0.9983099389 0.9981918091
0.2 1.000649292 0.9999437068 0.9994178157 0.9990243317 0.9990243317 0.9985674384
1.0 0.3 1.002064809 1.001143618 1.000423095 0.9998617693 0.9998617693 0.9988653921
0.4 1.003535327 1.002438392 1.001544083 1.000822252 1.000822252 0.9991015993
0.5 1.005061514 1.003825006 1.002778424 1.001905779 1.001905779 0.9992887726
and Case 21 (ABC fractional operator). Applying the Jafari trans-

g(u, uy, t) = Z g(up, uy, t)

=go(up, Uy t) + g (up, uy, t) + g, (wy, uy, t)+, -,

g(u,uy,t)=(1+2tan h(1l —u; +2u,))

+4sech(l-u, + 2u2).m
1

t261

T(28,+1)

3

- 8sec h*(1-u, +2u,)

x (-sec B*(1 —u, +2u,)
+ (2 sec h*(1—u, +2u,)
+2tan h(1 —u, +2u,)))

form on (63) with respect to the ABC-fractional derivative
operator sense as

¥ (p)ABC(p)
&+ (1-8,)¥%(p)

J[f(u;, uy, p)]

- @(p) MIZ_ O (p)) (wy, w5, 0)

Py faf 12 of ) azf+82f
| o, 8ou,) " ow T owd [’
¥ (p)ABC(p)
8, +(1-8,)¥%(p)
my—1

- D(p) Zl lIU(S_K_I(P)g(K) (up,1y,0)

og og o’'g 0O'g
=2J | f=—= 2 — — t —= ;.
(74) ]{ auj M ][gauj " I{au% N ou’

(75)

J[g(u;, uy, p)]
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TaBLE 3: The comparison study among VIM [16], JTDM, and JTDM . of Example 16 for estimated solutions of f(u,, u,, t) and absolute

error E, (= ||ES*! — E?PP™¥|| at §, = 1 considering multiple values of u; and t.

u, t ||Exact — VIM|| ||Exact — JTDM_|| ||Exact — JTDM yp |
0.1 0.000334976 0.0003349764 0.00034446772
0.2 0.0014234318 0.0014234318 0.0014234318
0.2 0.3 0.0033963154 0.0033963154 0.0033963154
0.4 0.0063859524 0.0063859524 0.0063859524
0.5 0.0105149280 0.0105149280 0.0105149280
0.1 0.0003845432 0.0003845432 0.0003845432
0.2 0.0013979198 0.0013979198 0.0013979198
0.4 0.3 0.0027626761 0.0027626760 0.0027626760
0.4 0.0041282309 0.0041282309 0.0041282309
0.5 0.0051030511 0.0051030511 0.0051030511
0.1 -0.0011251676 -0.0011251676 -0.0011251676
0.2 -0.0045479458 -0.0045479458 -0.0045479458
0.6 0.3 -0.0102794660 -0.0102794661 -0.0102794661
0.4 -0.0182663549 -0.0182663549 -0.0182663549
0.5 -0.0284111473 -0.0284111472 -0.0284111472
0.1 -0.0004795473 -0.0004795473 -0.0004795473
0.2 -0.0018470989 -0.0018470989 -0.0018470989
0.8 0.3 -0.0040066685 -0.0040066685 -0.0040066685
0.4 -0.0068763152 -0.0068763152 -0.0068763152
0.5 -0.0103872472 -0.0103872472 -0.0103872472
0.1 0.5018081909 -0.0000873686 -0.0000873686
0.2 -0.0003338486 -0.0003338486 -0.0003338486
1.0 0.3 -0.0007195266 -0.0007195266 -0.0007195266
0.4 -0.0012284735 -0.0012284735 -0.0012284735
0.5 -0.0018479765 -0.0018479765 -0.0018479765
The aforementioned equation can be written as Further, implementing the inverse Jafari transform on
(76), then, it diminishes to
o}
@(p) f(u;,uy, p) =7 [%(l—tan h(l1—u, +2u2))}
J[f(u;,uy, p)] = W(l—tan h(1-1u, +2u,)) P
§
PN {8 =a)rhp)
Lo+ (1-6)¥%(p) 21 (p)ABC(p)
¥ (p)ABC(p) L
of of f  f [zf o g of O Of
. _ g_ R R S
o= 420 4=+ V1, ou ou ow?  oul
ou, 8 ou, ]{auf ou3 }] ! 2 ! 2
0} _1[2(p)
JIg(u, uy, p)] = blp) (1+2tan h(1 —u, +2u,)) g(u,uy,p) =] LU(P) (1+2tan h(1-u, +2u,))
#(p)
§
N 8, +(1-8,)%%(p) s 5z+(1-5z)?’2(/3)I
s
% (p)ABC(p) % (p)ABC(p)
0 0 o’g 0 0 o’g 0
. 2f—g+2g—g+] s 28l . 2f—g+2g—g+ —§+—§ .
ou, ou, oul  ou3 ou, ou, |ou? oOul

