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Motivated by Lutwak et al.’s Lp-dual curvature measures, we introduce the concept of Lp-curvature measures. This new Lp
-curvature measure is an extension of the classical surface area measure, Lp-surface area measure, and curvature measure. In
this paper, we first prove some properties of the Lp-curvature measure. Next, using the Lp-curvature measure, we define the
Lp,q-mixed volume which includes Lp-mixed volume as the special cases. Further, the Minkowski-type inequality related Lp,q
-mixed volume and the uniqueness of the solution for the Lp,q- Minkowski problem are obtained. Finally, we propose several
problems that need to be studied further.

1. Introduction

Surface area measure and integral curvature measure are two
important measures in classical Brunn-Minkowski theory.
Minkowski problem describing surface area measure and
Aleksandrov problem describing integral curvature are two
famous problems. As a generalization, Lp-surface area mea-
sure and Lp-integral curvature are defined in [1, 2], respec-
tively. At the same time, the hyperbolic measure as the
curvature measure of dual Fiedler is constructed in [3]. Lut-
wak et al. introduce Lp-dual curvature measure in [4], which
is a generalization of the dual curvature, Lp-surface area
measure and Lp-integral curvature. Lp-dual mixed volume
(also known as ðp, qÞ-dual mixed volume) is defined by [4]
and Minkowski inequality is established. Furthermore, they
study the Lp-dual Minkowski problem of Lp-dual curvature
measure by reference to [5].

Inspired by Lutwak et al.’s Lp-dual curvature measure, a
new concept of Lp-curvature measure is introduced in this
paper. It includes classical surface area measure, Lp-surface
area measure and curvature measure. In this paper, we first
prove some properties of Lp-curvature measure. Next, based
on Lp-curvature measure, we define Lp,q-mixed volume,
which includes Lp-mixed volume as a special case. Further-
more, the Minkowski inequality for Lp,q-mixed volume and

the uniqueness of the solution for Lp,q-Minkowski problem
are obtained. Finally, some problems which need further
study are put forward.

Let Kn represent the set of convex bodies in n-dimen-
sional Euclidean (compact convex subsets with nonempty
embedding) space ℝn, for convex bodies containing the ori-
gin inside in ℝn, we writeKn

o . Set B said centered on the ori-
gin of the unit sphere, B surface written as Sn−1, in ℝn. VðKÞ
represents the n dimensional volume of the body K and
writes VðBÞ = ωn.

For K ∈ Kn, its support function, hK = hðK , ·Þ: ℝn⟶
ð−∞, +∞Þ, is defined by (see [6])

h K , xð Þ =max x · y : y ∈ Kf g, x ∈ℝn, ð1Þ

where x · y denotes the standard inner product of x and y.
For K , L ∈Kn and s, t ≥ 0 (not both zero), the Min-

kowski combination, sK + tL ∈Kn, of K and L is defined
by the following:

h sK + tL, ·ð Þ = sh K , ·ð Þ + th L, ·ð Þ, ð2Þ

i.e., sK + tL = fsx + ty : x ∈ K , y ∈ Lg.
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The surface area measure SðK , ·Þ of K ∈Kn can be
defined by the following:

d
dt

V K + tLð Þ
����
t=0+

=
ð
Sn−1

hL uð ÞdS K , uð Þ, ð3Þ

for any L ∈Kn. From Equation (3), the Minkowski’s first
mixed volume of K and L is given as follows:

V1 K , Lð Þ = 1
n

ð
Sn−1

hL uð ÞdS K , uð Þ: ð4Þ

The mixed volume V1ðK , LÞ generalizes the concepts of
volume, surface area, and mean width.

We say that K ∈Kn has a positive continuous curvature
function f ðK , ·Þ = f Kð·Þ: Sn−1 ⟶ℝ, if for all L ∈Kn,

V1 K , Lð Þ = 1
n

ð
Sn−1

hL uð Þf K uð ÞdS uð Þ, ð5Þ

where S is spherical Lebesgue measure. Clearly, Equations
(4) and (5) imply the following:

f K , uð Þ = dS K , uð Þ
dS

: ð6Þ

Let p ≥ 1. Using the Lp-Minkowski conbinations (see
Equation (60)), Lutwak [2] defined the Lp-surface area mea-
sure SpðK , ·Þ of a convex body K ∈Kn

o , namely, for each L
∈Kn

o ,

d
dt

V K+pt · L
� �����

t=0+
= 1
p

ð
Sn−1

hL uð ÞpdSp K , uð Þ: ð7Þ

For K , L ∈Kn
o , the Lp-mixed volume VpðK , LÞ is given

by the following (see [4]):

Vp K , Lð Þ = 1
n

ð
Sn−1

hL uð ÞpdSp K , uð Þ: ð8Þ

We say that K ∈Kn
o has a positive continuous Lp-curva-

ture function f pðK , ·Þ: Sn−1 ⟶ℝ, if the integral representa-
tion

Vp K ,Qð Þ = 1
n

ð
Sn−1

hQ uð Þp f p K , uð ÞdS uð Þ, ð9Þ

for all Q ∈Kn
o . For K ∈Kn

o with a positive continuous cur-
vature functions, it follows from Equation (8) and Equation
(9) that

f p K , uð Þ = dSp K , uð Þ
dS

: ð10Þ

The Lp-Minkowski inequality of the Lp-mixed volume is

(see [2, 7]) that for p ≥ 1,

Vp K , Lð Þn ≥ V Kð Þn−pV Lð Þp, ð11Þ

with equality for p > 1 if and only if K and L are dilates, for
p = 1 and if and only if K and L are homothetic.

According to Equation (10), the curvature function of Lp
is the Radon-Nikodym derivative of Lp-surface area measure
with respect to the spherical Lebesgue measure. The integral
of Lp-curvature function (raised to an appropriate power)
over the unit sphere is the Lp-affine surface area, which is
an important research point of affine geometry and valua-
tion theory, see, e.g., [8–24]. The Lp-Minkowski problem
(see [2]) is a necessary and sufficient condition to find a
given measure such that it is only the Lp-surface area mea-
sure of a convex body. Solving the Lp-Minkowski problem
requires solving a degenerate singular Monge-Ampère-type
equation on the unit sphere. The Lp-Minkowski problem
has been solved for p ≥ 1, see [2, 25, 26], but critical cases
for p < 1 remain open, see, e.g., [25, 27–31]. For its applica-
tions, see [5, 7, 27, 32–35].

A star body Q ⊂ℝn is a compact star-shaped set about
the origin whose radial function ρQ : Sn−1 ⟶ ð0,∞Þ is
defined by the following:

ρQ uð Þ =max λ ≥ 0 : λu ∈Qf g, ð12Þ

for u ∈ Sn−1. If ρðK , ·Þ is positive and continuous, K will be
called a star body. Denote the set of star bodies in ℝn by
Sn

o . Obviously, K
n
o ⊂ Sn

o .
The dual Brunn-Minkowski theory is the theory of dual

mixed volumes of star bodies. For q ∈ℝ, the q-th dual mixed
volume, ~VqðK ,QÞ, of K ,Q ∈ Sn

o is defined by the following:

~Vq K ,Qð Þ = 1
n

ð
Sn−1

ρqK uð Þρn−qQ uð Þdu, ð13Þ

where the integration is with respect to spherical Lebesgue
measure. For q ≠ 0, the q-th dual volume ~VqðKÞ of K ∈ Sn

o

is defined by ~VqðKÞ = ~VqðK , BÞ. The q-th dual volume is
important in geometric tomography, one of the reasons that
is that for integers q = 1, 2,⋯, n − 1 and each K ∈ Sn

o ,

~Vq Kð Þ = cn,q

ð
G n,qð Þ

volq K ∩ ξð Þdξ, ð14Þ

where volq denotes volume in ℝq, Gðn, qÞðq = 1, 2,⋯, n − 1Þ
denote the Grassmann manifold of q-dimensional subspaces
of ℝn, the integration is with respect to the rotation invari-
ant probability measure on Gðn, qÞ and constant cn,q is triv-
ially determined by taking K to be B.

For the real q ≠ 0, the q-th dual curvature ~CqðK , ·Þ of K
∈Kn

o is a Borel measure on the unit sphere, which can be
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defined in [3] by using the variational formula:

d
dt

~Vq K + tLð Þ
����
t=0+

= q
ð
Sn−1

hL vð Þh−1K vð Þd~Cq K , vð Þ, ð15Þ

for every L ∈Kn
o . Similar to the critical role as Lp-surface

area measures playing in the Lp Brunn-Minkowski theory,
dual curvature measures is a central concept within the dual
Brunn-Minkowski theory.

The singularity case q = 0 of dual volume leads to dual
entropy of star body. For K ∈ Sn

o , the dual entropy ~EðKÞ
can be defined as follows:

~E Kð Þ = 1
n

ð
Sn−1

log ρK uð Þdu: ð16Þ

The Lp-integral curvature, JpðK , ·Þ, of K ∈Kn
o (see [1])

can be defined by a variational formula:

d
dt

~E K+pt · L
� �����

t=0+
= 1
np

ð
Sn−1

hpL vð ÞdJp K∗, vð Þ, ð17Þ

for all L ∈Kn
o , where K

∗ is the polar body of K is given by
K∗ = fx ∈ℝn : x · y ≤ 1 for all y ∈ Kg.

In [4], Lutwak et al. introduced Lp-dual curvature mea-
sures, which are a generalization of dual curvatures, Lp-sur-
face area measure and Lp-integral curvatures. For p, q ∈ℝ,

K ∈Kn
o and Q ∈ Sn

o , the Lp-dual curvature measure, ~Cp,q, is

the Borel measure on Sn−1 defined by the following:

ð
Sn−1

g vð Þd~Cp,q K ,Q, vð Þ = 1
n

ð
Sn−1

g αK uð Þð ÞhK αK uð Þð Þ−pρK uð ÞqρQ uð Þn−qdu,

ð18Þ

for each continuous g : Sn−1 ⟶ℝ, where αK is the radial
Gauss map (see Section 2 for details).

Lp-dual mixed volume (also known as ðp, qÞ-dual mixed
volume) is defined by Lutwak et al. [4] using the Lp-dual
curvature:

For p, q ∈ℝ, K , L ∈Kn
o , and Q ∈ Sn

o , the Lp-dual mixed

volume ~Vp,qðK , L,QÞ is defined by the following:

~Vp,q K , L,Qð Þ =
ð
Sn−1

hpL vð Þd~Cp,q K ,Q, vð Þ: ð19Þ

By Equation (18), the Lp-dual mixed volume has the fol-
lowing integral formula:

~Vp,q K , L,Qð Þ = 1
n

ð
Sn−1

hL αK uð Þð ÞphK αK uð Þð Þ−pρK uð ÞqρQ uð Þn−qdu: ð20Þ

Specifically, ~Cp,nðK , BÞ = ð1/nÞSpðK , ·Þ, namely,

dSp K , uð Þ = n~Cp,n K , Bð Þ = hK αK uð Þð Þ−pρK uð Þndu, ð21Þ

and for K , L ∈Kn
o ,

Vp K , Lð Þ = 1
n

ð
Sn−1

hL
hK

� �p

αK uð Þð ÞρnK uð Þdu: ð22Þ

For the ðp, qÞ-dual mixed volumes, the related Min-
kowski inequality is given in [4]. Suppose 1 ≤ q/n ≤ p, if K ,
L ∈Kn

o and Q ∈ Sn
o , then

~Vp,q K , L,Qð Þn ≥V Kð Þq−pV Lð ÞpV Qð Þn−q, ð23Þ

with equality when q > n if and only if K , L and Q are dilates;
while when q = n and p > 1, with equality if and only if K
and L are dilates; while when q = n and p = 1, with equality
if and only if K and L are homothetic.

In [4], the authors studied the Lp-dual Minkowski prob-
lems for Lp-dual curvature measures. The results of Lp-dual
Minkowski problem caught many attentions, for example,
see [3, 27, 36–42]. In addition, based on the ðp, qÞ-dual
mixed volumes, Ma et al. studied ðp, qÞ-John ellipsoids in
[43], which contain the classical John ellipsoid and the Lp-
John ellipsoids. They also solved two involving optimization
problem about the ðp, qÞ-dual mixed volumes for all 0 < p
≤ q. A different extension of the Lp-John ellipsoid was con-
sidered by Li et al. in [44].

In this paper, motivated by Lutwak et al.’s works in [4],
we introduce the following Lp-curvature measures which is
a new curvature measure.

Definition 1. For p, q ∈ℝ and K ,Q ∈Kn
o , we define the Lp

-curvature measure Cp,qðK ,Q, ·Þ by the following:

ð
Sn−1

g vð ÞdCp,q K ,Q, vð Þ = 1
n

ð
Sn−1

g αK uð Þð Þhq−pQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu,

ð24Þ

for each continuous g : Sn−1 ⟶ℝ.

According to Definition 1, the Lp-curvature measure
Cp,qðK ,Q, ·Þ has the following integral expression.

Property 2. Suppose p, q ∈ℝ. If K ,Q ∈Kn
o , then

Cp,q K ,Q, ηð Þ = 1
n

ð
α∗K ηð Þ

hq−pQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu,

ð25Þ

for each Borel set η ⊆ Sn−1. Here,

α∗K ηð Þ = x
xj j = �x ∈ Sn−1 where x ∈HK vð Þfor some v ∈ η

� �
,

ð26Þ

and HKðvÞ is the supporting hyperplane to K with outer
normal vector v ∈ℝn \ f0g.
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Property 3. Suppose p, q ∈ℝ. If K ,Q ∈Kn
o , then for each

Borel set η ⊆ Sn−1,

Cp,q K ,Q, ηð Þ = 1
n

ð
x∈xK ηð Þ

x · νK xð Þð Þ1−q νK xð Þk kq−pQ∗ dHn−1 xð Þ:

ð27Þ

Among them, Hn−1ð·Þ represents the ðn − 1Þ-dimen-
sional Hausdorff measure, and νKðxÞ represents the regular
radial vector of x ∈ ∂K , as well as xKðηÞ represents the
reverse spherical image of η ⊂ Sn−1.

