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In this paper, we study the Ulam-Hyers-Mittag-Leffler stability for a linear fractional order differential equation with a fractional
Caputo-type derivative using the fractional Fourier transform. Finally, we provide an enumeration of the chemical reactions of the
differential equation.

1. Introduction

Fractional differential equations have more attention in the
research area of mathematics, and there has been significant
progress in this field. However, this idea is not new and as
old as differential equations. The differential equations of
fractional order have proved to be valuable tools in modeling
multiple phenomena in different areas of science and
engineering. Indeed, it has many uses in biology, physics,
electromagnetics, mechanics, electrochemistry, etc. [1–3].
Fractional calculus was initiated from a question raised by
L’Hospital to Leibnitz, which related to his generalization
of meaning of notation ðdny/dxnÞd for the derivative of
order n ∈N ≔ 0, 1, 2,⋯, when n = 1/2?. In his reply, dated
September 30, 1695, Leibnitz wrote to L’Hospital [4], “This
is an apparent paradox from which one-day useful conse-
quences will be drawn.” Recently, Ozaktas and Kutay [5]
published on this topic, dealing with different characteristics
in different ways.

A functional equation is stable if for each approximate
answer there is a definite quantity about it. In 1940, the sim-

ulation and a hit theory suggested by Ulam [6] prompted the
study of stability issues for numerous functional equations.
He gave the University of Wisconsin Mathematical Collo-
quium a long form of talks, presenting a variety of unre-
solved questions. He raised one of the questions that were
connected to the stability of the functional equation: “Give
conditions for a linear function near an approximately linear
function to exist.” The first result concerning the stability of
functional equations was presented by Hyers [7] in 1941.
The stability of the form is subsequently referred to as
Hyers-Ulam stability. In 1978, the generalization associated
with the Hyers theorem given by Rassias [8] makes it possi-
ble for the Cauchy difference to be unbounded. In 2004, Jung
[9] studied the Hyers-Ulam stability of the differential equa-
tions ϑðsÞp′ðsÞ = pðsÞ. Jung [10, 11] continuously published
the general setting for Hyers-Ulam stability of first-order
linear differential equations. In 2006, Jung [12] concentrated
on the Hyers-Ulam stability of an arrangement of differen-
tial equations with coefficients through the utilization of a
matrix approach. Ponmana Selvan et al. [13] have solved
the different types of Ulam stability for the approximate
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solution of a special type of mth-order linear differential
equation with initial and boundary conditions.

Zhang and Li [14] studied the Ulam stabilities of m
-dimensional fractional differential systems with order 1 <
α < 2 in 2011, and in the same year, Li and Zhang [15]
proved the stability of fractional order derivative for differ-
ential equations. In 2013, Ibrahim [16] investigated the
Ulam-Hyers stability for iterative Cauchy fractional differen-
tial equations and Lane-Emden equations. Kalvandi et al.
[17], Liu et al. [18], and Vu et al. [19] presented and proved
the different types of Hyers-Ulam stability of a linear frac-
tional differential equations.

In 2012, Wang et al. [20] carried out pioneering work
on the Hyers-Ulam stability for fractional differential equa-
tions with Caputo derivative using a fixed point approach,
and in the same year, Wang and Zhou [21] proved the
Hyers-Ulam stability of nonlinear impulsive problems for
fractional differential equations. Wang et al. [22] investi-
gated the Mittag-Leffler-Ulam-Hyers stability of fractional
evolution equations.

In 2020, Unyong et al. [23] studied Ulam stabilities of
linear fractional order differential equations in Lizorkin
space using the fractional Fourier transform, and in the same
year, Hammachukiattikul et al. [24] derived some Ulam-
Hyers stability outcomes for fractional differential equations.
In the next year, Ganesh et al. [25] derived some Mittag-Lef-
fler-Hyers-Ulam stability, which makes sure the existence
and individuation of an answer for a delay fractional differ-
ential equation by using the fractional Fourier transform. In
2022, Ganesh et al. [26] carried out pioneering in the field
with the Hyers-Ulam stability for fractional order implicit
differential equations with two Caputo derivatives using a
fractional Fourier transform.