(76)

(77)
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TaBLE 4: The comparison study among VIM [16], JTDM,, and JTDM, . of Example 16 for estimated solutions of g(u,, u,, t) and absolute
error E, = ||ES*! — E?PP™¥|| at §, = 1 considering multiple values of u; and t.

u, t ||Exact — VIM|| ||Exact — JTDM|| ||Exact — JTDM g ||
0.1 —-0.0003349764 —-0.0003245817 —-0.0003245817
0.2 -0.0014234318 -0.0013818530 -0.0013818530
0.2 0.3 -0.0033963154 -0.0033027633 -0.0033027633
0.4 —-0.0063859524 —-0.0062196375 —-0.0062196375
0.5 -0.0105149280 —-0.0102550608 -0.0102550608
0.1 -0.0003845432 -0.0001891759 -0.0001891759
0.2 -0.0013979198 —-0.0006164506 —-0.0006164506
0.4 0.3 —-0.0027626761 —-0.0010043701 —-0.0010043701
0.4 —-0.0041282309 -0.0010023539 —-0.0010023539
0.5 —-0.0051030511 —-0.0002188683 —-0.0002188683
0.1 0.0011251676 0.0016240555 0.0016240555
0.2 0.0045479458 0.0065434974 0.0065434974
0.6 0.3 0.0102794660 0.0147694573 0.0147694573
0.4 0.0182663549 0.0262485615 0.0262485615
0.5 0.0284111476 0.0408833446 0.0408833446
0.1 0.0004795473 0.0006526344 0.0006526344
0.2 0.0018470989 0.0025394471 0.0025394471
0.8 0.3 0.0040066685 0.0055644519 0.0055644519
0.4 0.0068763155 0.0096457075 0.0096457075
0.5 0.0103872466 0.0147144226 0.0147144226
0.1 0.0000873686 0.0001181298 0.0001181298
0.2 0.0003338486 0.0004568933 0.0004568933
1.0 0.3 0.0007195266 0.0009963772 0.0009963772
0.4 0.0012284737 0.0017206527 0.0017206527
0.5 0.0018479764 0.0026170064 0.0026170064

In this case, we hypothesize that the undefined functions
f(u;,u,, t) and g(u,,u,,t) can be described as an infinite
series of the mode as follows:

00 00 [e) 00
: lde, +2 Z%, + melul + Zfruzuzl }
r=0 r=0 r=0 r=0

S bl )t
f(u,, u, t) = Z £.(u,,u,t), l;)grﬂ(ul u, t)

= (78) =(1+2tan h(1—u, +2u,)) (79)
g(upuy, t) = Z g (up,uy, t). e 8, +(1-8,)¥%(p)

= ¥ (p)ABC(p)

It is clear that ff, =Y, fg, =3.°)B, g, =
Y0 88y, = 2ro9 P, indicate the Adomian polynomials
and were referred to as the nonlinear factors.

In view of the Adomian polynomials, (77) can be
described as

00 00 00 00
. [22?&+229r+ Zgrum + ngﬂz] }
r=0 r=0 r=0 r=0

Analyzing term by term (79), we may immediately get
the iterative terms indicated as follows:

00 fo(u, uy,t) = (1 —tan A(1 — v, +2u,)),

Z fro (g 0y, t)

= go(u,u,,t) = (1+2tan (1 —u, +2u,)),

Jl

_51 0,
+(1 )Y (p) fi(u,uy,t)=-2sec h(l-u, +2u2)-{ﬁ +(1 _61)}’

¥ (p)ABC(p)

=(1-tan h(1 - u,; +2u,)) + 11{81
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FIGURE 2: (a) 3D view of absolute error for f(u,, u,, t). (b) 2D view of multiple fractional orders via JTDM of Example 16 for f(u,, u,, t)
when t=0.7.