The Lp-curvature measures unify the surface area mea-
sures, Lp-surface area measures and curvature measures, as
well as other measures. In particular, for p, q ∈ℝ and K , Q
∈Kn

o the Lp-surface area measures and the q-th curvature
measures (see Section 3 for its definition) are special cases
of the Lp-curvature measures:

Cq,q K ,Q, ·ð Þ = 1
n
Sq K , ·ð Þ, ð28Þ

Cp,q K , K , ·ð Þ = 1
n
Sp K , ·ð Þ, ð29Þ

Cp,q K , B, ·ð Þ = 1
n
Sq K , ·ð Þ, ð30Þ

Cp,0 K , K , ·ð Þ = 1
n
Sp K , ·ð Þ, ð31Þ

C0,q K , B, ·ð Þ = 1
n
Sq K , ·ð Þ: ð32Þ

According to the Lp-curvature measures, we now define
the notion of the Lp,q-mixed volumes which unifies Lp
-mixed volumes and dual-mixed volumes.

Definition 4. For p, q ∈ℝ and K , L,Q ∈Kn
o , the Lp,q-mixed

volume, Vp,qðK , L,QÞ, of K and L (with respect to Q) is
defined by the following:

Vp,q K , L,Qð Þ =
ð
Sn−1

hL uð ÞpdCp,q K ,Q, uð Þ: ð33Þ

The following variational formula is an extension of
Equations (3) and (7).

Theorem 5. If reals p, q ≠ 0 and K , L,Q ∈Kn
o , then the Lp,q

-mixed volume Vp,qðK , L,QÞ via the variational formula of
K and L (with respect to Q) by the following:

Vp,q K , L,Qð Þ = p
q
lim
t⟶0

Vq K ,Q+pt · L
� �

−Vq K ,Qð Þ
t

: ð34Þ

Using Equation (24), the Lp,q-mixed volume can be writ-

ten by the following integral formula:

Vp,q K , L,Qð Þ = 1
n

ð
Sn−1

hL αK uð Þð ÞphQ αK uð Þð Þq−phK αK uð Þð Þ−qρK uð Þndu:

ð35Þ

It will be shown that the Lp-mixed volume (Equation
(8)) is the special case of the Lp,q-mixed volumes of convex
bodies, i.e.,

Vp,q K , L, Kð Þ = Vp K , Lð Þ,
Vp,p K , L,Qð Þ =Vp K , Lð Þ,
Vp,q K , L, Lð Þ =Vq K , Lð Þ,
Vp,p K , L, Bð Þ =Vp K , Lð Þ,
V0,q K , L,Qð Þ = Vq K ,Qð Þ:

ð36Þ

The Minkowski-type inequality for Lp,q-mixed volume is
as follows:

Theorem 6. Let K , L,Q ∈Kn
o and q ≥ 1, p < 0. Then,

Vp,q K , L,Qð Þn ≥V Kð Þn−qV Lð ÞpV Qð Þq−p, ð37Þ

with equality if and only if K , L,Q are dilates when q > 1
and K ,Q are homothetic when q = 1.

For Q, K ∈Kn
o , we say that the convex body Q with

respect to K has a positive continuous ðp, qÞ-curvature func-
tion f p,qðK ,Q, ·Þ: Sn−1 ⟶ℝ, if

Vp,q K , L,Qð Þ = 1
n

ð
Sn−1

hL uð Þp f p,q K ,Q, uð ÞdS uð Þ, ð38Þ

for all L ∈Kn
o . From Equations (33) and (38), we get that for

K ∈Kn
o with a positive continuous curvature functions and a

fixed Q ∈Kn
o ,

1
n
f p,q K ,Q, uð Þ = dCp,q K ,Q, uð Þ

dS
: ð39Þ

For q ∈ℝ and t ∈ ð0,∞Þ, the normalized power function
t�q can be defined by the following:

t �q =
1
q
tq, if q ≠ 0,

log t, if q = 0:

8<
: ð40Þ

For q ∈ℝ and K ,Q ∈Kn
o , the normalized Lp-mixed vol-

ume V �qðK ,QÞ is defined by the following:

V �q K ,Qð Þ = 1
n

ð
Sn−1

hQ
hK

� ��q
αK uð Þð ÞρnK uð Þdu: ð41Þ

Note that for q ≠ 0, we have qV �qðK ,QÞ =VqðK ,QÞ,
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while for p = 0 the normalized Lp-mixed volume V �pðK ,QÞ is
not just VpðK ,QÞmultiplied by a constant but it can be con-
sidered from the mixed entropy (see Section 2 for details).

Another aim of this paper is to show that for p, q ∈ℝ and
K ,Q ∈Kn

o , there exists a variational formula that defines the
Lp-curvature measure Cp,qðK ,Q, ·Þ by the following:

d
dt

V �q K ,Q+pt · L
� �����

t=0+
=
ð
Sn−1

hL vð Þ�pdCp,q K ,Q, vð Þ, ð42Þ

for every L ∈Kn
o . This plays a key role to solve the associated

Minkowski-type problems using a variational method.
Associated with Lp-curvature measures, ðp, qÞ-Min-

kowski problem related to Lp-curvature measure asks: For
a given Borel measure ϕ on a sphere, what are the necessary
and sufficient conditions for the existence of a K convex
body whose Lp-curvature measure is ϕ? The uniqueness of
the problem is to ask to what extent is a convex body
uniquely determined by its Lp-curvature measure?

The new ðp, qÞ-Minkowski problem is equivalent to a
degenerate singular Monge-Ampère equation on Sn−1: For
fixed p, q ∈ℝ,

h1−p ν ∘ �∇h + hℓ
� �		 		q−p

Q∗ det �∇2h + hI

 �

= f , ð43Þ

where f : Sn−1 ⟶ ½0,∞Þ is the given “data” function, h
: Sn−1 ⟶ ð0,∞Þ is the unknown function, and ℓ : Sn−1 ⟶
Sn−1 is the identity map. Here, �∇h and �∇2h denote the gradi-
ent vector and the Hessian matrix of h, respectively, with
respect to an orthonormal frame on Sn−1, and I is the iden-
tity matrix. If we assume that the range of the gradient func-
tion �∇h is D, then ν : D⟶ Sn−1 is also an unknown
function related to h.

Finally, we propose some problems that need further
study, i.e., Lp,q-affine surface area problem, Lp,q-geominimal
surface area problem and Lp,q-John ellipsoid problem.

2. Preliminaries

2.1. Basics in Convex Geometry. We work in the n-dimen-
sional Euclidean space ℝn. For x, y ∈ℝn, we use x · y to
denote the standard inner product of x and y, and jxj =ffiffiffiffiffiffiffiffi
x · xp

to denote the Euclidean norm of x. For x ∈ℝn \ f0g,
we will use both �x and hxi to abbreviate x/jxj.

We denote by CðSn−1Þ the family of continuous func-
tions defined on Sn−1 as endowed with the topology induced
by the max-norm: k f k∞ = max

v∈Sn−1
j f ðvÞj, for f ∈ CðSn−1Þ.

For the support function, we know that for λ > 0 and x
∈ℝn,

hλK xð Þ = λhK xð Þ: ð44Þ

Generally, for ϕ ∈GLðnÞ, the image ϕK = fϕx : x ∈ Kg

satisfies that for x ∈ℝn,

hϕK xð Þ = hK ϕtx
� �

, ð45Þ

where ϕt denotes the transpose of ϕ.
Since the support function is positive homogeneous of

degree 1, we can restricted it on the unit sphere. For convex
bodies K , L ∈Kn, their Hausdorff metric is given by the fol-
lowing:

δH K , Lð Þ≔ hK − hLk k∞ = max
u∈Sn−1

hK uð Þ − hL uð Þj j: ð46Þ

At the point v ∈ Sn−1 where hK is differentiable, the gradi-
ent of hK in ℝn is as follows:

∇hK vð Þ = �∇hK vð Þ + hK vð Þv, ð47Þ

where �∇hK denotes the gradient of hK on Sn−1 with respect to
the standard metric of Sn−1.

For the radial function, we see that for K ∈ Sn
o , ϕ ∈GLðnÞ

and x ∈ℝn \ f0g,

ρϕK xð Þ = ρK ϕ−1x
� �

: ð48Þ

Using the radial function, the volume of K ∈ Sn
o can be

expressed as follows:

V Kð Þ = 1
n

ð
Sn−1

ρK uð ÞndS uð Þ: ð49Þ

For K ∈Kn
o , the polar body K

∗ of K is defined by the fol-
lowing:

K∗ = x ∈ℝn : x · y ≤ 1 for all y ∈ Kf g: ð50Þ

From this definition, we get that for u ∈ Sn−1,

ρK uð Þ = 1
hK∗ uð Þ ,

hK uð Þ = 1
ρK∗ uð Þ ,

ð51Þ

and for K ∈Kn
o ,

K∗ð Þ∗ = K∗∗ = K: ð52Þ

For K ∈Kn
o , the Minkowski function of K is defined by

the following:

xk kK =min a ≥ 0 : x ∈ aKf g: ð53Þ

Obviously, it is a continuous function on ℝn, and

xk kK∗ = ρK∗ xð Þ−1 = hK xð Þ: ð54Þ

In the whole process, Ω ⊂ Sn−1 will represent a closed set
that cannot be contained in any of the closed hemispheres of
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Sn−1. Wulff shape ½h� ∈Kn
o , a continuous function h : Ω

⟶ ð0,∞Þ, also known as h of the Aleksandrov body, is
defined by the following:

h½ � =
\
v∈Ω

x ∈ℝn : x · v ≤ h vð Þf g: ð55Þ

If K ∈Kn
o , then it is easily seen that

hK½ � = K: ð56Þ

Assume that the function ρ : Ω⟶ ð0,∞Þ is continu-
ous. Since Ω ⊂ Sn−1 is assumed to be closed, and ρ is contin-
uous, we have fρðuÞu : u ∈Ωg is a compact set in ℝn. The
convex hull hρi generated by ρ,

ρh i = conv ρ uð Þu : u ∈Ωf g, ð57Þ

is compact as well (see Schneider [40], Theorem 1.1.11).
Since Ω is not contained in any closed hemisphere of Sn−1,
we get that hρi contains the origin in its interior; namely, h
ρi ∈Kn

o . Obviously, if K ∈Kn
o ,

ρKh i = K: ð58Þ

The following lemma will be required.

Lemma 7 (see [3]). Let Ω ⊂ Sn−1 be a closed set that is not
contained in any closed hemisphere of Sn−1. Let h : Ω⟶ ð0
,∞Þ be continuous. Then, the Wulff shape ½h� determined
by h and the convex hull h1/hi generated by the function 1/
h are polar reciprocals of each other; namely,

h½ �∗ = 1
h


 �
: ð59Þ

Let K , L ∈Kn
o and p ≥ 1. The Lp-Minkowski combination

s · K+pt · L is the convex body whose support function is given
by the following (see [2]):

h s · K+pt · L, ·
� �p = sh K , ·ð Þp + th L, ·ð Þp: ð60Þ

From Equation (53), we can extend the Lp-Minkowski
combinations to the cases of p < 1.

Let p ≠ 0. For K , L ∈Kn
o , and s, t ∈ℝ such that shpK + thpL

is a strictly positive function on Sn−1, Lutwak et al. [4]
defined the Lp-Minkowski combination s · K+pt · L ∈Kn

o by
the following:

s · K+pt · L = shpK + thpL
� �1/ph i

: ð61Þ

When p = 0, define s · K+0t · L by the following:

s · K+0t · L = hsKh
t
L

� �
: ð62Þ

Note that s · K+0t · L is defined for all s, t ∈ℝ, since hK ,

hL are strictly positive functions on Sn−1.
Given ϕ ∈ SLðnÞ and p ≠ 0 (see [4]), we obtain that for s

, t ∈ℝ,

s · ϕK+pt · ϕL = ϕ s · K+pt · L
� �

: ð63Þ

If s + t = 1, then Equation (63) holds for p = 0 as well.
For p ∈ℝ \ f0g and K , L ∈Kn

o , the Lp-mixed volume
VpðK , LÞ is defined by the following:

Vp K , Lð Þ = 1
n

ð
Sn−1

hpL uð ÞdSp K , uð Þ

= p
n

lim
t⟶0+

V K+pt · L
� �

−V Kð Þ
t

:

ð64Þ

From Equations (64) and (63), we get that for ϕ ∈ SLðnÞ
(see [45]),

Vp ϕK , ϕLð Þ =Vp K , Lð Þ: ð65Þ

The Lp-surface area SpðKÞ of K ∈Kn
o is given by SpðKÞ

= nVpðK , BÞ.
The following definition will be required.

Definition 8 (see [4]). Let p ∈ℝ. If μ is a Borel measure on
Sn−1 and ϕ ∈ SLðnÞ, then ϕp⊣ μ, the Lp image of μ under ϕ,
is a Borel measure such that

ð
Sn−1

f uð Þdϕp⊣μ uð Þ =
ð
Sn−1

ϕ−1u
�� ��p f ϕ−1u

� �� �
dμ uð Þ, ð66Þ

for each Borel f : Sn−1 ⟶ℝ.

