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Motivated by Lutwak et al’s LP-dual curvature measures, we introduce the concept of Lp-curvature measures. This new Lp

-curvature measure is an extension of the classical surface area measure, Lp—surface area measure, and curvature measure. In
this paper, we first prove some properties of the L,-curvature measure. Next, using the L,-curvature measure, we define the

L, ,-mixed volume which includes L,-mixed volume as the special cases. Further, the Minkowski-type inequality related L, ,

-mixed volume and the uniqueness of the solution for the L, - Minkowski problem are obtained. Finally, we propose several

problems that need to be studied further.

1. Introduction

Surface area measure and integral curvature measure are two
important measures in classical Brunn-Minkowski theory.
Minkowski problem describing surface area measure and
Aleksandrov problem describing integral curvature are two
famous problems. As a generalization, L,-surface area mea-
sure and Lp—integral curvature are defined in [1, 2], respec-
tively. At the same time, the hyperbolic measure as the
curvature measure of dual Fiedler is constructed in [3]. Lut-
wak et al. introduce Lp-dual curvature measure in [4], which

is a generalization of the dual curvature, L,-surface area
measure and L, -integral curvature. L,-dual mixed volume

(also known as (p, q)-dual mixed volume) is defined by [4]
and Minkowski inequality is established. Furthermore, they
study the L,-dual Minkowski problem of L,-dual curvature

measure by reference to [5].
Inspired by Lutwak et al.’s L,-dual curvature measure, a

new concept of L,-curvature measure is introduced in this
paper. It includes classical surface area measure, L,-surface

area measure and curvature measure. In this paper, we first
prove some properties of L,-curvature measure. Next, based

on L,-curvature measure, we define L, -mixed volume,
which includes L,-mixed volume as a special case. Further-
more, the Minkowski inequality for L, ,-mixed volume and

the uniqueness of the solution for L, ,-Minkowski problem
are obtained. Finally, some problems which need further
study are put forward.

Let " represent the set of convex bodies in n-dimen-
sional Euclidean (compact convex subsets with nonempty
embedding) space R", for convex bodies containing the ori-
gin inside in R”, we write 7. Set B said centered on the ori-
gin of the unit sphere, B surface written as $"!, in R". V(K)
represents the #n dimensional volume of the body K and
writes V(B) = w,,

For K € K", its support function, hy =h(K,): R"—
(—00, + 00), is defined by (see [6])

h(K,x)=max {x-y:yeK}, xeR", (1)

where x - y denotes the standard inner product of x and y.

For K,Le %" and s,t>0 (not both zero), the Min-
kowski combination, sK +tL € #", of K and L is defined
by the following:

h(sK + tL, ) = sh(K, ") + th(L, ), (2)

ie, sK+tL={sx+ty:xeK,yeL}.
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The surface area measure S(K,:) of K€ %" can be
defined by the following:

d
— V(K +tL
dtV( +tL)

- L hy (w)dS(K, u), (3)

t=0*

for any L € #". From Equation (3), the Minkowski’s first
mixed volume of K and L is given as follows:

1
V(K. L) = ;J hy (u)dS(K, u). (4)
Snfl

The mixed volume V,(K, L) generalizes the concepts of
volume, surface area, and mean width.

We say that K € #" has a positive continuous curvature
function f(K,-) =f,(-): "' — R, if for all L € Z",

ViD= 1| m@fdwdse, )

n

where S is spherical Lebesgue measure. Clearly, Equations
(4) and (5) imply the following:

oy = B ©

Let p>1. Using the L,-Minkowski conbinations (see
Equation (60)), Lutwak [2] defined the Lp—surface area mea-
sure S,(K,-) of a convex body K € %}, namely, for each L
ex,

:lJ hy (u)dS,(K,u).  (7)
sn*l

d
— V(K+,t-L
(K+, )t:w F

dt

For K, L € %}, the L,-mixed volume V,(K,L) is given
by the following (see [4]):

V,(K.L)= %Lnith(u)PdSp(K, ). (8)

We say that K € %7 has a positive continuous L,-curva-
. —1 . .
ture function f,(K,-): $"! — R, if the integral representa-
tion

VK Q)= o ol S (K s, (9)

nls
for all Q € #7,. For K € %) with a positive continuous cur-
vature functions, it follows from Equation (8) and Equation

(9) that

d )
(K, u) = %. (10)

The L,-Minkowski inequality of the L,-mixed volume is
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(see [2, 7]) that for p > 1,
VP(K,L)” > V(K)"*V(LY, (11)

with equality for p > 1 if and only if K and L are dilates, for
p=1and if and only if K and L are homothetic.