g (u,u,, t) +(2sec K*(1-u, +2uy) + 2 tan h(1 —u, +2u,)))
=4sech(l-u, +2u2).{L +(1 —82)}, {827@2 +28,(1-0 )L +(1-06 )2}.
I'(8,+1) r2s,+1) 72 YT, +1) :
f,(u, u, t) (80)
= -8 sec h*(1 -, +2u,) (-2 sec h*(1 — u, +2u,) Proceeding in the analogous manner, the additional fac-

tors of f, and g, (r>3) of the JTDM solution can be
attained effortlessly. As a result, we arrive to the mathemat-

8t t 2 ical formulation as
e 800 gy 000 ) .
f(u, u,t) = ) f(u;, u,,t)
r=0

+ (2 sec B*(1 - u; +2u,) + tan h(1 - u, +2u,)))

g (u,uyt)
=-8sec h*(1-u, +2u,) (=2 sec R (1-u, +2u,) =fy(up, uy, t) +f (u, uy, t) + £, (up, uy, t)+, -,



18 Journal of Function Spaces

Exact Approximate

g (up,u,t)
o O©O O
—_g ® o ~

g (u;, uy t)

(@ (®)

1.15
1.1
5 0.2
£0.15 1.05 +
L
;5 0.1 14
)
2 0.05 0.95
< 0
1 0.9
0.85
0.8
0.75
0~7 T T T T T T T T T 1
-1 -08 -06 -04 -02 0 02 04 06 08 1
u;
—— Exact a=09
—— CFD — a=0.8
— ABC — a=07
() (b)

FIGURE 4: (a) 3D view of absolute error for g(u;, u,, t). (b) 2D view of multiple fractional orders via JTDM of Example 16 for g(u,, u,, t)
when t=0.7.

f(u,u,, t) and
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+4sech(l-u, +2u,)

{ O 1oy s
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, Ir,+1)

+(1-9)) }"’""’ —85ech2(1—u1+2u2)

(81) - (-2 sec W (1 - u, +2u,)



19

—
Il
S
I
o
[
g 2
$ E
© g
: 2
o (5} oy
m c 7 <
g g
mr <
& &
A S
5]
=)
o
=
j=]
=
o)
w
< (=}
|
m Toy ol
“n “'n
g 0 )]
oy
a
<
o
=]
<
o
19}
g
()
Q
<
+—
S
5]
I
W -
= 5 g
g = 2 j43)
29) =~ =
<
Q.
g
5]
i)
@)
on
[re
m
o~
5
Y
(a5

o — wno
0 1
_

n o
—

C &5 L5v J

Journal of Function Spaces

=1

FIGURE 6: 3D view of the exact and approximate solution via JTDM of Example 19 for f(u,, u,, t) when &
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FiGure 8: 3D view of the exact and approximate solution via JTDM of Example 19 for g(u;, u,, t) when 8, =1.
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FIGURE 9: (a) 3D view of absolute error for g(u,, u,, t). (b) 2D view of multiple fractional orders via JTDM of Example 19 for g(u,, u,, t)
when t=0.7.
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+ (2 sec (1 -u; +2u,) + 2 tan h(1 —u; +2u,)))
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6. Numerical Results and Discussion

We employed two distinctive techniques to analyze the
approximate findings of fractional-order paired BEs in this
research. With the aid of MATLAB 2021, one may acquire
computational information for the framework of BEs in
any configuration for varying parameters of spatial and tem-
poral factors. We attempted graphical studies for multiple
fractional processes in Tables 1 and 2 for the model in
Example 16 assuming varied components of u, and t.
Tables 1-4 illustrate a mathematical evaluation of the VIM
[16] and the JTDM in perspective of absolute error for
model (38). The findings of a simulation work for the inter-
acting mechanism addressed in Example 16 are included in
Tables 1-4. With relevant facts in the given data, we can
deduce that the findings acquired by the JTDM are trustwor-
thy. Figure 1 describes the performance of the JTDM result
via f(u, u,, t) and exact outcome for Example 16, whereas
Figure 2 depicts the structure of the absolute error and var-
ied fractional parameters of 8. Also, Figure 3 represents the
comparison analysis of the both integer and fractional order
for Example 16.