Recall that the Lp-mixed volume has a dual integral for-
mulation (see [4]): If K , L ∈Kn

o , then

Vp K , Lð Þ = 1
n

ð
Sn−1

hL
hK

� �p

αK uð Þð ÞρnK uð Þdu, ð67Þ

where αK is the radial Gauss map of K .
For K , L ∈Kn

o and p > 0, we define the volume-
normalized Lp-mixed volume by the following:

�Vp K , Lð Þ = Vp K , Lð Þ
V Kð Þ

� �1/p
=
ð
Sn−1

hL
hK

� �p

αK uð Þð Þd ~VK uð Þ
� �1/p

: ð68Þ

Note that d ~VK = ð1/nÞρnKdu/VðKÞ is the normalized
dual conical measure of K , it is a probability measure on
supp Sð·Þ. Let p⟶ 0. Then,

�V0 K , Lð Þ = exp
ð
Sn−1

log hL
hKÞ
� �

αK uð Þð Þd ~VK uð Þ
� �

= exp 1
nV Kð Þ

ð
Sn−1

log hL
hK

� �
αK uð Þð ÞρnK uð Þdu

� �
:

ð69Þ
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The mixed entropy EðK , LÞ of K , L ∈Kn
o is defined by

the following:

E K , Lð Þ = 1
n

ð
Sn−1

log hL
hK

� �
αK uð Þð ÞρnK uð Þdu: ð70Þ

Note that EðK , LÞ =V �0ðK , LÞ. As the case in Equation
(63), for the dual mixed entropy, we have that for ϕ ∈ SLðn
Þ,

E ϕK , ϕLð Þ = E K , Lð Þ: ð71Þ

2.2. The Radial Gauss Map. The following results come from
the articles [3, 4].

Suppose K is a convex body in ℝn. For each v ∈ℝn \ f0g,
the hyperplane

HK vð Þ = x ∈ℝn : x · v = hK vð Þf g ð72Þ

is called the supporting hyperplane to K with outer normal
vector v.

The spherical image of σ ⊂ ∂K is defined by the follow-
ing:

νK σð Þ = v ∈ Sn−1 : x ∈HK vð Þ for some x ∈ σ
� �

⊂ Sn−1: ð73Þ

The reverse spherical image of η ⊂ Sn−1 is defined by the
following:

xK ηð Þ = x ∈ ∂K : x ∈HK vð Þ for some v ∈ ηf g ⊂ ∂K: ð74Þ

Suppose σK ⊂ ∂K is a set consisting of all x ∈ ∂K , for
which the set νKðfxgÞ, which we frequently abbreviate as
νKðxÞ, contains more than a single element. It is a well-
known fact that Hn−1ðσKÞ = 0 (see Schneider [46], p. 84).
The function on the set of regular radial vectors of ∂K is pre-
cisely defined by the following:

νK : ∂K \ σK ⟶ Sn−1, ð75Þ

by making νKðxÞ be the unique element in νKðxÞ for each
x ∈ ∂K \ σK , The function νK is called the spherical image
map of K and is known to be continuous (see Schneider
[40], Lemma 2.2.12). It will be very convenient to abbreviate
∂K \ σK by ∂′K . SinceHn−1ðσKÞ = 0, when the integration is
about Hn−1, it does not matter if the domain is over subsets
of ∂′K or ∂K .

The set ηK ⊂ Sn−1 consisting of all v ∈ Sn−1, for which the
set xKðvÞ contains more than a single element, is of Hn−1–
measure 0 (see Schneider [40], Theorem 2.2.11). The func-
tion is precisely defined on the set of regular unit normal
vectors of K :

xK : Sn−1\ηK ⟶ ∂K , ð76Þ

by making xKðvÞ be the unique element in xKðvÞ, for each
v ∈ Sn−1 \ ηK . The function xK is called the reverse spherical
image map and is well known to be continuous (see Schnei-

der [40], Lemma 2.2.12). By extending xK to be a homoge-
neous function of degree 0 in ℝn \ f0g, we get a natural
definition of xK on the set of all regular normal vectors on
∂K .

For ω ⊂ Sn−1, the radial Gauss image of ω is defined by
the following:

αK ωð Þ = v ∈ Sn−1 : ρK uð Þu ∈HK vð Þ for some u ∈ ω
� �

: ð77Þ

For a subset η ⊂ Sn−1, the reverse radial Gauss image of η
is defined by the following:

α∗K ηð Þ = u ∈ Sn−1 : ρK uð Þu ∈HK vð Þ for some v ∈ η
� �

: ð78Þ

Thus,

α∗K ηð Þ = �x : x ∈ ∂K where x ∈HK vð Þ for some v ∈ ηf g: ð79Þ

In particular, we can see that if η contains only a single
vector v ∈ Sn−1,

α∗K vð Þ = �x : x ∈ ∂K where x ∈HK vð Þf g: ð80Þ

Note that Equation (78), and hence for u ∈ Sn−1 and η
⊂ Sn−1, we see from Equation (77) that

u ∈ α∗K ηð Þ⇔ αK uð Þ ∩ η ≠∅: ð81Þ

Thus, for η1, η2 ⊆ Sn−1,

η1 ⊆ η2 ⇒ α∗K η1ð Þ ⊆ α∗K η2ð Þ: ð82Þ

We shall need to make use of the fact that for u, v ∈ Sn−1,

u ∈ αK∗ vð Þ⇔ v ∈ αK uð Þ: ð83Þ

If u∈ωK , then αKðuÞ = fαKðuÞg, and Equation (77)
becomes

u ∈ αK∗ ηð Þ⇔ αK uð Þ ∈ η, ð84Þ

and hence Equation (84) holds for almost all u ∈ Sn−1, with
respect to spherical Lebesgue measure.

The following lemma will be used.

Lemma 9 (see [4]). If K ∈Kn
o , then

α∗K ηð Þ = αK∗ ηð Þ, ð85Þ

for each η ⊆ Sn−1.

Since α∗KðvÞ = fα∗KðvÞg for almost all v ∈ Sn−1 with
respect to spherical Lebesgue measure, and αK∗ðvÞ = fαK∗ðv
Þg for almost all v ∈ Sn−1 with respect to spherical Lebesgue
measure, Lemma 9 implies that if K ∈Kn

o , then

α∗K = αK∗ , ð86Þ
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almost everywhere with respect to spherical Lebesgue
measure.

For K ∈Kn
o , the radial map of K is defined by the follow-

ing:

rK : Sn−1 ⟶ ∂K by rK uð Þ = ρK uð Þu ∈ ∂K , ð87Þ

for u ∈ Sn−1. Note that r−1K : ∂K ⟶ Sn−1 is just the restriction
to ∂K of the map ℝn \ f0g⟶ Sn−1.

The radial Gauss map of the convex body K ∈Kn
o is

defined by the following:

αK : Sn−1 \ ωK ⟶ Sn−1 by αK = νK ∘ rK , ð88Þ

where ωK = �σK = r−1K ðσKÞ. Since r−1K =�· is a bi-Lipschitz map
between the spaces ∂K and Sn−1, so it follows that ωK has
spherical Lebesgue measure 0. We observed that if u ∈ Sn−1/
ωK , then αKðuÞ contains only the element αKðuÞ. Since both
νK and rK are continuous, αK is continuous. Notice that for
x ∈ ∂′K ,

αK �xð Þ = νK xð Þ, ð89Þ

and hence for x ∈ ∂′K ,

hK αK �xð Þð Þ = hK νK xð Þð Þ = x · νK xð Þ: ð90Þ

If u ∈ Sn−1/ωK , we see that x = ρKðuÞu ∈ ∂K/ωK with �x
= u from the definition of ωK . Hence from Equation (89)
we have αKðuÞ = αKð�xÞ = νKðxÞ and we get the following
(see [4]):

αK uð Þ = −
∇ρK uð Þ
∇ρK uð Þj j =

∇hK∗ uð Þ
∇hK∗ uð Þj j , u ∈ Sn−1 \ ωK : ð91Þ

Combining with Equations (86) and (91), we have the
following:

α∗K vð Þ = ∇hK vð Þ
∇hK vð Þj j , ð92Þ

for almost all v with respect to spherical Lebesgue measure.
The surface area measure SðK , ·Þ of a convex body K can

be defined, for Borel η ⊆ Sn−1, by the following:

S K , ηð Þ =Hn−1 xK ηð Þð Þ, ð93Þ

where xKðηÞ is the reverse spherical image of η ⊂ Sn−1.
If the boundary of a convex body K , denoted by ∂K , is

smooth with positive Gauss curvature, the surface area mea-
sure of K is absolutely continuous with respect to spherical
Lebesgue measure. The density can be regarded as the recip-
rocal of Gauss curvature and expressed in terms of the sup-
port function and its Hessian matrix on Sn−1:

dS K , ·ð Þ
dS

= det �∇2hK + hKI

 �

, ð94Þ

where �∇2hK denotes the Hessian matrix of hK and I is the
identity matrix with respect to an orthonormal frame on
Sn−1. See Schneider [46].

For p ∈ℝ and K ∈Kn
o , its Lp-surface area measure Spð

K , ·Þ introduced in [2] is defined by the following:

dSp K , ·ð Þ = h1−pK dS K , ·ð Þ, ð95Þ

or equivalently by the following:

Sp K , ηð Þ =
ð
xK ηð Þ

x · νK xð Þð Þ1−pdHn−1 xð Þ, ð96Þ

for each Borel η ⊆ Sn−1, where νK is the spherical image func-
tion of σ ⊂ ∂K .

For λ > 0, we easily see hλK = λhK and SðλK , ·Þ = λn−1Sð
K , ·Þ. Then, Equation (91) implies the following:

Sp λK , ·ð Þ = λn−qSp K , ·ð Þ: ð97Þ

The following integral identity is established in [3].

Lemma 10. If q ∈ℝ and K ∈Kn
o , while f : Sn−1 ⟶ℝ is

bounded and Lebesgue integrable, then

ð
Sn−1

f uð ÞρK uð Þqdu =
ð
∂′K

f �xð Þ xj jq−n x · νK xð Þð ÞdHn−1 xð Þ:

ð98Þ

In [3], we see that

Lemma 11. If K ∈Kn
o is strictly convex, and f : Sn−1 ⟶ℝ

and F : ∂K ⟶ℝ are both continuous, then

ð
Sn−1

f uð ÞF ∇hK uð Þð ÞhK uð ÞdS K , uð Þ

=
ð
∂′K

x · νK xð Þð Þf νK xð Þð ÞF xð ÞdHn−1 xð Þ,
ð99Þ

where ∇hK is the gradient of hK in ℝn, and νK is defined only
on ∂K \ σK , the set σK has Hn−1 measure 0.

We will require a slight extension of Equation (97). To
be specific, if p ∈ℝ, while K ∈Kn

o is strictly convex, and f
: Sn−1 ⟶ℝ and F : ∂K ⟶ℝ are both continuous, then
(see [4])

ð
Sn−1

f uð ÞF ∇hK uð Þð ÞdSp K , uð Þ

=
ð
∂′K

x · νK xð Þð Þ1−p f νK xð Þð ÞF xð ÞdHn−1 xð Þ:
ð100Þ

The following lemma will be used.
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Lemma 12 (see [4]). For each p ∈ℝ, the set

ch
�p
K − ch

�p
B : K ∈Kn

o , c > 0
n o

ð101Þ

is dense in CðSn−1Þ.

3. Lp-Curvature Measures

For a star body Q ∈ Sn
o , define k·kQ : ℝn ⟶ ½0,∞Þ by let-

ting (see [4])

xk kQ =
1

ρQ xð Þ , if x ≠ 0,

0, if x = 0:

8><
>: ð102Þ

Note that k·kQ is continuous and positively homoge-
neous of degree 1. If Q is an origin-symmetric convex body
in ℝn, then k·kQ is just an ordinary norm in ℝn, and ðℝn,
k·kQÞ is the n-dimensional Banach space whose unit ball is
Q.

Note that the definition (Equation (102)) is an extension
of Minkowski functional (Equation (53)) of convex body K
∈Kn

o .