According to Equation (10), the curvature function of L,
is the Radon-Nikodym derivative of L,-surface area measure
with respect to the spherical Lebesgue measure. The integral
of L,-curvature function (raised to an appropriate power)
over the unit sphere is the Lp-afﬁne surface area, which is
an important research point of affine geometry and valua-
tion theory, see, e.g, [8-24]. The L,-Minkowski problem
(see [2]) is a necessary and sufficient condition to find a
given measure such that it is only the L,-surface area mea-
sure of a convex body. Solving the L,-Minkowski problem
requires solving a degenerate singular Monge-Ampére-type
equation on the unit sphere. The L,-Minkowski problem
has been solved for p>1, see [2, 25, 26], but critical cases
for p <1 remain open, see, e.g., [25, 27-31]. For its applica-
tions, see [5, 7, 27, 32-35].

A star body Q c R" is a compact star-shaped set about
the origin whose radial function p,: 8" — (0,00) is
defined by the following:

po(u) =max {1>0: Au€Q}, (12)

for u e $"'. If p(K,-) is positive and continuous, K will be
called a star body. Denote the set of star bodies in R" by
S§h. Obviously, #7 ¢ &7.

The dual Brunn-Minkowski theory is the theory of dual
mixed volumes of star bodies. For g € R, the g-th dual mixed

volume, V (K, Q), of K, Q € &7 is defined by the following:

VKQ= | Akl (1)

where the integration is with respect to spherical Lebesgue
measure. For g # 0, the g-th dual volume Vq(K) of Kes”
is defined by Vq(K) = Vq(K, B). The g-th dual volume is
important in geometric tomography, one of the reasons that
is that for integers g=1,2,--,n—1 and each K € §7,

Vy(K) = Cn,qJG(n q)VOlq(K n&)de, (14)

where vol, denotes volume in RY, G(n,q)(q=1,2,---,n—1)
denote the Grassmann manifold of g-dimensional subspaces
of R", the integration is with respect to the rotation invari-
ant probability measure on G(n, q) and constant c,, , is triv-
ially determined by taking K to be B.

For the real g # 0, the g-th dual curvature Cq(K, ) of K
€ K, is a Borel measure on the unit sphere, which can be
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defined in [3] by using the variational formula:

d -
7 Va(K+ i)

=qj B () (A, (K,v),  (15)
t=0* st

for every L € %7. Similar to the critical role as L,-surface
area measures playing in the L, Brunn-Minkowski theory,

dual curvature measures is a central concept within the dual
Brunn-Minkowski theory.

The singularity case g=0 of dual volume leads to dual
entropy of star body. For K € ", the dual entropy E(K)
can be defined as follows:

1

E(K)= ;Jsﬁ log py (u)du. (16)

The L,-integral curvature, J,(K,), of K € & (see [1])
can be defined by a variational formula:

d -
aE(1<+pt-L)

:ijsnilhi(v)d]P(K*,v), (17)

o+ 1P

for all L € %7, where K* is the polar body of K is given by
K*={xeR":x-y<1forally € K}.