In the analogous fashion, Figure 4 displays the obtained
outcome g(u,, u,, t) for Example 16. Figure 5 demonstrates
the effect of collected information for Example 16 consider-
ing various classical and fractional orders §, = 1,0.9,0.8,0.7.
Figure 6 exhibits the performance of the JTDM outcome and
exact solution from f(u;,u,,t) for Example 19, whilst
Figure 7 indicates the structure of the absolute error as well
as multiple fractional orders. The various fractional orders
6,=10.9,0.8,0.7 are included in plot 7. Analogously,
Figure 8 symbolizes the acquired solution g(u,,u,,t) for
(39). Figure 9 represent the strength of collected information
for Example 19 considering various fractional orders and
absolute errors. Furthermore, the comparison of the exact
and approximate solution for both compartments is com-
pared in Figure 10. Based on modelling, we discovered that
fractional-order solution trajectories incorporate integer-
order solution trajectories. In a nutshell, the JTDM allows
a framework for performing productively in a unified
manner. Therefore, the JTDM is a well-known system that
produces a reasonable approach avoiding any linearization
assumptions [27].

7. Conclusion

The objective of this study is at putting into practice the
Jafari transform decomposition approach to address Bur-
gers’ equation by incorporating the Caputo and Antagana-
Baleanu fractional derivative operators. Moreover, we
present extensive conceptual evidence for the proposed
strategy’s existence and uniqueness. Furthermore, we pro-
vide two mathematical formulations to demonstrate that
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suggested Burgers’ equation approach is viable and effective.
The results for fractional problems are determined, and they
are intimately associated with their realistic values. The
proposed approach yields a series of outcomes of a recur-
rence connection with extreme precision and the fewest
computations. Several numerical findings are evaluated
using well-known analytical approaches, and the exact
results are obtained when 8, = §, = 1. The plots indicate that
the precise and analytical findings have a clear association.
The appropriateness of the specified procedures was
validated by the generated figures. To better monitor the
mechanisms of the provided challenges, results in various
fractional orders are generated and displayed using graphs.
The effectiveness of the proposed strategy has been validated
by the convergence process. It was then extended by the
investigators to address various scenarios using fractional
partial differential equations.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

All authors read and approved the final manuscript.

References

[1] X.-P. Li, Y. Wang, M. A. Khan, M. Y. Alshahrani, and
T. Muhammad, “A dynamical study of SARS-COV-2: a study
of third wave,” Results in Physics, vol. 29, article 104705, 2021.

[2] Z.-H. Shen, Y.-M. Chu, M. A. Khan, S. Muhammad, O. A.
AlHartomy, and M. Higazy, “Mathematical modeling and
optimal control of the COVID-19 dynamics,” Results in Phys-
ics, vol. 31, article 105026, 2021.

[3] M. Caputo, Elasticita e dissipazione, Bologna, Zanichelli, 1969.

[4] M. Caputo and M. Fabrizio, “A new definition of fractional
derivative without singular kernel,” Progress in Fractional Dif-
ferentiation & Applications, vol. 73, pp. 73-85, 2015.

[5] A. Atangana and D. Baleanu, “New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer model,” Thermal Science, vol. 20, no. 2,
Pp. 763-769, 2016.

[6] M. A. Khan, S. Ullah, and S. Kumar, “A robust study on 2019-
nCOV outbreaks through non-singular derivative,” The Euro-
pean Physical Journal Plus, vol. 136, no. 2, pp. 1-20, 2021.

[7] M. Awais, F. S. Alshammari, S. Ullah, M. A. Khan, and
S. Islam, “Modeling and simulation of the novel coronavirus
in Caputo derivative,” Results in Physics, vol. 19, article
103588, 2020.

[8] P.-Y.Xiong, A. Hamid, Y.-M. Chu et al., “Dynamics of multi-
ple solutions of Darcy-Forchheimer saturated flow of Cross
nanofluid by a vertical thin needle point,” The European Phys-
ical Journal Plus, vol. 136, article 315, 2021.

[9] P.-Y. Xiong, M. I. Khan, R. J. P. Gowda, R. N. Kumar, B. C.
Prasannakumara, and Y.-M. Chu, “Comparative analysis of
(Zinc ferrite, Nickel Zinc ferrite) hybrid nanofluids slip flow



22

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

with entropy generation,” Modern Physics Letters B, vol. 35,
article 2150342, 2021.

S. Rashid, K. Kubra, and K. M. Abualnaja, “Fractional view of
heat-like equations via the Elzaki transform in the settings of
the Mittag-Leftler function,” Mathematical Methods in the
Applied Sciences, 2021.