Definition 13. Suppose q ∈ℝ. For K ,Q ∈Kn
o , the q-th area

measure SqðK ,Q, ·Þ is defined by the following:

Sq K ,Q, ωð Þ = 1
n

ð
ω

hQ
hK

� �q

αK uð Þð ÞρnK uð Þdu, ð103Þ

for each Lebesgue measurable ω ⊆ Sn−1, and the q-th curva-
ture measure CqðK ,Q, ·Þ is defined by the following:

Cq K ,Q, ηð Þ = 1
n

ð
α∗K ηð Þ

hQ
hK

� �q

αK uð Þð ÞρnK uð Þdu, ð104Þ

for each Borel η ⊆ Sn−1. Moreover, for each p ∈ℝ, the Lp
-curvature measure Cp,qðK ,Q, ·Þ is defined by the following:

dCp,q K ,Q, ·ð Þ = h−pQ dCq K ,Q, ·ð Þ: ð105Þ

Observe that

C0,q K ,Q, ·ð Þ = Cq K ,Q, ·ð Þ: ð106Þ

Note that from definition (Equation (104)) and the fact
that Equation (84) holds off of the set ωK of spherical Lebes-
gue measure 0, so for each Borel η ⊆ Sn−1, we get the follow-

ing:ð
Sn−1

1η vð ÞdCq K ,Q, vð Þ

= Cq K ,Q, ηð Þ = 1
n

ð
α∗K ηð Þ

hQ
hK

� �q

αK vð Þð ÞρnK vð Þdv

= 1
n

ð
Sn−1

1α∗K ηð Þ vð Þ hQ
hK

� �q

αK vð Þð ÞρnK vð Þdv

= 1
n

ð
Sn−1

1η αK uð Þð ÞhqQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu:

ð107Þ

That is,ð
Sn−1

1η vð ÞdCq K ,Q, vð Þ

= 1
n

ð
Sn−1

1η αK uð Þð ÞhqQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu:

ð108Þ

We observed that CqðK ,Q, ·Þ is absolutely continuous
with respect to spherical Lebesgue measure. Then, from
Equation (108), we deduce that

Lemma 14. Let K ∈Kn
o and q ∈ℝ. If each function f : Sn−1

⟶ℝ is bounded and Borel, thenð
Sn−1

f vð ÞdCq K ,Q, vð Þ

= 1
n

ð
Sn−1

f αK uð Þð ÞhqQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu:

ð109Þ

Proof. Because Equation (109) is shown by Equation (108) as
an indicator function of the Borel set, we see that Equation
(109) holds for a linear combination of the indicator func-
tions of the Borel set, namely, simple functions ϕ : Sn−1

⟶ℝ, is given by the following:

ϕ = 〠
m

i=1
ci1ηi , ð110Þ

where ci ∈ℝ and Borel ηi ⊂ Sn−1. Now let us choose a
sequence of simple functions ϕk : S

n−1 ⟶ℝ converging to
the bounded Borel function f : Sn−1 ⟶ℝ. Note that f is
bounded, ϕk can be selected as uniformly bounded. Then,
ϕk ∘ αK converges pointwise to f ∘ αK on Sn−1 \ ωK . Since f
: Sn−1 ⟶ℝ is a Borel function and the radial Gauss map
αK : Sn−1 \ ωK ⟶ Sn−1 is continuous; thus, f ∘ αK is a Borel
function on Sn−1 \ ωK . Because f is bounded, and ωK
has spherical Lebesgue measure 0, we can infer that f is
CqðK , q, ·Þ integrable, and f ∘ αK is spherical Lebesgue inte-

grable in Sn−1. Since CqðK , q, ·Þ is a finite measure, by taking
the limit k⟶∞, we obtain Equation (109).☐

9Journal of Function Spaces



Proposition 15. Let p, q ∈ℝ. If K ,Q ∈Kn
o , then

Cp,q K ,Q, ηð Þ = 1
n

ð
α∗K ηð Þ

hq−pQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu,

ð111Þ

for each Borel set η ⊆ Sn−1.

Proof. From Equations (105), (109), and (84), we have for
each Borel η ⊆ Sn−1,

Cp,q K ,Q, ηð Þ
=
ð
Sn−1

1η uð ÞdCp,q K ,Q, uð Þ

=
ð
Sn−1

1η uð ÞhQ uð Þ−pdCq K ,Q, uð Þ

= 1
n

ð
Sn−1

1η αK uð Þð Þh−pQ αK uð Þð ÞhqQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu

= 1
n

ð
Sn−1

1α∗K ηð Þ uð Þhq−pQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu

= 1
n

ð
α∗K ηð Þ

hq−pQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu:

ð112Þ

☐

Obviously, the total measures of the q-th curvature mea-
sure and the q-th area measure are the q-th mixed volume,
i.e.,

Vq Q, Kð Þ = Sq K ,Q, Sn−1
� �

= Cq K ,Q, Sn−1
� �

: ð113Þ

It follows immediately from Equations (103) and (104)
that

Cq K ,Q, ηð Þ = Sq K ,Q, α∗K ηð Þð Þ: ð114Þ

The Lp-curvature measures have the following
properties.

Property 16. Let p, q ∈ℝ. If K ,Q ∈Kn
o . Then, for each Borel

set η ⊆ Sn−1 and each bounded Borel function g : Sn−1 ⟶ℝ,
we have the following:

ð
Sn−1

g vð ÞdCp,q K ,Q, vð Þ

= 1
n

ð
Sn−1

g αK uð Þð Þhq−pQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu,

ð115Þ

ð
Sn−1

g vð ÞdCp,q K ,Q, vð Þ

= 1
n

ð
∂′K

g νK xð Þð Þ x · νK xð Þð Þ1−q νK xð Þk kq−pQ∗ dH
n−1 xð Þ,

ð116Þ

Cp,q K ,Q, ηð Þ = 1
n

ð
x∈xK ηð Þ

x · νK xð Þð Þ1−q νK xð Þk kq−pQ∗ dH
n−1 xð Þ:

ð117Þ

Proof. Because h−pQ : Sn−1 ⟶ℝ is a bounded Borel function,

from Equation (109) with f = gh−pQ , we have the following:

ð
Sn−1

g vð Þh−pQ vð ÞdCq K ,Q, vð Þ

= 1
n

ð
Sn−1

g αK uð Þð Þhq−pQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu:

ð118Þ

Thus, in light of Equation (105) is the desired result (Equa-
tion (115)).

By Equations (115), (89), and (90), and letting f = ðg ∘
αKÞðhq−pQ ∘ αKÞðh−qK ∘ αKÞ and q = n in Equation (98), we have
the following:

ð
Sn−1

g vð ÞdCp,q K ,Q, vð Þ

= 1
n

ð
Sn−1

g αK uð Þð Þhq−pQ αK uð Þð Þh−qK αK uð Þð ÞρnK uð Þdu

= 1
n

ð
∂′K

g αK �xð Þð Þhq−pQ αK �xð Þð Þh−qK αK �xð Þð Þ x · νK xð Þð ÞdHn−1 xð Þ

= 1
n

ð
∂′K

g νK xð Þð Þ x · νK xð Þð Þ1−qhq−pQ νK xð Þð ÞdHn−1 xð Þ

= 1
n

ð
∂′K

g νK xð Þð Þ x · νK xð Þð Þ1−q νK xð Þk kq−pQ∗ dHn−1 xð Þ:

ð119Þ

☐

This yields Equation (116).
Take g = 1η in Equation (116). Notice that νKðxÞ ∈ η⇔

x ∈ xKðηÞ for almost all x with respect to spherical Lebesgue
measure. So, we immediately obtain Equation (117).

Remark 17. Equation (115) tells us the rationality for Defini-
tion 1 of the Lp-curvature measure Cp,qðK ,Q, ·Þ.

Example 18 (Lp-curvature measures of polytopes). Suppose
P ∈Kn

o be a polytope with outer unit normal vectors v1, v2
,⋯, vm. If Δi is a cone consisting of all rays emanating from
the origin and passing through the face of P whose outer
normal is vi. Remember that we abbreviate α∗PðfvigÞ by α∗P
ðviÞ, and from Equation (80), we get the following:

α∗P við Þ = Sn−1 ∩ Δi, αP uð Þ = vi, for almost all u ∈ Δi ∩ Sn−1:

ð120Þ
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If η ⊂ Sn−1 is a Borel set such that fv1, v2,⋯, vmg ∩ η =∅
, then α∗PðηÞ has spherical Lebesgue measure 0. So, the Lp
-curvature measure Cp,qðP,Q, ·Þ is discrete and concentrated
on fv1, v2,⋯, vmg. From Proposition 15 and Equation (120),
we have the following:

Cp,q P,Q ·ð Þ = 〠
m

i=1
diδvi , ð121Þ

where δvi represents the delta measure centered on vi, and

di =
1
n
hq−pQ við Þh−qP við Þ

ð
Sn−1∩Δi

ρnP uð Þdu: ð122Þ

Example 19 (Lp-curvature measures of strictly convex bod-

ies). Let K ,Q ∈Kn
o are strictly convex. Suppose g : Sn−1

⟶ℝ is continuous, then we start with Equations (116)
and (100)(taking FðxÞ = kνKðxÞkq−pQ∗ ) and combine the fact

that ∂K/∂′K has measure 0, it follows that

ð
Sn−1

g vð ÞdCp,q K ,Q, vð Þ

= 1
n

ð
∂′K

x · νK xð Þð Þ1−qg νK xð Þð Þ νK xð Þk kq−pQ∗ dH
n−1 xð Þ

= 1
n

ð
Sn−1

g vð Þ νK ∇hK vð Þð Þk kq−pQ∗ dSq K , vð Þ:

ð123Þ

Using Equation (95), this shows that

dCp,q K ,Q, ·ð Þ = 1
n

νK ∇hKð Þk kq−pQ∗ dSq K , ·ð Þ

= 1
n
h1−qK νK∘∇hKk kq−pQ∗ dS K , ·ð Þ:

ð124Þ

Example 20 (Lp-curvature measures of smooth convex bod-

ies). Let Q ∈Kn
o has a C

2 boundary with everywhere positive
Gauss curvature. Because in this case, SðQ, ·Þ is absolutely
continuous for the spherical Lebesgue measure; therefore,
Cp,qðK ,Q, ·Þ is absolutely continuous for the spherical Lebes-
gue measure, and from Equations (124), (94), and (47), we
get the following:

dCp,q K ,Q, vð Þ
dv

= 1
n
h1−qK vð Þ νK �∇hK vð Þ + hK vð Þv� �		 		q−p

Q∗

� det �∇2hK vð Þ + hK vð ÞI

 �

,

ð125Þ

where �∇hKðvÞ represents the gradient of hK on Sn−1 at v and
�∇2hK represents the Hessian matrix of hK with respect to an
orthonormal frame on Sn−1. We write Equation (125) as 1/

nf p,qðK ,Q, vÞ, that is,

1
n
f p,q K ,Q, vð Þ = dCp,q K ,Q, vð Þ

dv
: ð126Þ

We say convex body Q with respect to a fixed convex body K
as a parameter have a positive continuous ðp, qÞ-curvature
function f p,qðK ,Q, ·Þ.

The weak convergence of Lp-curvature measure is an
important property contained in the following propositions.

Proposition 21. Let p, q ∈ℝ and Q ∈Kn
o . If Ki ∈K

n
o with Ki

⟶ K0 ∈K
n
o , then Cp,qðKi,Q, ·Þ⟶ Cp,qðK0,Q, ·Þ, weakly.

Proof. Let g : Sn−1 ⟶ℝ is continuous. From Equation
(115) we know that

ð
Sn−1

g vð ÞdCp,q Ki,Q, vð Þ

= 1
n

ð
Sn−1

g αKi
uð Þ� �

hq−pQ αKi
uð Þ� �

h−qKi
αKi

uð Þ� �
ρnKi

uð Þdu,

ð127Þ

for all i. Since Ki ⟶ K0, with respect to the Hausdorff met-
ric, we have that hKi

⟶ hK0
, uniformly on Sn−1, and the sur-

face area measure has the following property (see [2, 7, 23]):

Ki ⟶ K0 ⇒ SKi
⟶ SK0

weakly: ð128Þ

Thus,

ð
Sn−1

g αKi
uð Þ� �

hq−pQ αKi
uð Þ� �

h−qKi
αKi

uð Þ� �
ρnKi

uð Þdu,

⟶

ð
Sn−1

g αK0
uð Þ� �

hq−pQ αK0
uð Þ� �

h−qK0
αK0

uð Þ� �
ρnK0

uð Þdu:

ð129Þ

It follows that Cp,qðKi,Q, ·Þ⟶ Cp,qðK0,Q, ·Þ, weakly. ☐

The following statement contains the absolute continuity
of Lp-curvature measure with respect to surface area
measure.

Proposition 22. Let p, q ∈ℝ. If K ,Q ∈Kn
o , then Lp-curvature

measure Cp,qðK ,Q, ·Þ is absolutely continuous with respect to
the surface area measure SðK , ·Þ.

Proof. Let η ⊂ Sn−1 be such that SðK , ηÞ = 0, or equivalently
by definition (Equation (96)), Hn−1ðxKðηÞÞ = 0. Then,
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Equation (117) states that

Cp,q K ,Q, ηð Þ = 1
n

ð
x∈xK ηð Þ

x · νK xð Þð Þ1−q

� νK xð Þk kq−pQ∗ dH
n−1 xð Þ = 0:

ð130Þ

Thus, the integration is over a set of measure 0.☐

The following proposition shows that the Lp-curvature
measure including the classical surface area measures and
the Lp-surface area measures. Therefore, the classical surface
area measures and the Lp-surface area measures are special
cases of the Lp-curvature measures.

Proposition 23. Suppose K ,Q ∈Kn
o and p, q ∈ℝ. Then,

Cq,q K ,Q, ·ð Þ = 1
n
Sq K , ·ð Þ, ð131Þ

Cp,q K , K , ·ð Þ = 1
n
Sp K , ·ð Þ, ð132Þ

Cp,q K , B, ·ð Þ = 1
n
Sq K , ·ð Þ, ð133Þ

Cp,0 K , K , ·ð Þ = 1
n
Sp K , ·ð Þ, ð134Þ

C0,q K , B, ·ð Þ = 1
n
Sq K , ·ð Þ: ð135Þ

Proof. Let η ⊂ Sn−1 be a Borel set. From Equations (117) and
(96), we have the following:

Cq,q K ,Q, ηð Þ =
ð
x∈xK ηð Þ

x · νK xð Þð Þ1−qdHn−1 xð Þ

= Cp,q K , B, ηð Þ = 1
n
Sq K , ηð Þ:

ð136Þ

Therefore, we get Equations (131) and (133).
From Equations (117), (54), (90), and (96), we have the

following:

Cp,q K , K , ηð Þ = 1
n

ð
x∈xK ηð Þ

x · νK xð Þð Þ1−q νK xð Þk kq−pK∗ dHn−1 xð Þ

= 1
n

ð
x∈xK ηð Þ

x · νK xð Þð Þ1−qhK νK xð Þð Þq−pdHn−1 xð Þ

= 1
n

ð
x∈xK ηð Þ

x · νK xð Þð Þ1−pdHn−1 xð Þ

= 1
n
Sp K , ηð Þ:

ð137Þ

Therefore, we get Equation (132). Similarly, we can get
the rest.☐

Recall that the concept of the valuation. A function Φ
defined on the space Kn of convex bodies and taking values

in an abelian semigroup is called a valuation if

Φ K ∪ Lð Þ +Φ K ∩ Lð Þ =ΦK +ΦL, ð138Þ

whenever K , L, K ∩ L, K ∪ L ∈Kn.
The set of Borel measures on Sn−1 is represented by M

ðSn−1Þ. We are going to prove that now, for fixed indices p
, q ∈ℝ, and a fixed convex body K ∈Kn

o , the functional
Kn

o ⟶MðSn−1Þ, defined by Q↦ Cp,qðK ,Q, ·Þ is a valua-
tion; namely, if K , L ∈Kn

o , are such that K ∪ L ∈Kn
o then

Cp,q K ∪ L,Q, ·ð Þ + Cp,q K ∩ L,Q, ·ð Þ
= Cp,q K ,Q, ·ð Þ + Cp,q L,Q, ·ð Þ:

ð139Þ

To prove the valuation of Lp-curvature measure, we shall
employ Weil’s approximation lemma (see [4]):

Lemma 24. If K , L ∈Kn
o are such that K ∪ L is convex, then

K and L may be approximated by sequences of bodies Ki, Li
∈Kn

o that are both strictly convex and smooth and such that
Ki ∪ Li ∈K

n
o .