Motivated and inspired by the above results, in this
paper, because of the help of fractional Fourier transform,
we would like to investigate the Ulam-Hyers-Mittag-Leffler
and Ulam-Hyers-Rassias-Mittag-Leffler stability of linear
fractional order differential equations with the fractional
Caputo-type derivative of the form:

CDσ
0+p

� �
sð Þ + η p sð Þ = q sð Þ, ð1Þ

where qðsÞ is a m − times continuously differentiable func-
tion and CDσ

0+ is the fractional Caputo-type derivative of
order σ ∈ ðm − 1,mÞ,m ∈N+.

2. Preliminaries

The following definitions, theorems, notations, and lemmas
will be used to obtain the main objectives of this paper.

Definition 1 (see [27]). The one dimension fractional Fourier
transform with rotational angle σ of function pðsÞ ∈L ′ðRÞ
is given by

Fσ p sð Þ½ � ωð Þ = p̂σ ωð Þ =
ð
R

Kσ s, ωð Þp sð Þds, ω ∈R, ð2Þ

where the kernel

Kσ s, ωð Þ =
Cσe

i p2+ω2ð Þ cot σð Þ/2ð Þ−ipω cosec σ, if σ ≠mπ,
1ffiffiffiffiffiffi
2π

p e−ipω, if σ =
π

2
,

8><
>:

Cσ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − i cot σ

2π

r
:

ð3Þ

As such, the inversion formula of fractional Fourier
transform is given by

p sð Þ = 1
2π

ð
R

Kσ s, ωð Þp̂σ ωð Þdω, s ∈R, ð4Þ

where the kernel

�Kσ s, ωð Þ =
C ′σe −i p2+ω2ð Þ cot σð Þ/2ð Þ+ipω cosec σ, if σ ≠mπ,
1ffiffiffiffiffiffi
2π

p eipω, if σ =
π

2
,

8><
>:

C ′σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 1 + i cot σð Þ

p
:

ð5Þ

Definition 2. The Mittag-Leffler function is given in the
following manner:

Eσ sð Þ = 〠
∞

m=0

sm

Γ σm + 1ð Þ ,  σ > 0ð Þ One parameterð Þ,

Eσ,μ sð Þ = 〠
∞

m=0

sm

Γ σm + μð Þ ,  σ > 0, μ > 0ð Þ Two parametersð Þ:

ð6Þ

where σ and μ are nonnegative constant.

Definition 3 (see [28]). The fractional integral operator of
order s > 0 of a function p ∈L1ðR+Þ is written as

Iσ0+p sð Þ = 1
Γ σð Þ

ðs
0
s − uð Þ σ−1ð Þp uð Þ du, s > 0, ð7Þ

where Γð:Þ is the gamma function and Re > 0.

Definition 4 (see [28]). The Riemann-Liouville fractional
order derivative of s > 0,m − 1 < σ <m,m ∈N , is written as

RLDσ
0+p

� �
sð Þ = 1

Γ m − σð Þ
d
ds

� �mðs
0
s − uð Þ m−σ−1ð Þp uð Þdu,

ð8Þ

where the function pðsÞ is a continuous derivatives upto
order ðm − 1Þ.
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Definition 5 (see [28]). The fractional Caputo-type derivative
of order s > 0,m − 1 < σ <m,m ∈N , is written as

CDσ
0+p

� �
sð Þ = 1

Γ m − σð Þ
ðs
0
s − uð Þ m−σ−1ð Þp nð Þ uð Þdu, ð9Þ

where the function pðsÞ is a continuous derivatives up to
order ðm − 1Þ. Then, let s > 0, σ ∈R,m − 1 < σ <m,m ∈N .
The relation between Caputo and Riemann-Liouville frac-
tional derivative is given by

CDσ
0+p

� �
sð Þ = Dσ

0+pð Þ sð Þ − 〠
m−1

k=0

s − að Þk−σ
Γ k − σ + 1ð Þ p

kð Þ 0ð Þ: ð10Þ

Definition 6. Equation (1) has Ulam-Hyers-Mittag-Leffler
stability, if there exist a continuously differentiable function
pðsÞ satisfying the inequality

CDσ
0+p

� �
sð Þ + η p sð Þ − q sð Þ

��� ��� ≤ εEσ sð Þ,∀s > 0, ð11Þ

for every ε > 0, there exists a solution pσðsÞ satisfying
Equation (1) such that

p sð Þ − pσ sð Þj j ≤HεEσ sð Þ, ð12Þ

where H is a nonnegative and stability constant.