A. Khan, K. Ali Abro, A. Tassaddiq, and I. Khan, “Atangana-
Baleanu and Caputo Fabrizio analysis of fractional derivatives
for heat and mass transfer of second grade fluids over a vertical
plate: a comparative study,” Entropy, vol. 8, p. 279, 2017.

S. Rashid, K. T. Kubra, A. Rauf, Y. M. Chu, and Y. S. Hamed,
“New numerical approach for time-fractional partial differen-
tial equations arising in physical system involving natural
decomposition method,” Physica Scripta, vol. 96, no. 10, article
105204, 2021.

J. Peinado, J. Ibdfez, E. Arias, and V. Hernandez, “Adams-
Bashforth and Adams-Moulton methods for solving differen-
tial Riccati equations,” Computers & Mathematics with Appli-
cations, vol. 60, no. 11, pp. 3032-3045, 2010.

R. Cao, Q. Zhao, and L. Gao, “Bilinear approach to soliton and
periodic wave solutions of two nonlinear evolution equations
of Mathematical Physics,” Advances in Difference Equations,
vol. 2019, no. 1, 2019.

Y. Gurefe and E. Misirli, “Exp-function method for solving
nonlinear evolution equations with higher order nonlinearity,”
Computers & Mathematics with Applications, vol. 61, no. 8,
pp- 2025-2030, 2011.

A. A. Soliman, “On the solution of two-dimensional coupled
Burgers’ equations by variational iteration method,” Chaos,
Solitons & Fractals, vol. 40, no. 3, pp. 1146-1155, 2009.

L. Zou, L. Song, X. Wang, T. Weise, Y. Chen, and C. Zhang, “A
new approach to Newton-type polynomial interpolation with
parameters,” Mathematical Problems in Engineering, Article
ID 9020541, 15 pages, 2020.

F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, “A new
fractional finite volume method for solving the fractional dif-
fusion equation,” Applied Mathematical Modelling, vol. 38,
no. 15-16, pp. 3871-3878, 2014.

M. Y. Kokurin, S. I. Piskarev, and M. Spreafico, “Finite-
difference methods for fractional differential equations of
order 1/2,” Journal of Mathematical Sciences, vol. 230, no. 6,
pp- 950-960, 2018.

V. P.Dubey, R. Kumar, and D. Kumar, “A reliable treatment of
residual power series method for time-fractional Black-Scholes
European option pricing equations,” Physica A: Statistical
Mechanics and its Applications, vol. 533, article 122040, 2019.
J. D. Cole, “On a quasi-linear parabolic equation occurring in
aerodynamics,” Quarterly of Applied Mathematics, vol. 9,
no. 3, pp. 225-236, 1951.

E. N. Aksan, “Quadratic B-spline finite element method for
numerical solution of the Burgers’ equation,” Applied Mathe-
matics and Computation, vol. 174, pp. 884-896, 2006.

S. Kutluay and A. Esen, “A lumped Galerkin method for solv-
ing the Burgers equation,” International Journal of Computer
Mathematics, vol. 81, pp. 1433-1444, 2004.

S. Abbasbandy and M. T. Darvishi, “A numerical solution of
Burgers’ equation by modified Adomian method,” Applied
Mathematics and Computation, vol. 163, pp. 1265-1272,
2005.

H. Bateman, “Some recent researches on the motion of fluids,”
Monthly Weather Review, vol. 43, pp. 163-170, 1915.

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

Journal of Function Spaces

J. M. Burgers, Hydrodynamics-Application of a Model System
to Illustrate Some Points of the Statistical Theory of Free Turbu-
lence, Springer, Dordrecht, The Netherlands, 1995.

S. Rashid, S. Sultana, R. Ashraf, and M. K. A. Kaabar, “On com-
parative analysis for the Black-Scholes model in the generalized
fractional derivatives sense via Jafari transform,” Journal of
Function Spaces, vol. 2021, Article ID 7767848, 22 pages, 2021.
S. Rashid, R. Ashraf, and F. S. Bayones, “A novel treatment of
fuzzy fractional Swift-Hohenberg equation for a hybrid trans-
form within the fractional derivative operator,” Fractal and
Fractional, vol. 5, p. 209, 2021.

H. Jafari, “A new general integral transform for solving inte-
gral equations,” Journal of Advanced Research, vol. 32,
pp. 133138, 2020.