We appeal to Proposition 21 together with Weil’s
approximation lemma in order to complete our proof.

Theorem 25. Suppose p, q ∈ℝ and Q ∈Kn
o . Then, the func-

tional

Cp,q ·,Q, ·ð Þ: Kn
o ⟶M Sn−1

� �
, ð140Þ

defined by K ↦ Cp,qðK ,Q, ·Þ, is a valuation.

Proof. We will use the fact that if K , L ∈Kn
o are such that

K ∪ L ∈Kn
o , then hK∪L =max fhK , hLg and hK∩L =min fhK

, hLg. We will also take advantage of the fact that νK and
νL are defined Hn−1 almost everywhere on the boundaries
of K and L, respectively.

First of all, let us assume that K and L are both strictly
convex. For a fixed θ ⊂ Sn−1, write θ as the union of three dis-
joint pieces θ = θ0 ∪ θK ∪ θL, where

θK = u ∈ θ : hK uð Þ > hL uð Þ, θLf = u ∈ θ : hK uð Þ < hL uð Þf g,
ð141Þ

while

θ0 = u ∈ θ : hK uð Þ = hL uð Þf : ð142Þ

In this case, we have the following:

ð
x∈xK∪L θKð Þ

x · νK∪L xð Þð Þ1−qhq−pQ νK∪L xð Þð ÞdHn−1 xð Þ

=
ð
x∈xK θKð Þ

x · νK xð Þð Þ1−qhq−pQ νK xð Þð ÞdHn−1 xð Þ,
ð143Þ
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while

ð
x∈xK∩L θKð Þ

x · νK∩L xð Þð Þ1−qhq−pQ νK∩L xð Þð ÞdHn−1 xð Þ

=
ð
x∈xL θKð Þ

x · νL xð Þð Þ1−qhq−pQ νL xð Þð ÞdHn−1 xð Þ:
ð144Þ

Alternatively, using Equation (117), this has

Cp,q K ∪ L,Q, θKð Þ = Cp,q K ,Q, θKð Þ, Cp,q K ∩ L, θKð Þ
= Cp,q L,Q, θKð Þ:

ð145Þ

Similarly,

Cp,q K ∪ L,Q, θLð Þ = Cp,q L,Q, θLð Þ, Cp,q K ∩ L,Q, θLð Þ
= Cp,q K ,Q, θLð Þ:

ð146Þ

It is also the case that

Cp,q K ∪ L,Q, θ0ð Þ = Cp,q K ,Q, θ0ð Þ, Cp,q K ∩ L,Q, θ0ð Þ
= Cp,q L,Q, θ0ð Þ:

ð147Þ

In order to see the fact that the last one, we observe that
the strict convexity of K and L forces xK∪Lðθ0Þ = xK∩Lðθ0Þ.

Using the fact that Cp,qðK , ·, · Þ is a measure in the third

argument on Sn−1, combined with the fact that the union θ
= θ0 ∪ θK ∪ θL is disjoint, by adding Equations (145),
(146), and (147) we obtain that

Cp,q K ∪ L,Q, θð Þ + Cp,q K ∩ L,Q, θð Þ
= Cp,q K ,Q, θð Þ + Cp,q L,Q, θð Þ,

ð148Þ

which is the desired result.
For any K , L ∈Kn

o , we resort to Proposition 21 in order
to use the weak continuity of Cp,qð·,Q, ·Þ in the first argu-
ment.☐

4. Variational Formulas for Lp,q-Mixed
Volumes

Suppose Ω is a closed subset of Sn−1 that is not contained in
any closed hemisphere. Let h0 : Ω⟶ ð0,∞Þ and f : Ω
⟶ℝ be consecutive, and δ > 0. Let ht : Ω⟶ ð0,∞Þ be a
positive continuous function defined as follows:

log ht vð Þ = log h0 vð Þ + t f vð Þ + o t, vð Þ, ð149Þ

for each t ∈ ð−δ, δÞ, where oðt, ·Þ: Ω⟶ℝ is continuous and
lim
t⟶0

oðt, ·Þ/t = 0, uniformly on Ω. And denote by

ht½ � = x ∈ℝn : x · v ≤ ht vð Þ for all v ∈Ωf g, ð150Þ

Wulff shape determined by ht . We call ½ht� the logarith-
mic Wulff shape family generated by ðh0, f Þ. If h0 is the sup-
port function hK of convex body K , we also put ½ht� written
½K , f , t�.

Let ρ0 : Ω⟶ ð0,∞Þ and g : Ω⟶ℝ be continuous,
and δ > 0. Let ρt : Ω⟶ ð0,∞Þ be a positive continuous
function defined by the following:

log ρt uð Þ = log ρ0 uð Þ + tg uð Þ + o t, uð Þ, ð151Þ

for each t ∈ ð−δ, δÞ, where again oðt, ·Þ: Ω⟶ℝ is continu-
ous and lim

t⟶0
oðt, ·Þ/t = 0 uniformly on Ω. And denote by

ρth i = conv ρt uð Þu : u ∈ Sn−1
� �

, ð152Þ

the convex hull generated by ρt . We call hρti the logarithmic
family of convex hull generated by ðρ0, gÞ. If ρ0 is the radial
function ρK of convex body K , we also put hρti as hK , g, ti.

The following lemma shows that the support functions
of a logarithmic family of the polar of convex hulls are differ-
entiable with respect to the variational variable.

Lemma 26. Suppose Ω ⊂ Sn−1 be a closed set that is not con-
tained in any closed hemisphere of Sn−1. Let ρ0 : Ω⟶ ð0,∞Þ
and g : Ω⟶ℝ be continuous. If hρti is a logarithmic fam-
ily of convex hulls of ðρ0, gÞ and q ∈ℝ, then

lim
t⟶0

hqρth i∗ vð Þ − hqρ0h i∗ vð Þ
t

= −qρ−q0 vð Þg vð Þ, ð153Þ

for all v ∈ Sn−1/ηhρ0i∗ ; namely, for all regular normals v of

hρ0i∗, where Equation (153) holds a.e. with respect to spher-
ical Lebesgue measure. Moreover, there exist δ > 0 and M >
0 so that

log hqρth i∗ vð Þ − log hqρ0h i∗ vð Þ
��� ��� ≤M tj j, ð154Þ

for all v ∈ Sn−1 and all t ∈ ð−δ, δÞ.

Proof. Obviously,

lim
t⟶0

ρ−qt vð Þ − ρ−q0 vð Þ
t

= −pρ−q0 vð Þ lim
t⟶0

log ρt vð Þ − log ρ0 vð Þ
t

= −qρ−q0 vð Þg vð Þ:

ð155Þ

Therefore,

lim
t⟶0

hqρth i∗ vð Þ − hqρ0h i∗ vð Þ
t

= lim
t⟶0

ρ−qt vð Þ − ρ−q0 vð Þ
t

= −qρ−q0 vð Þg vð Þ:
ð156Þ

Since hρ0i and hρ0i∗ are two convex bodies in Kn
o , and

hρti∗ ⟶ hρ0i∗ as t⟶ 0, there exist m0,m1 ∈ ð0,∞Þ and
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δ0 > 0 such that

0 <m0 < h ρth i∗ <m1 on S
n−1, ð157Þ

for each t ∈ ð−δ0, δ0Þ. From this, it follows that there exists
M1 > 1 so that

0 <
h−qρth i∗

h−qρ0h i∗
<M1 on Sn−1: ð158Þ

It is easily seen that s − 1 ≥ log s whenever s ∈ ð0, 1Þ,
whereas s − 1 ≤M1 log s whenever s ∈ ½1,M1�. Thus,

s − 1j j ≤M1 log sj jwhen s ∈ 0,M1ð Þ: ð159Þ

It follows that

h−qρth i∗

h−qρ0h i∗
− 1

�����
����� ≤M1 log

h−qρth i∗

h−qρ0h i∗

�����
�����when s ∈ 0,M1ð Þ, ð160Þ

that is

h−qρth i∗ − h−qρ0h i∗
��� ��� ≤ h−qρ0h i∗M1 log h ρth i∗ − log h ρ0h i∗

��� ���
≤

M1
min mq

0,m
q
1

� � log h ρth i∗ − log h ρ0h i∗
��� ���

= M1
min mq

0,m
q
1

� � log ρt − log ρ0j j

ð161Þ

on Sn−1, whenever t ∈ ð−δ0, δ0Þ.
Let M0 = max

u∈Ω
jgðuÞj. Since oðt, ·Þ/t⟶ 0 as t⟶ 0 uni-

formly on Ω, we may choose δ1 > 0 so that for all t ∈ ð−δ1,
δ1Þ, we have joðt, ·Þj ≤ jtj on Ω. From Equation (151) and
the definition of M0, we immediately see that

log ρt − log ρ0j j ≤ M0 + 1ð Þ tj j ð162Þ

on Sn−1, whenever t ∈ ð−δ1, δ1Þ. Let ð−δ, δÞ = ð−δ0, δ0Þ ∩ ð−
δ1, δ1Þ. Together with Equations (161) and (162), we give
Equation (154).☐

The following theorem gives variational formulas for the
Lp-mixed volume and Lp-mixed entropy for a family of log-
arithmic convex hulls.

Theorem 27. Let Ω ⊂ Sn−1 is a closed set not contained in any
closed hemisphere of Sn−1. If ρ0 : Ω⟶ ð0,∞Þ and g : Ω
⟶ℝ are continuous, and hρti is a logarithmic family of
convex hulls of ðρ0, gÞ, then for K ∈Kn

o and q ≠ 0,

lim
t⟶0

Vq K , ρth i∗ð Þ −Vq K , ρ0h i∗ð Þ
t

= −q
ð
Ω

g uð ÞdCq K , ρ0h i∗, uð Þ, ð163Þ

for q = 0,

lim
t⟶0

E K , ρth i∗ð Þ − E K , ρ0h i∗ð Þ
t

= −
ð
Ω

g uð ÞdC0 K , ρ0h i∗, uð Þ,

lim
t⟶0

log �V0 K , ρth i∗ð Þ − log �V0 K , ρ0h i∗ð Þ
t

= −
1

V Kð Þ
ð
Ω

g uð ÞdC0 K , ρ0h i∗, uð Þ:

ð164Þ

Proof. Abbreviate ηK∗ by η0. Recall that η0 is the set of spher-
ical Lebesgue measure zero that consists of the complement,
in Sn−1, of the regular normal vectors of the convex body K∗.
Note that the continuous function

α∗K∗ : Sn−1 \ η0 ⟶ Sn−1 ð165Þ

is well defined by α∗K∗ðvÞ ∈ α∗K∗ðvÞ = fα∗K∗ðvÞg for all v ∈
Sn−1 \ η0.