Definition 7. The considered ϕ : ð0,∞Þ⟶ ð0,∞Þ is a func-
tion. Equation (1) has Ulam-Hyers-Rassias-Mittag-Leffler
stability, if there exist a continuously differentiable function
pðsÞ satisfying the inequality

CDσ
0+p

� �
sð Þ + η p sð Þ − q sð Þ

��� ��� ≤ εϕ sð ÞEσ sð Þ,∀s > 0, ð13Þ

for every ε > 0, there exists a solution pσðsÞ satisfying
Equation (1) such that

p sð Þ − pσ sð Þj j ≤Hϕ sð ÞεEσ sð Þ, ð14Þ

where H is a nonnegative and stability constant.

3. Main Results

In this section, we will investigate to help of fractional
Fourier transform to study the Ulam-Hyers-Mittag-Leffler
stability of (1).

Theorem 8. If a function pðsÞ satisfies the inequality (11) for
every ε > 0, there exists a solution pσðsÞ satisfying Equation
(1) such that

p sð Þ − pσ sð Þj j ≤HεEσ sð Þ: ð15Þ

Proof. Let us choose a function yðsÞ follow as

y sð Þ = CDσ
0+p

� �
sð Þ + ηp sð Þ − q sð Þ: ð16Þ

Now,

y sð Þ = Dσpð Þ sð Þ − 〠
m−1

k=0

sk−σ

Γ k − σ + 1ð Þ p
kð Þ 0ð Þ + ηp sð Þ − q sð Þ,∀s > 0:

ð17Þ

Taking Fσ (the fractional Fourier transform oprator)
onto both sides of Equation (17), we have

Fσ y sð Þf g =Fσ Dσp sð Þ − 〠
m−1

k=0

sk−σ

Γ k − σ + 1ð Þ p
kð Þ 0ð Þ + ηp sð Þ − q sð Þ

( )

= iωn/σ� 	σ
Fσ p sð Þf g − eiω

n/σa 〠
m−1

k=0
ak

sk−σ

Γ k − σ + 1ð Þ iωn/σð Þk−σ+1
+ ηFσ p sð Þð Þ − Ĝa ωð Þ,

ð18Þ

where pðkÞð0Þ = ak, for k = 0, 1,⋯,m − 1 and

Fσ p sð Þf g = Fσ y sð Þf g
iωn/σð Þ + ηð Þ

+
eiω

n/σa

iωn/σð Þ + ηð Þ 〠
m−1

k=0

ak
iωn/σð Þ + ηð Þ +

Ĝa ωð Þ
iωn/σð Þ + ηð Þ :

ð19Þ

Setting

pσ sð Þ = 〠
p−1

k=n
akpk 0ð Þ +

ðs
0
s − νð Þν−1Eσ η s − νð Þν−1
 �

q sð Þdν:

ð20Þ

By using fractional Fourier transform to (20), we have

Fσ pσ sð Þf g = eiω
n/σa

iωn/σð Þ + ηð Þ 〠
m−1

k=0

ak
iωn/σð Þ + ηð Þ +

Ĝa ωð Þ
iωn/σð Þ + ηð Þ :