L. Debnath and D. Bhatta, Integral Transforms and Their
Applications, CRC Press, Boca Raton, FL, USA, 2014.

F.Jarad and T. Abdeljawad, “A modified Laplace transform for
certain generalized fractional operators,” Results in Nonlinear
Analysis, vol. 1, no. 2, pp. 88-98, 2018.

G. K. Watugala, “Sumudu transform: a new integral transform
to solve differential equations and control engineering prob-
lems,” International Journal of Mathematical Education in Sci-
ence and Technology, vol. 24, no. 1, pp. 35-43, 1993.

K. S. Aboodh, “The new integral transform Aboodh trans-
form,” Global Journal of Pure and Applied Mathematics,
vol. 9, pp. 35-43, 2013.

S. A. P. Ahmadi, H. Hosseinzadeh, and Y. A. Cherati, “A new
integral transform for solving higher order linear ordinary dif-
ferential equations,” Nonlinear Dynamics and Systems Theory,
vol. 19, no. 2, pp. 243-252, 2019.

S. A. P. Ahmadi, H. Hosseinzadeh, and Y. A. Cherati, “A new
integral transform for solving higher order linear ordinary
Laguerre and Hermite differential equations,” International
Journal of Applied and Computational Mathematics, vol. 5,
no. 5, 2019.

T. M. Elzaki, “The new integral transform Elzaki Transform,”
Global Journal of pure and Applied Mathematics, vol. 7, no. 1,
pp. 57-64, 2011.

Z. H. Khan and W. A. Khan, “N-Transform properties and
applications,” NUST Journal of Engineering Sciences, vol. 1,
no. 1, pp. 127-133, 2008.

M. M. Abdelrahim Mahgoub, “The new integral transform
mohand transform,” Advances in Theoretical and Applied
Mathematics, vol. 12, no. 2, pp. 113-120, 2017.

M. M. Abdelrahim Mahgoub, “The new integral transform
sawi transform,” Advances in Theoretical and Applied Mathe-
matics, vol. 14, no. 1, pp. 81-87, 2019.

H. Kamal and A. Sedeeg, “Homotopy perturbation transform
method for solving third order Korteweg-DeVries (KDV)
equation,” American Journal of Applied Mathematics, vol. 4,
no. 5, pp. 247-248, 2016.

H. Kim, “On the form and properties of an integral transform
with strength in integral transforms,” Far East Journal of
Mathematical Sciences (FJMS), vol. 102, no. 11, pp. 2831-
2844, 2017.

H. Kim, “The intrinsic structure and properties of Laplace-
typed integral transforms,” Mathematical Problems in Engi-
neering, vol. 2017, Article ID 1762729, 8 pages, 2017.

M. Meddahi, H. Jafari, and M. N. Ncube, “New general integral
transform via Atangana-Baleanu derivatives,” Advances in Dif-
ference Equations, vol. 2021, no. 1, 2021.



Journal of Function Spaces

(44]

(45]

(46]

(47]

(48]

A. Atangana and I. Koca, “Chaos in a simple nonlinear system
with Atangana-Baleanu derivatives with fractional order,”
Chaos, Solitons & Fractals, vol. 89, pp. 447-454, 2016.

M. Yavuz and T. Abdeljawad, “Nonlinear regularized long-
wave models with a new integral transformation applied to
the fractional derivative with power and Mittag-Leftler kernel,”
Advances in Difference Equations, vol. 2020, no. 1, 2020.

A. Bokhari, D. Baleanu, and R. Belgacema, “Application of
Shehu transform to Atangana-Baleanu derivatives,” Journal
of Mathematics and Computer Science, vol. 20, pp. 101-107,
2020.

G. Mittag-Leffler, “Sur la Nouvelle Fonction Ea(x),” Comptes
Rendus de I’Academie des Sciences Paris, vol. 137, pp. 554-
558, 1903.

I. El-Kalla, “Convergence of the Adomian method applied to a

class of nonlinear integral equations,” Applied Mathematics
Letters, vol. 21, pp. 372-376, 2008.

23



	On the Analytical Treatment for the Fractional-Order Coupled Partial Differential Equations via Fixed Point Formulation and Generalized Fractional Derivative Operators
	1. Introduction
	2. Preliminaries
	3. Analysis of Semianalytical Techniques
	4. Mathematical Formulation of the Jafari Transform Decomposition Approach
	4.1. Uniqueness Results
	4.2. Convergence Analysis

	5. Solutions of Fractional-Order Burgers Equation
	6. Numerical Results and Discussion
	7. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