In [4], Lutwak et al. introduced Lp—dual curvature mea-
sures, which are a generalization of dual curvatures, L,-sur-
face area measure and L, -integral curvatures. For p,q € R,

Ke X} and Qe $7, the Lp-dual curvature measure, Cp,q, is

the Borel measure on S"! defined by the following:

|| 909G = 1 | gt ) ) poa)

(18)

for each continuous g : $"' — R, where ay is the radial
Gauss map (see Section 2 for details).
L,-dual mixed volume (also known as (p, g)-dual mixed

volume) is defined by Lutwak et al. [4] using the Lp-dual

curvature:
For p,q€R, K,L € Z, and Q € &7, the L,-dual mixed

volume Vp,q (K, L, Q) is defined by the following:

V. (K, L,Q) = L Hy (v)dC, (K, Qv). (19)

By Equation (18), the L,-dual mixed volume has the fol-
lowing integral formula:

Tyl Q)= | (o) ) o) . (20)
Specifically, Cp)n (K, B) = (1/n)S,(K, -), namely,

S, (K, ) = nC, (K, B) = hye(aye () P (w)"du, ~ (21)

and for K,L € %7,

Vs =1 (L) s @2

n hy

For the (p,q)-dual mixed volumes, the related Min-
kowski inequality is given in [4]. Suppose 1 < g/n<p, if K,
Le X} and Q€ &}, then

VM(K, L,Q)" = V(K)TPV(LYV(Q)"™, (23)

with equality when g > n if and only if K, L and Q are dilates;
while when g=n and p > 1, with equality if and only if K
and L are dilates; while when g = and p = 1, with equality
if and only if K and L are homothetic.

In [4], the authors studied the Lp-dual Minkowski prob-

lems for L,-dual curvature measures. The results of L,-dual
Minkowski problem caught many attentions, for example,
see [3, 27, 36-42]. In addition, based on the (p,q)-dual
mixed volumes, Ma et al. studied (p, q)-John ellipsoids in
[43], which contain the classical John ellipsoid and the L,-

John ellipsoids. They also solved two involving optimization
problem about the (p, g)-dual mixed volumes for all 0 <p
<g. A different extension of the L,-John ellipsoid was con-
sidered by Li et al. in [44].

In this paper, motivated by Lutwak et al.’s works in [4],
we introduce the following L,-curvature measures which is

a new curvature measure.

Definition 1. For p,q € R and K, Q € Z, we define the L,
-curvature measure CM(K , Q, ) by the following:

[ 9024y, 00.@.9) = 1 o) o) )
(24)
for each continuous g : "' — R.

According to Definition 1, the L, -curvature measure
Cp4(K, Q,-) has the following integral expression.

Property 2. Suppose p,q € R. If K, Q € Z7, then

hG” (e () g (o (w)) pic () s,
(1)

1
CP,q(K’ Qn)= ;J
(25)
for each Borel set 7 < S* 1. Here,
ag(n) = {% =X € S"" wherex € Hy(v)for somev € ;1},
(26)

and Hg(v) is the supporting hyperplane to K with outer
normal vector v € R” \ {0}.



Property 3. Suppose p,geR. If K,Q e %, then for each
Borel set 7 < 8"},

1

Cpg (K> Q1) = ;J ( )(x-VK(x))l'qlvi(x)HqQ?pd%’”_l(x)
xexy (n

(27)

Among them, #"7'(-) represents the (n-1)-dimen-
sional Hausdorff measure, and vy (x) represents the regular
radial vector of x € dK, as well as xy(y) represents the
reverse spherical image of ¢ §"'.

The L,-curvature measures unify the surface area mea-
sures, L,-surface area measures and curvature measures, as
well as other measures. In particular, for p,q € R and K, Q
€ %, the L,-surface area measures and the g-th curvature
measures (see Section 3 for its definition) are special cases
of the L,-curvature measures:

Cpa(K Q) = %Sq(K, ) (28)
Cpg(K, K, ) = %SP(K, ), (29)
Cpq(K,B, ) = %Sq(K, ) (30)
Cpo(K, K, ) = %SP(K, ), (31)
Coy(K,B,) = %Sq(K, ). (32)

According to the L,-curvature measures, we now define
the notion of the Lp’q—mixed volumes which unifies Lp
-mixed volumes and dual-mixed volumes.