Let v ∈ Sn−1/η0. To see that α∗K∗ðvÞ ⊂Ω, let

hK∗ vð Þ =max
u∈Ω

ρK∗ uð Þu · v = ρK∗ u0ð Þu0 · v, ð166Þ

for some u0 ∈Ω. This means that

ρK∗ u0ð Þu0 ∈HK∗ vð Þ, ð167Þ

and hence ρK∗ðu0Þu0 ∈ ∂K∗. Because in addition to ρK∗

ðu0Þu0 obviously belonging to K∗, it also belongs to HK∗ðv
Þ. But v is a regular normal vector of K∗, and therefore,
α∗K∗ðvÞ = u0 ∈Ω. Then,

α∗K∗ Sn−1 \ η0
� �

⊂Ω: ð168Þ

From this, Equation (168), Equation (52), and Lemma 9
yield the following facts:

αK Sn−1 \ η0
� �

= α∗K∗ Sn−1 \ η0
� �

⊂Ω: ð169Þ

As Ω is closed, by using the Tietze extension theorem,
extend the continuous function g : Ω⟶ℝ to a continuous
function ĝ : Sn−1 ⟶ℝ. Therefore, using Equation (169) we
see that

g αK vð Þð Þ = ĝ1Kð Þ αK vð Þð Þ, ð170Þ

for v ∈ Sn−1 \ η0.
Using Equation (22), the fact that η0 has measure zero,

Equation (51), Equation (154), the dominated convergence
theorem, Lemma 26, Equation (86), Equation (170), Lemma
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14, and again Equation (170), we have the following:

lim
t⟶0

Vq K , ρth i∗ð Þ − Vq K , ρ0h i∗ð Þ
t

= lim
t⟶0

1
n

ð
Sn−1

hqρth i∗ αK vð Þð Þ − hqρ0h i∗ αK vð Þð Þ
h i

h−qK αK vð Þð ÞρnK vð Þdv
t

= lim
t⟶0

1
n

ð
Sn−1/η0

hqρth i∗ αK vð Þð Þ − hqρ0h i∗ αK vð Þð Þ
h i

h−qK αK vð Þð ÞρnK vð Þdv
t

= −
q
n

ð
Sn−1/η0

g αK vð Þð Þhqρ00h i∗ αK vð Þð Þh−qK αK vð Þð ÞρnK vð Þdv

= −
q
n

ð
Sn−1

ĝ1Ωð Þ αK vð Þð Þhqρ0h i∗ αK vð Þð Þh−qK αK vð Þð ÞρnK vð Þdv

= −q
ð
Sn−1

ĝ1Ωð Þ uð ÞdCq K , ρ0h i∗, uð Þ

= −q
ð
Ω

g uð ÞdCq K , ρ0h i∗, uð Þ:

ð171Þ

☐

According to Equations (70) and (51), the fact that η0
has measure zero, the dominated convergence theorem,
Equation (151), together with Equations (170) and (86),
Lemma 14, and again Equation (170), we have the following:

lim
t⟶0

E K , ρth i∗ð Þ − E K , ρ0h i∗ð Þ
t

= lim
t⟶0

1
n

ð
Sn−1

log h ρth i∗ /hK

 �

αK vð Þð Þ

 �

− log h ρ0h i∗ /hK

 �

αK vð Þð Þ

 �

t
ρnK vð Þdv

= lim
t⟶0

1
n

ð
Sn−1

log h ρth i∗ αK vð Þð Þ − log h ρ0h i∗ αK vð Þð Þ
t

ρnK vð Þdv

= − lim
t⟶0

1
n

ð
Sn−1

log ρt αK vð Þð Þ − log ρ0 αK vð Þð Þ
t

ρnK vð Þdv

= − lim
t⟶0

1
n

ð
Sn−1/η0

log ρt αK vð Þð Þ − log ρ0 αK vð Þð Þ
t

ρnK vð Þdv

= −
1
n

ð
Sn−1/η0

g αK vð Þð ÞρnK vð Þdv = −
1
n

ð
Sn−1

ĝ1Ωð Þ αK vð Þð ÞρnK vð Þdv

= −
ð
Sn−1

ĝ1Ωð Þ uð ÞdC0 K , ρ0h i∗, uð Þ = −
ð
Ω

g uð ÞdC0 K , ρ0h i∗, uð Þ:

ð172Þ

Using the same argument as in the second part of the
proof, we get that

lim
t⟶0

log �V0 K , ρth i∗ð Þ − log �V0 K , ρ0h i∗ð Þ
t

= 1
nV Kð Þ limt⟶0

ð
Sn−1

log h ρth i∗ αK vð Þð Þ − log h ρ0h i∗ αK vð Þð Þ
t

� ρnK vð Þdv = −
1

V Kð Þ
ð
Ω

g uð ÞdC0 K , ρ0h i∗, uð Þ:

ð173Þ

The following theorem gives the variational formulas for
the Lp-mixed volumes and mixed entropy of the logarithmic
family of Wulff shapes.

Theorem 28. Suppose Ω ⊂ Sn−1 is a closed set not contained
in any closed hemisphere of Sn−1. Let h0 : Ω⟶ ð0,∞Þ and

f : Ω⟶ℝ be continuous, and ½ht� be a logarithmic family
of Wulff shapes associated with ðh0, f Þ. If K ∈Kn

o , then for
q ≠ 0,

lim
t⟶0

Vq K , ht½ �ð Þ −Vq K , h0½ �ð Þ
t

= q
ð
Ω

f vð ÞdCq K , h0½ �, vð Þ,

ð174Þ

for q = 0,

lim
t⟶0

E K , ht½ �ð Þ − E K , h0½ �ð Þ
t

=
ð
Ω

f vð ÞdC0 K , h0½ �, vð Þ,

lim
t⟶0

log �V0 K , ht½ �ð Þ − log �V0 K , h0½ �ð Þ
t

= 1
V Qð Þ

ð
Ω

f vð ÞdC0 K , h0½ �, vð Þ:

ð175Þ

Proof. The logarithmic family of Wulff shape ½ht� is defined
as the Wulff shape of ht , where ht is given by the following:

log ht = log ht + t f + o t, ·ð Þ: ð176Þ

Let ρt = h−1t . Then,

log ρt = log ρt − t f − o t, ·ð Þ: ð177Þ

Let hρti be the logarithmic family of convex hulls associ-
ated with ðρ0,−f Þ. Then from Lemma 7, we obtain that

ht½ � = ρth i∗, ð178Þ

and the desired conclusions now follow from Theorem 27.

We describe the special cases of Theorem 27 and Theo-
rem 28 for logarithmic families of convex hull and Wulff
shape generated by convex bodies.

Theorem 29. If K ,Q ∈Kn
o and g : Sn−1 ⟶ℝ is continuous,

then for q ≠ 0,

lim
t⟶0

Vq K , Q∗, g, th i∗ð Þ −Vq K ,Qð Þ
t

= −q
ð
Sn−1

g vð ÞdCq K ,Q, vð Þ,
ð179Þ

for q = 0,

lim
t⟶0

E K , Q∗, g, th i∗ð Þ − E K ,Qð Þ
t

= −
ð
Sn−1

g vð ÞdC0 K ,Q, vð Þ,

lim
t⟶0

log �V0 K , Q∗, g, th i∗ð Þ − log �V0 K ,Qð Þ
t

= −
1

V Kð Þ
ð
Sn−1

g vð ÞdC0 K ,Q, vð Þ:

ð180Þ

Proof. In Theorem 27, let ρ0 = 1/hQ = ρQ∗ . Then, hρti∗ =
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hQ∗, g, ti∗. In particular, from (53) we have hρ0i∗ = hρQ∗i∗
=Q∗∗ =Q.☐

Above variational formulas for convex hulls imply varia-
tional formulas for Wulff shapes.

Theorem 30. If K ,Q ∈Kn
o and f : Sn−1 ⟶ℝ is continuous,

then for q ≠ 0,

lim
t⟶0

Vq K , Q, f , t½ �ð Þ −Vq K ,Qð Þ
t

= q
ð
Sn−1

f vð ÞdCq K ,Q, vð Þ,

ð181Þ

for q = 0,

lim
t⟶0

E K , Q, f , t½ �ð Þ − E K ,Qð Þ
t

=
ð
Sn−1

f vð ÞdC0 K ,Q, vð Þ,

lim
t⟶0

log �V0 K , Q, f , t½ �ð Þ − log �V0 K ,Qð Þ
t

= 1
V Qð Þ

ð
Sn−1

f vð ÞdC0 K ,Q, vð Þ:

ð182Þ

Proof. The logarithmic family of Wulff shapes ½Q, f , o, t� is
defined by the Wulff shape ½ht �, where

log ht = log hQ + t f + o t, ·ð Þ: ð183Þ

This, and the fact that 1/hQ = ρQ∗ , allows us to define

log ρ∗t = log ρQ∗ − t f − o t, ·ð Þ, ð184Þ

and ρ∗t will generate a logarithmic family of convex hulls h
Q∗,−f ,−o, ti. Since ρ∗t = 1/ht , Lemma 7 gives the following:

Q, f , o, t½ � = Q∗,−f ,−o, th i∗: ð185Þ

Therefore, Theorem 30 now follows directly from Theo-
rem 29.☐

The following theorem gives the variational formulas of
Lp-mixed volumes and mixed entropies with respect to Lp
Minkowski combinations.

Theorem 31. If p, q ∈ℝn and K , L,Q ∈Kn
o , then for p ≠ 0,

q ≠ 0,

lim
t⟶0

Vq K ,Q+pt · L
� �

−Vq K ,Qð Þ
t

= q
p

ð
Sn−1

hpL vð ÞdCp,q K ,Q, vð Þ,
ð186Þ

for p = 0 and q ≠ 0,

lim
t⟶0

Vq K ,Q+0t · Lð Þ −Vq K ,Qð Þ
t

= q
ð
Sn−1

log hL vð ÞdCq K ,Q, vð Þ,
ð187Þ

for p ≠ 0 and q = 0,

lim
t⟶0

E K ,Q+pt · L
� �

− E K ,Qð Þ
t

= 1
p

ð
Sn−1

hpL vð ÞdCp,0 K ,Q, vð Þ,
ð188Þ

lim
t⟶0

log �V0 K ,Q+pt · L
� �

− log �V0 K ,Qð Þ
t

= 1
pV Kð Þ

ð
Sn−1

hpL vð ÞdCp,0 K ,Q, uð Þ,
ð189Þ

and if p = q = 0,

lim
t⟶0

E K ,Q+0t · Lð Þ − E K ,Qð Þ
t

=
ð
Sn−1

log hL vð ÞdC0 K ,Q, vð Þ,

lim
t⟶0

log �V0 K ,Q+0t · Lð Þ − log �V0 K ,Qð Þ
t

= 1
V Kð Þ

ð
Sn−1

log hL vð ÞdC0 K ,Q, uð Þ:

ð190Þ

Proof. For small t, ht is defined by the following:

hpt = hpQ + thpL for p ≠ 0, ht = hQh
t
L for p = 0: ð191Þ

From Equations (61) and (62), the Wulff shape ½ht� =Q
+pt · L. For sufficiently small t, it follows from Equation
(191) that

log ht = log hQ + t
p
hpL
hpQ

+ o t, ·ð Þ, p ≠ 0,

log ht = log hQ + t log hL, p = 0:
ð192Þ

Let f = ð1/pÞðhpL/hpQÞ when p ≠ 0, and let f = log hL when
p = 0. The required formulas now follow Theorem 30 and
Equation (105).☐

We use the normalized power function, and we can write
the formula in Theorem 31 as a single formula.

Theorem 32. Suppose p, q ∈ℝ. For K , L,Q ∈Kn
o ,

d
dt

V �q K ,Q+pt · L
� ���

t=0 =
ð
Sn−1

h
�p
L vð ÞdCp,q K ,Q, vð Þ: ð193Þ
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For L0 Minkowski linear combinations, it would help to
have an affine version of Theorem 31. This is contained in

Theorem 33. Suppose q ≠ 0. If K , L,Q ∈Kn
o , then

lim
t⟶0

Vq K , 1 − tð Þ ·Q+0t · Lð Þ −Vq K ,Qð Þ
t

= q
ð
Sn−1

log hL vð Þ
hQ vð Þ dCq K ,Q, vð Þ,

ð194Þ

lim
t⟶0

E K , 1 − tð Þ ·Q+0t · Lð Þ − E K ,Qð Þ
t

=
ð
Sn−1

log hL vð Þ
hQ vð Þ dC0 K ,Q, vð Þ,

ð195Þ

lim
t⟶0

log �V0 K , 1 − tð Þ ·Q+0t · Lð Þ − log �V0 K ,Qð Þ
t

= 1
V Kð Þ

ð
Sn−1

log hL vð Þ
hQ vð Þ dC0 K ,Q, vð Þ:

ð196Þ

Proof. Let

ht = h1−tQ htL: ð197Þ

From Equation (58) we know the Wulff space ½ht� = ð1
− tÞ ·Q+0t · L. From the above definition of ht , it follows
immediately that for sufficiently small t,

log ht = log hQ + t log hL
hQ

: ð198Þ

Let f = log hL/hQ. The desired formulas now follow
directly from Theorem 30.☐

Theorem 34. If p ≠ 0 and q ≠ 0, then for all K , L,Q ∈Kn
o and

ϕ ∈ SLðnÞ,

Cp,q ϕK , ϕQ, ·ð Þ = ϕtp⊣Cp,q K ,Q, ·ð Þ, ð199Þ

Cp,0 ϕK , ϕQ, ·ð Þ = ϕtp⊣Cp,0 K ,Q, ·ð Þ, ð200Þ

Cq ϕK , ϕQ, ·ð Þ = ϕt0⊣Cq K ,Q, ·ð Þ, ð201Þ

C0 ϕK , ϕQ, ·ð Þ = ϕt0⊣C0 K ,Q, ·ð Þ: ð202Þ

Proof. Obviously, the case p ≠ 0 and q = 0 is handled by
Equation (200). The case p = 0 and q ≠ 0 is handled by Equa-
tion (201), while the case p = 0 and q = 0 is handled by Equa-
tion (202).

We adopt the methods and techniques of paper [4].
Recall that Haberl and Parapatits refer to the [9] classified
measure-valued operators on Kn

o , which are SLðnÞ-inverse
degree p and corresponding to the transformation behavior
in Theorem 34. From Equations (63), (65), and (186), we

see that for all K , L,Q ∈Kn
o and all ϕ ∈ SLðnÞ,

ð
Sn−1

hpϕL vð ÞdCp,q ϕK , ϕQ, vð Þ =
ð
Sn−1

hpL vð ÞdCp,q K ,Q, vð Þ,

ð203Þ

or equivalently for all K , L,Q ∈Kn
o and all ϕ ∈ SLðnÞ,

ð
Sn−1

hpL vð ÞdCp,q ϕK , ϕQ, vð Þ =
ð
Sn−1

hp
ϕ−1L

vð ÞdCp,q K ,Q, vð Þ:

ð204Þ

By Definition 8, and note the important fact that support
functions are positively homogeneous of degree 1, from
Equations (45) and (204), we have the following:

ð
Sn−1

hpL vð Þdϕtp⊣Cp,q K ,Q, vð Þ

=
ð
Sn−1

hpL ϕ−tv
� �

dCp,q K ,Q, vð Þ

=
ð
Sn−1

hp
ϕ−1L

vð ÞdCp,q K ,Q, vð Þ

=
ð
Sn−1

hpL vð ÞdCp,q ϕK , ϕQ, vð Þ:

ð205Þ

This shows that the measures ϕtp⊣Cp,qðK ,Q, ·Þ and Cp,qð
ϕK , ϕQ, ·Þ when integrated against the p-th power of support
functions of bodies inKn

o are identical; thus, Lemma 12 now
indicates that

Cp,q ϕK , ϕQ, ·ð Þ = ϕtp⊣Cp,q K ,Q, ·ð Þ, ð206Þ

it can be concluded that Equation (199).
The proof for Equation (200) is the same as the proof for

Equation (199): As long as p ≠ 0, it will be the case that
Equation (204) continues to hold even if q = 0 provided we
appeal to Equations (188) and (71) when previously we
had turned to Equations (188) and (65).