ð21Þ

Hence,

CDσ
0+p

� �
sð Þ + η p sð Þ = iωn/σ� 	σ

Fσ p sð Þf g

− eiω
n/σa 〠

m−1

k=0
ak

sk−σ

Γ k − σ + 1ð Þ iωn/σð Þk−σ+1
+ ηFσ p sð Þð Þ − Ĝa ωð Þ

= q sð Þ:
ð22Þ
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Since Fσ is one-to-one operator, ð CDσ
0+pÞðsÞ + η pðsÞ =

qðsÞ. Now, its follows form (19) and (21) that

Fσ p sð Þf g −Fσ pσ sð Þf g = Fσ y sð Þf g
iωn/σð Þ + ηð Þ : ð23Þ

Using the convolution property, we obtain

Fσ p sð Þ − pσ sð Þf g =Fσ y sð Þf g ∗ 1
iωn/σð Þ + ηð Þ = y sð Þ ∗ yσ sð Þ,

ð24Þ

where yσðsÞ = 1/ððiωn/σÞ + ηÞ. In view of (13), we have

y sð Þj j ≤ εEσ sð Þ,∀s > 0: ð25Þ

Now, applying the modules on both sides of Equation
(24), we get

p sð Þ − pσ sð Þj j =
ðs
0
s − xð Þσ−1Eσ η s − νð Þσð Þ ∗ y sð Þdν

����
����

≤ y sð Þj j
ðs
0
s − νð Þσ−1Eσ η s − νð Þσð Þdν

����
����

≤ εEσ sð Þ
ðs
0
s − νð Þσ−1Eσ η s − xð Þσð Þdν

����
����

≤HεEσ sð Þ:

ð26Þ

where H = jÐ s0ðs − xÞσ−1Eσðηðs − xÞσÞdνj. Thus Equation (1)
has Ulam-Hyers-Mittag-Leffler stability.

Corollary 9. The considered ϕ : ð0,∞Þ⟶ ð0,∞Þ is a func-
tion. If a function pðsÞ satisfies the inequality (13), for every
ε > 0, there exists a solution pσðsÞ satisfying Equation (1)
such that

p sð Þ − pa sð Þj j ≤Hϕ sð ÞεEσ sð Þ,∀s > 0: ð27Þ

i.e., Equation (1) has Ulam-Hyers-Rassias-Mittag-Leffler
stability.

4. Applications

In this section, the standard kinetic equation in the chem-
ical reaction that will be used to analyze this experimental
data is revealed by the equation as follows: where L =
xylan; M = xylose; N = products of decomposition; r1 =
release rate of sugar; r2 = decomposition rate of sugar. The
model is presented in Figure 1.

Material balance for components: }L} and }M} for the
first-order kinetic equation, we get

−
dNL sð Þ

ds
= r1NL sð Þ, ð28Þ

in which the initial concentration at s = 0 is presented by NL

=NL0
. Also, we have the same direction for material M:

−
dNM sð Þ

ds
= r1NL sð Þ − r2NM sð Þ, ð29Þ

in which the initial concentration at s = 0 is presented by
NM =NM0

. Equation (29) can be integrated and, using the
provided boundary condition, yields

NL sð Þ =NL0
  exp −r1sð Þ: ð30Þ

Substituting (30) for (29) yields

dNM sð Þ
ds

+ r2NM sð Þ = r1NL0
  exp −r1sð Þ: ð31Þ

Now, if we take the fractional Caputo derivative in (31)
instead of the classical ones, we have

CDσNM sð Þ + r2NM sð Þ = r1NL0
  exp −r1sð Þ: ð32Þ

Figure 2 shows the solution of Equation (32) for various
r1 and r2.

5. Conclusions

In this paper, the objective is investigated by using the frac-
tional Fourier transform to study the Ulam-Hyers-Mittag-
Leffler stability of linear fractional differential equations.
The required outcomes have been achieved by using the
fractional Fourier transform. We could reach the suitable
approximation value of xylose after a certain period of time,
which is crucial for analyzing the kinetic equation in the
chemical reaction process.

Xylan Xylose Decomposed products

r2r1

Figure 1: The presented model.
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Figure 2: Solution of Equation (32) for different values ðr1 =
0:012&r2 = 0:005Þ,ðr1 = 0:014&r2 = 0:005Þ, and ðr1 = 0:025&r2 =
0:005Þ with σ = 1/2.
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