Definition 4. For p,q € R and K, L, Q € #7, the L, -mixed
volume, VM(K, L,Q), of K and L (with respect to Q) is
defined by the following:

hy(u)dC, (K, Qu).  (33)
Sn—l

Vpa(K L, Q) = j

The following variational formula is an extension of
Equations (3) and (7).

Theorem 5. If reals p,q # 0 and K, L, Q € X7, then the L,

-mixed volume V, (K, L, Q) via the variational formula of
K and L (with respect to Q) by the following:

(34)

.. V(K Q+t-L) -V, (K Q)
Vpalko Q)= lim, T

Using Equation (24), the L, ,-mixed volume can be writ-
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ten by the following integral formula:

Va1 Q)= | (1) Pl () P () o (1.

(35)

g1

It will be shown that the L,-mixed volume (Equation
(8)) is the special case of the Lp,q-mixed volumes of convex
bodies, i.e.,

V, (K. LK) = V,(K, L),
V,, (KL, Q) =V, (K, L),
V, (K L L) =V (K,L), (36)
V,,(K,L,B) =V, (K, L),
Vo (KL Q) =V (K, Q).

The Minkowski-type inequality for L, ,-mixed volume is
as follows:

Theorem 6. Let K,L,Q € ' and q>1,p < 0. Then,
V(K LQ)" 2 V(K)"™ V(LI V(Q)T?, (37)

with equality if and only if K, L, Q are dilates when q > 1
and K, Q are homothetic when q = 1.

For Q, K e %!, we say that the convex body Q with
respect to K has a positive continuous (p, g)-curvature func-
tion fp’q(K, Q-): "' —R,if

Vil L@ = 5 | s, (0 Quydstu), 69

n
for all L € #7. From Equations (33) and (38), we get that for

K e ) with a positive continuous curvature functions and a
fixed Q e %7,

1 dC, _(K,Q,u
L@y = LR ()

~ For g€ R and ¢ € (0,00), the normalized power function
t9 can be defined by the following:

1
_ —t1, ifg+0,
t1={4q 1 (40)
logt, ifg=0.

For g€ R and K, Q € %, the normalized L,-mixed vol-
ume Vg (K, Q) is defined by the following:

1
n

V4(K.Q) LM(ZE)(J(“K(”))PZ(L!)W- (a1)

Note that for g+0, we have qVq(K, Q) =V,(K,Q),
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while for p = 0 the normalized L,-mixed volume VP(K ,Q) is
not just V,(K, Q) multiplied by a constant but it can be con-
sidered from the mixed entropy (see Section 2 for details).
Another aim of this paper is to show that for p, g € R and
K, Q e 7, there exists a variational formula that defines the
L,-curvature measure C, (K, Q, ) by the following:

d
ZVa (K, Q+pt-L)

=J h,(v)PdC, (K, Qv), (42)
=0t J§!

for every L € %, This plays a key role to solve the associated
Minkowski-type problems using a variational method.

Associated with L,-curvature measures, (p,q)-Min-
kowski problem related to L,-curvature measure asks: For
a given Borel measure ¢ on a sphere, what are the necessary
and sufficient conditions for the existence of a K convex
body whose L,-curvature measure is ¢? The uniqueness of
the problem is to ask to what extent is a convex body
uniquely determined by its L,-curvature measure?

The new (p, q)-Minkowski problem is equivalent to a
degenerate singular Monge-Ampére equation on S"': For
fixed p,g € R,

BP||ve (Vh+he) |27 det (th + hI) =f (43)

where f: 8! —[0,00) is the given “data” function, h
: 8”1 — (0,00) is the unknown function, and € : $"' —
" is the identity map. Here, Vh and V' denote the gradi-
ent vector and the Hessian matrix of h, respectively, with
respect to an orthonormal frame on §"! and I is the iden-
tity matrix. If we assume that the range of the gradient func-
tion Vh is D, then v:D—S§"" is also an unknown
function related to h.

Finally, we propose some problems that need further
study, ie., L, -affine surface area problem, L, ,-geominimal
surface area problem and L, ,-John ellipsoid problem.