From Equations (63), (65), and (194), we know that for
all K , L,Q ∈Kn

o and all ϕ ∈ SLðnÞ,

ð
Sn−1

log
hϕ−1L vð Þ
hK vð Þ dCq K ,Q, vð Þ

=
ð
Sn−1

log hL vð Þ
hϕK vð Þ dCq ϕK , ϕQ, vð Þ:

ð207Þ

In Equation (207), choose L = B. Then, by Equation (45),
we see that hϕ−1LðvÞ = hLðϕ−tvÞ = jϕ−tvj, and (6.15) becomes
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the following form:

ð
Sn−1

log hK vð ÞdCq K ,Q, vð Þ

=
ð
Sn−1

log ϕ−tv
�� ��dCq K ,Q, vð Þ

+
ð
Sn−1

log hϕK vð ÞdCq ϕK , ϕQ, vð Þ,

ð208Þ

for all ϕ ∈ SLðnÞ and all K ,Q ∈Kn
o . Together with Equations

(207) and (208), we have the following:

ð
Sn−1

log
hϕ−1L vð Þ
ϕ−tv
�� �� dCq K ,Q, vð Þ

=
ð
Sn−1

log hL vð ÞdCq ϕK , ϕQ, vð Þ,
ð209Þ

this and Equation (45) give that for all ϕ ∈ SLðnÞ and all K
, L,Q ∈Kn

o ,

ð
Sn−1

log hL ϕ−tv
� �� �

dCq K ,Q, vð Þ

=
ð
Sn−1

log hL vð ÞdCq ϕK , ϕQ, vð Þ:
ð210Þ

Equivalently,

ð
Sn−1

log hL vð Þdϕt0⊣Cq K ,Q, vð Þ

=
ð
Sn−1

log hL vð ÞdCq ϕK , ϕQ, vð Þ,
ð211Þ

for all ϕ ∈ SLðnÞ and all K ,Q ∈Kn
o . Using Lemma 12, we see

that Equation (211) yields

Cq ϕK , ϕQ, ·ð Þ = ϕt0⊣Cq ϕK , ϕQ, vð Þ, ð212Þ

for all ϕ ∈ SLðnÞ and all K ,Q ∈Kn
o . This establishes Equa-

tion (201).
The proof of Equation (202) is identical to the proof of

Equation (201) except that instead of appealing to Equations
(194) and (65) we appeal to Equations (195) and (71).☐

5. The Lp,q-Mixed Volumes

For K , L ∈Kn
o , the Lp-mixed volume VpðK , LÞ has the inte-

gral representation

Vp K , Lð Þ = 1
n

ð
Sn−1

hL vð ÞpdSp K , vð Þ: ð213Þ

From Equation (115), with q = p and g = hpL, we have thatð
Sn−1

hpL vð ÞdCp,p K ,Q, vð Þ

= 1
n

ð
Sn−1

hpL αK uð Þð Þh−pK αK uð Þð ÞρnK uð Þdu:
ð214Þ

By Equation (131), the Lp-mixed volume VpðK , LÞ has a
dual integral formulation. If K , L ∈Kn

o , then

Vp K , Lð Þ = 1
n

ð
Sn−1

hL
hK

� �p

αK uð Þð ÞρnK uð Þdu: ð215Þ

The dual integral formulation of Lp-mixed volume was
first introduced by Lutwak et al. in [4]. This leads us to
define following Lp,q-mixed volumes.

Definition 35. Let p, q ∈ℝ and K , L,Q ∈Kn
o . The Lp,q-mixed

volume Vp,qðK , L,QÞ is defined by the following:

Vp,q K , L,Qð Þ =
ð
Sn−1

hpL vð ÞdCp,q K ,Q, vð Þ: ð216Þ

Using Equation (115) with g = hpL, Equation (216) can be
written as follows:

Vp,q K , L,Qð Þ = 1
n

ð
Sn−1

hL
hQ

� �p

αK uð Þð Þ hQ
hK

� �q

αK uð Þð ÞρnK uð Þdu:

ð217Þ

From Equations (216) and (124), the Lp-mixed volume
Vp,qðK , L,QÞ can be written as follows:

Vp,q K , L,Qð Þ = 1
n

ð
Sn−1

hpL vð ÞhK vð Þ1−qhQ vð Þhq−pQ

� νK ∇hK vð Þð Þð ÞdS K , vð Þ,
ð218Þ

where the function νK : f∇hKðvÞ: v ∈ Sn−1g ⊂ ∂′K ⟶ Sn−1.
From Lp,q-mixed volume (Equation (30)) (or Equation

(217)), the Lp-mixed volume (Equation (9)) (or Equation
(22)) will be shown to be the special cases.

Proposition 36. Suppose p, q ∈ℝ. If K , L,Q ∈Kn
o , then

Vp,q K , L, Kð Þ = Vp K , Lð Þ, ð219Þ

Vp,p K , L,Qð Þ =Vp K , Lð Þ, ð220Þ

Vp,q K , L, Lð Þ =Vq K , Lð Þ, ð221Þ

Vp,p K , L, Bð Þ =Vp K , Lð Þ, ð222Þ

V0,q K , L,Qð Þ =Vq K ,Qð Þ: ð223Þ
Proof. Identity (Equations (219)–(221)) follow from
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Equation (22) and Equation (34) (or Equation (217)). Simi-
larly, we can prove Equations (222) and (223).

Proposition 37. The Lp,q -mixed volume Vp,q is SLðnÞ
-invariant. That is, for p, q ∈ℝ, K , L,Q ∈Kn

o , and ϕ ∈ SLðn
Þ,

Vp,q ϕK , ϕL, ϕQð Þ = Vp,q K , L,Qð Þ: ð224Þ

Proof. For p = 0, the conclusion follows from Equation (223)
and the SLðnÞ-invariance of Lp-mixed volumes (Equation
(65)). We assume p ≠ 0. By Definition 35, Equation (199),
and Equation (200), the fact that support functions are pos-
itively homogeneous of degree 1, Equation (45), and Defini-
tion 8, we have the following:

Vp,q ϕK , ϕL, ϕQð Þ
=
ð
Sn−1

hpϕL vð ÞdCp,q ϕK , ϕQ, vð Þ

=
ð
Sn−1

hpϕL vð Þdϕtp⊣Cp,q K ,Q, vð Þ

=
ð
Sn−1

hpϕL ϕ−tv
� �

dCp,q K ,Q, vð Þ

=
ð
Sn−1

hpL vð ÞdCp,q K ,Q, vð Þ
=Vp,q K , L,Qð Þ:

ð225Þ

From the dual Equation (217) of Lp,q-mixed volume and
Equation (44), we have for real λ > 0,

Vp,q λK , λL, λQð Þ = λnVp,q K , L,Qð Þ: ð226Þ

Proposition 37, together with Equations (216) and (226),
shows that for ϕ ∈GLðnÞ,

Vp,q ϕK , ϕL, ϕQð Þ = ϕj jVp,q K , L,Qð Þ: ð227Þ

For Lp,q-mixed volume, the following inequality is a gen-
eralization of the Lp-Minkowski inequality for Lp-mixed
volume.

Theorem 38. Suppose p, q are such that q ≥ 1 and p < 0. If
K , L,Q ∈Kn

o , then

Vp,q K , L,Qð Þn ≥V Kð Þn−qV Lð ÞpV Qð Þq−p, ð228Þ

with equality if and only if K , L,Q are dilates when q > 1 and
K ,Q are homothetic when q = 1.

Proof. From Equations (21) and (217), we have the follow-
ing:

Vp,q K , L,Qð Þ = 1
n

ð
Sn−1

hL αK uð Þð ÞphQ αK uð Þð Þq−phK αKð Þ−qρnK uð Þdu

= 1
n

ð
Sn−1

hL αK uð Þð ÞphQ αK uð Þð Þq−pdSq K , uð Þ

= 1
n

ð
Sn−1

hL αK uð Þð Þq½ �p/q hQ αK uð Þð Þq� �q−p/qdSq K , uð Þ:

ð229Þ

From this, by the Hölder inequality (see [47]), the dual
integral formulation (Equation (22)) of Lp-mixed volume
and Lp-Minkowski inequality (Equation (11)), we have the
following:

Vp,q K , L,Qð Þ ≥ 1
n

ð
Sn−1

hL αK uð Þð ÞqdSq K , uð Þ
� �p/q

� 1
n

ð
Sn−1

hQ αK uð Þð ÞqdSq K , uð Þ
� � q−pð Þ/q

= 1
n

ð
Sn−1

hL
hK

� �q

αK uð Þð ÞρK uð Þndu
� �p/q

� 1
n

ð
Sn−1

hQ
hK

� �q

αK uð Þð ÞρK uð Þndu
� � q−pð Þ/q

=Vq K , Lð Þp/qVq K ,Qð Þ q−pð Þ/q

≥V Kð Þ n−qð Þp/nqV Lð Þp/nV Kð Þ n−qð Þ q−pð Þð Þ/nqV Qð Þ q−pð Þ/n

=V Qð Þ q−pð Þ/nV Lð Þp/nV Kð Þ n−qð Þ/n:

ð230Þ

The equality conditions follow from the equality condi-
tions of Hölder inequality and the Lp-Minkowski inequality
(Equation (11)) for Lp-mixed volumes. Namely, the equality
for the above inequality holds if and only if K , L,Q are
dilates when q > 1 and K ,Q are homothetic when q = 1.

Over the past three decades, valuation theory has
become an ever more important part of convex body geom-
etry. See, e.g., [11–13, 18, 48–53]. The convex Lp,q-mixed
volume is the valuation for each entry.

Proposition 39. The Lp,q-mixed volume Vp,qðK , L,QÞ is a
valuation over Kn

o with respect to all K , L, and Q.

Proof. The Lp,q-mixed volume Vp,qðK , L,QÞ is a valuation on
Kn

o respect to the third argument can be seen easily by writ-
ing Equation (216) as follows:

Vp,q K , L,Qð Þ = 1
n

ð
Sn−1

hpL uð ÞdCp,q K ,Q, uð Þ, ð231Þ

and from Equation (139) (or Theorem 25), observing that
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for K1, K2 ∈K
n
o , we have the following:

dCp,q K1,Q, ·ð Þ + dCp,q K2,Q, ·ð Þ
= dCp,q K1 ∪ K2,Q, ·ð Þ + dCp,q K1 ∩ K2,Q, ·ð Þ:

ð232Þ

Together with Equations (216) and (232), we have the
following:

Vp,q K1 ∪ K2, L,Qð Þ +Vp,q K1 ∩ K2, L,Qð Þ
= Vp,q K1, L,Qð Þ +Vp,q K2, L,Qð Þ:

ð233Þ

Namely, Vp,qðK , L,QÞ is a valuation in the third
argument.

Observing that for L1, L2 ∈Kn
o such that L1 ∪ L2 ∈K

n
o .

Then, we have the following:

hpL1∪L2 + hpL1∩L2 = hpL1 + hpL2 , on S
n−1: ð234Þ

Note that hL1∪L2 = max fhL1 , hL2g and hL1∩L2 = min fhL1
, hL2g. Together with Equations (216) and (234), we see that
Vp,qðK , L,QÞ is a valuation in the second argument, i.e,

Vp,q K , L1 ∪ L2,Qð Þ + Vp,q K , L1 ∩ L2,Qð Þ =Vp,q K , L1,Qð Þ + Vp,q K , L2,Qð Þ:
ð235Þ

Note that if Q1,Q2 ∈K
n
o are such that Q1 ∪Q2 ∈K

n
o ,

then we have the following:

hq−pQ1∪Q2
+ hq−pQ1∩Q2

= hq−pQ1
+ hq−pQ2

, on Sn−1: ð236Þ

Together with Equations (218) and (236), we see that
Vp,qðK , L,QÞ is a valuation in the first argument, i.e,

Vp,q K , L,Q1 ∪Q2ð Þ + Vp,q K , L,Q1 ∩Q2ð Þ = Vp,q K , L,Q1ð Þ + Vp,q K , L,Q2ð Þ:
ð237Þ

Let K ,Q ∈Kn
o . The q-th mixed cone-volume measure

CqðK ,Q, ωÞ of K and Q is a Borel measure on the unit

sphere Sn−1 is defined by for a Borel ω ⊆ Sn−1 and u ∈ ω,

dCq K ,Q, ωð Þ = 1
n

hQ
hK

� �q

αK uð Þð ÞρK uð Þndu: ð238Þ

Since the q-th mixed volume, VqðK ,QÞ has a dual inte-
gral formulation:

Vq K ,Qð Þ = 1
n

ð
Sn−1

hQ
hK

� �q

αK uð Þð ÞρnK uð Þdu: ð239Þ

We can turn the q-th mixed cone-volume measure into
the probability measure on the unit sphere by normalizing
it by q-th mixed volume of the bodies. The q-th mixed
cone-volume probability measure �CqðK ,Q ; ·Þ of K and Q

is defined by the following:

d�Cq K ,Q, ωð Þ = 1
Vq K ,Qð Þ dCq K ,Q, ωð Þ: ð240Þ

If K , L,Q ∈Kn
o , then for each real p, q ∈ℝ, we define the

normalized Lp,q-mixed volume by the following:

�Vp,q K , L,Qð Þ = Vp,q K , L,Qð Þ
Vq K ,Qð Þ

 !1/p

=
ð
Sn−1

hL uð Þ
hQ uð Þ
� �p

αK uð Þð Þd�Cq K ,Q, uð Þ
� �1/p

:

ð241Þ

Let p⟶ 0. We give the following:

�V0,q K , L,Qð Þ = exp
ð
Sn−1

log hL
hQ

� �
αK uð Þð Þd�Cq K ,Q, uð Þ

� �
:

ð242Þ

The q-th mixed entropy EqðK , L,QÞ of convex bodies
K , L,Q ∈Kn

o is defined by the following:

Eq K , L,Qð Þ =
ð
Sn−1

log hL
hQ

� �
αK uð Þð ÞdCq K ,Q, uð Þ: ð243Þ

In particular,

�V0,0 K , L, Kð Þ = �V0 K , Lð Þ, Eq Q, L,Qð Þ = E Q, Lð Þ: ð244Þ

☐

6. The Lp,q-Minkowski Problems

The existence and uniqueness of Lp,q-Minkowski problem is
the central problem to be investigated here. Its existence
problem can be expressed as follows:

Problem 40. Let p, q ∈ℝ, and Q ∈Kn
o is fixed. Given a Borel

measure μ ∈MðSn−1Þ, what are necessary and sufficient con-
ditions on μ such that there exists a K ∈Kn

o whose Lp-cur-
vature measures Cp,qðK ,Q, ·Þ is the given measure μ?