2. Preliminaries

2.1. Basics in Convex Geometry. We work in the n-dimen-
sional Euclidean space R". For x,y € R", we use x-y to
denote the standard inner product of x and y, and |x| =
V/x - x to denote the Euclidean norm of x. For x e R"” \ {0},
we will use both x and (x) to abbreviate x/|x]|.

We denote by C(S"™!) the family of continuous func-
tions defined on $"™! as endowed with the topology induced
by the max-norm: ||f|| = ax |f(v)], for feC(S"™™).

ve n—1

For the support function, we know that for A >0 and x
€R”,
o () = Mg (). (44)

Generally, for ¢ € GL(n), the image ¢K = {¢x : x € K}

satisfies that for x € R",
By (%) = by (¢'x), (45)

where ¢’ denotes the transpose of ¢.

Since the support function is positive homogeneous of
degree 1, we can restricted it on the unit sphere. For convex
bodies K, L € %", their Hausdorff metric is given by the fol-
lowing:

O (K, L) = [lhy = [l hy(u) =hy ()] (46)

= max
ues™!

At the point v € "' where hy is differentiable, the gradi-
ent of iy in R" is as follows:

Vhy (v) = Vhg (v) + hg(v)v, (47)
where Vi denotes the gradient of i on $"! with respect to
the standard metric of $"'.

For the radial function, we see that for K € 87, ¢ € GL(n)
and x e R"\ {0},

Py (%) = P (¢_1x). (48)

Using the radial function, the volume of K € &7 can be
expressed as follows:

V0= | peturast). (49)

For K € %7, the polar body K* of K is defined by the fol-
lowing:

K*={xeR":x-y<1forallyeK}. (50)

From this definition, we get that for u € $",

e el (51)
)
and for K € #7,
(K*)" =K** =K. (52)

For K € #7, the Minkowski function of K is defined by
the following:

[|x||x =min {a>0: x€aK}. (53)
Obviously, it is a continuous function on R", and
%]l = P (¥)7" = g (x)- (54)

In the whole process, Q ¢ $" will represent a closed set
that cannot be contained in any of the closed hemispheres of



§"'. Wulff shape [h] € #”, a continuous function h: Q
— (0,00), also known as h of the Aleksandrov body, is
defined by the following:

[B] = ({x€R": x-v<h(v)}. (55)

veQ
If K € %, then it is easily seen that
lhy] = K. (56)

Assume that the function p : Q — (0,00) is continu-
ous. Since Q ¢ "' is assumed to be closed, and p is contin-
uous, we have {p(u)u : u € Q} is a compact set in R”. The
convex hull (p) generated by p,

(p) = conv{p(u)u : uecQ}, (57)

is compact as well (see Schneider [40], Theorem 1.1.11).
Since Q is not contained in any closed hemisphere of $",
we get that (p) contains the origin in its interior; namely, (
p) € Z’. Obviously, if K € %7,

(i) =K. (58)
The following lemma will be required.

Lemma 7 (see [3]). Let Q c S"! be a closed set that is not
contained in any closed hemisphere of S". Let h: Q — (0
,00) be continuous. Then, the Wulff shape [h] determined
by h and the convex hull (1/h) generated by the function 1/
h are polar reciprocals of each other; namely,

= (5) (59)

Let K,L € #; and p > 1. The L,-Minkowski combination
s+ K+,t - L is the convex body whose support function is given
by the following (see [2]):

h(s- K+t L) =sh(K,-) + th(L,-)". (60)

From Equation (53), we can extend the Lp—Minkowski
combinations to the cases of p < 1.