Lp-Minkowski problem when q = p. When the given data
measure μ has a density f , it follows from Equation (125)
that Lp,q-Minkowski problem is equivalent to solving the fol-

lowing Monge-Ampère-type equation on Sn−1:

h1−q ν ∘ ∇hð Þk kq−pQ∗ det �∇2h + hI

 �

= f , ð245Þ

where h is the unknown function on Sn−1, and ∇h is the gra-
dient vector function in ℝn of the extension from h to ℝn as
a vector function that is positively homogeneous of degree 1.
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If we assume that the range of the gradient function ∇h is D,
then ν : D⟶ Sn−1 is also an unknown function related to h.

Our uniqueness result for the Lp,q-Minkowski problem is
presented in the following:

Problem 41. For fixed p, q ∈ℝ and Q ∈Kn
o , if K , L ∈Kn

o such
that

Cp,q K ,Q, ·ð Þ = Cp,q L,Q, ·ð Þ, ð246Þ

then how is K related to L?

Now, we establish uniqueness of the solution to the
problem with q ≥ n for the case of polytopes.

Theorem 42. Let P, P′ ∈Kn
o be polytopes and let Q ∈Kn

o .
Suppose

Cp,q P,Q, ·ð Þ = Cp,q P′,Q, ·

 �

: ð247Þ

Then, P = P′ when q > n and P′ is a dilate of P when q
= n.

Proof. According to Equations (121) and (122), we get that
the curvature measures of polytopes are discrete, and that
Cp,qðP,Q, ·Þ = Cp,qðP′,Q, ·Þ implies that P and P′ must have
the same outer unit normal vectors v1, v2,⋯, vm and

Cp,q P,Q ·ð Þ = Cp,q P′,Q, ·

 �

= 〠
m

i=1
diδvi , ð248Þ

where δvi denotes the delta measure concentrated at vi, and

di =
1
n
hq−pQ við Þh−qP við Þ

ð
Sn−1∩Δi

ρnP uð Þdu

= 1
n
hq−pQ við Þh−q

P′ við Þ
ð
Sn−1∩Δ′i

ρn
P′ uð Þdu:

ð249Þ

Here Δi and Δ′i are the cones formed by the origin and
the facets of P and P′ with vector vi, respectively.

Assume that P ≠ P′. Tt is easy to see that P ⊆ P′ is not
possible. Set λ be the maximal number with λP ⊆ P′. This
has λ < 1. Since λP and P′ have the same outer unit normal
vectors, there is a facet of λP which is contained in a facet of
P′. The outer unit normal vector of those facets is denoted
by vi1 . It follows that

hλP vi1
� �

= hP′ vi1
� �

,

Δi1
⊆ Δ′i1 ,

ρλP uð Þ = ρP′ uð Þfor all u ∈ Δi1
:

ð250Þ

Thus,

1
n
hq−pQ vi1

� �
h−qλP vi1
� �ð

Sn−1∩Δi1

ρnλP uð Þdu

≤
1
n
hq−pQ vi1

� �
h−q
P′ vi1
� �ð

Sn−1∩Δ′i1
ρn
P′ uð Þdu:

ð251Þ

with equality if and only if Δi1
= Δ′i1 . By this and Equation

(249), we can obtain that

λn−q ≤ 1: ð252Þ

But λ < 1 implies that λn−q > 1 if q > n. Obviously, this is
a contradiction.☐

If q = n, then Equation (249) forces equality in Equation
(251). So, Δi1

= Δ′i1 , and the facets of λP and P′ with outer
unit normal vector vi1 are the same. Let vi2 is the outer unit
normal vector to a facet, which is adjacent to the facet whose
outer unit normal vector is vi1 . Thus, the facet of λP with

outer unit normal vector vi2 is contained in the facet of P′
with outer unit normal vector vi2 . A similar argument holds
that the two facets are the same. Continuing in this manner,
it follows that λP = P′.

7. Several Other Problems

Here, we present several issues that need to be discussed in
the future. Some of the definitions and problems below are
different from the paper [40, 43, 44, 54].

7.1. Lp,q-Mixed Affine Surface Areas. In [7], Lutwak defined
the Lp-affine surface area ΩpðKÞ for p ≥ 1 by the following:

n−p/nΩp Kð Þ n+pð Þ/n = inf nVp K , L∗ð ÞV Lð Þp/n : L ∈ Sn
o

� �
:

ð253Þ

Hug in [55] observed that the Lp-affine surface area is
well defined for 0 < p < 1.

The following affine isoperimetric inequality was estab-
lished in [7] for p ≥ 1, and in [56] for 0 < p < 1. If K ∈Kn

c ,
then

Ωp Kð Þn+p ≤ nn+pω2p
n V Kð Þn−p, p > 0, ð254Þ

with equality if and only if K is an ellipsoid. Here, ωn is the
volume of the n dimensional unit sphere.

Definition 43. Suppose q ∈ℝ. For K ∈Kn
o and Q ∈ Sn

o , the q
-th curvature measure CqðK ,Q∗, ·Þ of K (related to star body
Q) is defined by the following:

Cq K ,Q∗, ηð Þ = 1
n

ð
α∗K ηð Þ

ρnK uð Þ
ρQhK
� �q αK uð Þð Þ du, ð255Þ
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for each Borel η ⊆ Sn−1, and Lp-curvature measure Cp,qðK ,
Q∗, ·Þ of K is defined by the following:

Cp,q K ,Q∗, ηð Þ = 1
n

ð
α∗K ηð Þ

ρpQ αK uð Þð Þ · ρnK uð Þ
ρQhK
� �q αK uð Þð Þ du

= 1
n

ð
α∗K ηð Þ

ρpQ αK uð Þð ÞdCq K ,Q∗, uð Þ,

ð256Þ

for each Borel η ⊆ Sn−1.

It follows from Definition 43 that

dCp,q K ,Q∗, ·ð Þ = ρpQdCq K ,Q∗, ·ð Þ: ð257Þ

Definition 44. Suppose q ∈ℝ. If K ∈Kn
o , L ∈ Sn

o , the q-th
mixed volume VqðK , L∗Þ is defined by the following:

Vq K , L∗ð Þ = 1
n

ð
Sn−1

ρnK uð Þ
ρLhKð Þq αK uð Þð Þ du

= 1
n

ð
Sn−1

ρ−qL uð ÞdSq K , uð Þ:
ð258Þ

Definition 45. Suppose p, q ∈ℝ. If K ∈Kn
o and Q, L ∈ Sn

o , the
Lp,q-mixed volume Vp,qðK , L∗,Q∗Þ of K and L∗ (with respect
to Q) is defined by the following:

Vp,q K , L∗,Q∗ð Þ =
ð
Sn−1

ρL vð Þ−pdCp,q K ,Q∗, vð Þ: ð259Þ

Inspired by [40, 54], from Equations (258) and (259) we
define Lp,q-mixed affine surface area as follows:

Definition 46. For p ∈ℝ, q > 0 and K ∈Kn
o ,Q ∈ Sn

o , the Lp,q
-mixed affine surface area Ωp,qðK ,QÞ of K (relate to Q) is
defined by the following:

n−q/nΩp,q K ,Qð Þ n+qð Þ/n

= inf nVp,q K , L∗,Q∗ð ÞVq L,Qð Þq/n : L ∈ Sn
o

� �
:

ð260Þ

When Q = L, from Equation (219) we have the following:

Vp,q K , L∗, L∗ð Þ = Vq K , L∗ð Þ: ð261Þ

Ωp,qðK , LÞ is the Lq-affine surface area ΩqðKÞ.

Problem 47. For the Lp,q-mixed affine surface area, does it
maintain affine invariance and continuity? How to establish
its affine isoperimetric inequality?

7.2. Lp,q-Mixed Geominimal Surface Area. In [7], Lutwak
defined the Lp-geominimal surface area GpðKÞ by the follow-

ing:

ωp/n
n Gp Kð Þ = inf nVp K , Lð ÞV L∗ð Þp/n : L ∈Kn

o

n o
, ð262Þ

and proved the following affine isoperimetric inequality:
If K ∈Kn

o , then

Gp Kð Þn ≤ nnωp
nV Kð Þn−p, ð263Þ

with equality if and only if K is an ellipsoid.
Motivated by the Lp-mixed geominimal surface area

(Equation (257)), we define Lp,q-mixed geominimal surface
area, Gp,qðK ,QÞ, of K relative to Q as follows:

Definition 48. For p ∈ℝ, q ≥ 1, and K ,Q ∈Kn
o , the Lp,q

-mixed geominimal surface area Gp,qðK ,QÞ of K relative to
Q is defined by the following:

ωq/n
n Gp,q K ,Qð Þ = inf nVp,q K , L,Qð ÞVq L∗,Q∗ð Þq/n : L ∈Kn

o

n o
:

ð264Þ

When Q = L, from Equation (219) we have the following:

Vp,q K , L, Lð Þ = Vq K , Lð Þ: ð265Þ

Gp,qðK , LÞ is the Lq-geominimal surface area GqðKÞ.

Problem 49. For the Lp,q-mixed geominimal surface area,
does it maintain affine invariance and continuity? How to
establish its affine isoperimetric inequality?

7.3. Lp,q-John Ellipsoids. Suppose p ∈ ð0,∞Þ and K is a con-
vex body in ℝn with the origin in its interior. Among all
origin-symmetric ellipsoids E, the unique ellipsoid that
solves the constrained maximization problem:

max
E

V Eð Þ
ωn

� �1/n

subject to �Vp K , Eð Þ ≤ 1
ð266Þ

is called the Lp-John ellipsoid of K which defined in [45]
and denoted by EpK . Clearly, EpB = B. Here,

�Vp K , Eð Þ = 1
nV Kð Þ

ð
Sn−1

hE uð Þ
hK uð Þ
� �p

hK uð ÞdS K , uð Þ
� �1/n

, 0 < p <∞

ð267Þ

is the normalized Lp-mixed volume of K and E. In the case
p =∞, we define the following:

�V∞ K , Eð Þ = sup hE uð Þ
hK uð Þ : u ∈ supp S K , ·ð Þ
� �

: ð268Þ

In general, the Lp-John ellipsoid EpK is not contained in
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K (except when p =∞). However, when 1 ≤ p ≤∞, it has
VðEpKÞ ≤VðKÞ. In reverse, for 0 < p ≤∞, the Lp version
of ball’s volume-ratio inequality [45] states that

V Kð Þ
V EpK
� � ≤ 2n

ωn
, ð269Þ

with equality if and only if K is a parallelotope.
We know that from Equation (241), for 0 < p <∞, q ∈ℝ,

the normalized Lp,q-mixed volume is calculated by the fol-
lowing:

�Vp,q K , L,Qð Þ =
ð
Sn−1

hL αK uð Þð Þ
hQ αK uð Þð Þ
� �p

d�Cq K ,Q, uð Þ
� �1/p

:

ð270Þ

In the case p =∞, define the following:

�V∞,q K , L,Qð Þ =max hL αK uð Þð Þ
hQ αK uð Þð Þ : u ∈ supp Cq K ,Q, ·ð Þ
� �

:

ð271Þ

By Equation (271), we have the following:

�V∞,q K , L,Qð Þ ≤ 1 if and only if L ⊆Q: ð272Þ

Let En denote the class of origin-symmetric ellipsoids in
ℝn. Inspired by the constrained maximization problem
(Equation (266)), the reader may consider its Lp,q-version.

Problem 50. Let 0 < p ≤∞, q ∈ℝ. For K ,Q ∈Kn
o , find an

ellipsoid, among all origin-symmetric ellipsoids, which
solves the following constrained maximization problem:

max
E∈En

V Eð Þ
ωn

� �1/n

subject to �Vp,q K , E,Qð Þ ≤ 1:
ð273Þ

An ellipsoid that solves the constrained maximization
problem will be called Lp,q-John ellipsoid for K ,Q and
denoted by Ep,qðK ,QÞ.

In particular, when Q = K , from Equations (219) and
(22), we have the following:

Vp,q K , E, Kð Þ =Vp K , Eð Þ,Vq K , Kð Þ =V Kð Þ: ð274Þ

Thus, �Vp,qðK , E, KÞ = �VpðK , EÞ. So, Problem 50 degener-
ates into the problem.
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