Let p#0. For K,L € %", and s, t € R such that shk + th]
is a strictly positive function on $"', Lutwak et al. [4]
defined the L,-Minkowski combination s-K+,t- L € Z| by

the following:
p P 1/p
s-K+,t-L= {(shK+thL) ] (61)
When p =0, define s- K+4t - L by the following:
s+ K+t - L= [hyhy). (62)

Note that s- K+t - L is defined for all s, € R, since hy,
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h; are strictly positive functions on "'
Given ¢ € SL(n) and p # 0 (see [4]), we obtain that for s
,teR,

s+ @K+, t-pL=¢(s- K+pt-L). (63)

If s+t =1, then Equation (63) holds for p =0 as well.
For pe R\ {0} and K, L€ %}, the L,-mixed volume

V,(K,L) is defined by the following:
1
V(KoL) = J (s, (<,
p . V(K+yt-L)-V(K)

nt—o0* t

(64)

From Equations (64) and (63), we get that for ¢ € SL(n)
(see [45]),

VP(qSK, L) = VP(K, L). (65)

The L,-surface area S,(K) of K € 7 is given by S,(K)
=nV,(K,B).
The following definition will be required.

Definition 8 (see [4]). Let p € R. If u is a Borel measure on
§"! and ¢ € SL(n), then ¢, p, the L, image of y under ¢,
is a Borel measure such that

| fegdoma =] |oulr (97 ))duce),  (66)

for each Borel f : "' — R.

Recall that the L,-mixed volume has a dual integral for-
mulation (see [4]): If K, L € #7, then

n

4
D=1 ] (L) s ()

where oy is the radial Gauss map of K.
For K,Le %! and p>0, we define the volume-
normalized L,-mixed volume by the following:

v (V- (| () i) " (68)

Note that dVy =(1/n)pdu/V(K) is the normalized
dual conical measure of K, it is a probability measure on
supp S(-). Let p — 0. Then,

okt =ex ([ 108 () (aelu)avicw)

- (1 | o8 () fxtapi ).
(©9)
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The mixed entropy E(K,L) of K,L € %/ is defined by
the following:

B 0= [ tog (1) (wcpradn (0

Note that E(K, L) = V(K,L). As the case in Equation
(63), for the dual mixed entropy, we have that for ¢ € SL(n

),
E(¢K, ¢L) = E(K, L). (71)

2.2. The Radial Gauss Map. The following results come from
the articles (3, 4].

Suppose K is a convex body in R”. For each v € R" \ {0},
the hyperplane

Hy(v)={xeR" :x-v=hg(v)} (72)

is called the supporting hyperplane to K with outer normal
vector v.

The spherical image of o ¢ 0K is defined by the follow-
ing:

V(o) ={veS" : xeHy(v)forsomexea} cS"'. (73)

The reverse spherical image of 7 ¢ "' is defined by the
following:

Xg () ={x € 0K : x € Hi(v) forsomev en} cOK. (74)

Suppose oy C 0K is a set consisting of all x € 0K, for
which the set v ({x}), which we frequently abbreviate as
vi(x), contains more than a single element. It is a well-
known fact that %" (o)) =0 (see Schneider [46], p. 84).
The function on the set of regular radial vectors of 9K is pre-
cisely defined by the following:

v 0K\ oy — S"1, (75)

by making v (x) be the unique element in vy (x) for each
x € 0K\ 0k, The function vi is called the spherical image
map of K and is known to be continuous (see Schneider
[40], Lemma 2.2.12). It will be very convenient to abbreviate
0K \ o by 8'K. Since %"} (o) = 0, when the integration is
about "', it does not matter if the domain is over subsets
of 'K or OK.

The set 77, ¢ "' consisting of all v € §"!, for which the
set X (v) contains more than a single element, is of #" '~
measure 0 (see Schneider [40], Theorem 2.2.11). The func-
tion is precisely defined on the set of regular unit normal
vectors of K:

xg 8"\ — 0K, (76)

by making xy(v) be the unique element in x,(v), for each
v € 8"\ . The function xy is called the reverse spherical
image map and is well known to be continuous (see Schnei-

der [40], Lemma 2.2.12). By extending x; to be a homoge-
neous function of degree 0 in R”\ {0}, we get a natural
definition of xy on the set of all regular normal vectors on
oK.
For w ¢ "', the radial Gauss image of w is defined by
the following:
ag(w) = {veS"": py(u)u € Hy(v)forsomeu cw}. (77)

For a subset 77 ¢ "™}, the reverse radial Gauss image of 7
is defined by the following:

ag(n) = {ues’H : pic(u)u € Hy(v) forsomev en}. (78)
Thus,
ag(n) = {x : x € 0K where x € Hy(v) forsomeven}. (79)

In particular, we can see that if # contains only a single
vector v € 8",

ag(v)={x:xeoKwherexeHg(v)}. (80)

Note that Equation (78), and hence for u € $"! and 7
c 8!, we see from Equation (77) that

ucag(n) e ag(u)Nn+d. (81)

Thus, for #,,1, € sl
M S 1y, = ag (1) € ag (1) (82)
We shall need to make use of the fact that for u, v € $",
ucag-(v) ©veag(u). (83)

If uewy, then ay(u)={ax(u)}, and Equation (77)
becomes

€ age () & ag(u) €, (34)
and hence Equation (84) holds for almost all u € $"!, with
respect to spherical Lebesgue measure.

The following lemma will be used.
Lemma 9 (see [4]). If K € Z7), then
ag (1) = - (1), (85)
for each n < 8"
Since aj(v)={ag(v)} for almost all veS™' with
respect to spherical Lebesgue measure, and ay- (v) = {ay- (v
)} for almost all v € S""! with respect to spherical Lebesgue

measure, Lemma 9 implies that if K € %7, then

ag = ag-, (86)



almost everywhere with respect to spherical Lebesgue
measure.
For K € %7, the radial map of K is defined by the follow-

ing:
ri 0 8" — 0K by ry(u) = py(u)u € 0K, (87)

for u € "', Note that ri! : 0K — §" ! is just the restriction
to 0K of the map R"\ {0} — S"!.

The radial Gauss map of the convex body K € #7 is
defined by the following:

ag : "M\ wyg — S by ag = v o1y, (88)
where wy =6y =1 (0g). Since ri! =~ is a bi-Lipschitz map
between the spaces 9K and $"!, so it follows that wy has
spherical Lebesgue measure 0. We observed that if u € $"!/
wy, then ay (1) contains only the element a; (u). Since both
vi and ry are continuous, «ay is continuous. Notice that for
xed'K,

ag (X) = vi(x)s (89)
and hence for x € 9'K,
hy(ag (X)) = hg (v (x)) =x - v (x). (90)

If ueS" wy, we see that x = p,(u)u € 0K/wy with x
=y from the definition of wy. Hence from Equation (89)
we have ay(u)=ayg(X)=vg(x) and we get the following
(see [4]):

) = VP _ Ve (1)
T Op ()] Wi ()]

ueS" " \wg.  (91)

Combining with Equations (86) and (91), we have the
following:

(92)

for almost all v with respect to spherical Lebesgue measure.
The surface area measure S(K, -) of a convex body K can
be defined, for Borel 7 §"!, by the following:

S(K, 1) =" (xic (1), (93)

where x,(17) is the reverse spherical image of 7 ¢ S"".

If the boundary of a convex body K, denoted by 0K, is
smooth with positive Gauss curvature, the surface area mea-
sure of K is absolutely continuous with respect to spherical
Lebesgue measure. The density can be regarded as the recip-
rocal of Gauss curvature and expressed in terms of the sup-
port function and its Hessian matrix on "'

ds(K, )
ds

= det (vth + hKI>, (94)
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where V’hy denotes the Hessian matrix of hy and I is the
identity matrix with respect to an orthonormal frame on
"1, See Schneider [46].

For p€R and K € %7, its L,-surface area measure S,(

K,-) introduced in [2] is defined by the following:

ds,(K,-) = hi"dS(K, -), (95)

or equivalently by the following:

S,(Ko 1) = j (v () PdF (%), (96)

X (1)

for each Borel 7 € §"~!, where vy is the spherical image func-
tion of o C dK.

For A >0, we easily see hy; = Al and S(AK,-) = A"'S(
K,-). Then, Equation (91) implies the following:

S,(AK, ) = A"18, (K, ). (97)

The following integral identity is established in [3].

Lemma 10. If g€ R and K € ¥", while f : "' — R is
bounded and Lebesgue integrable, then

| fpctwrau= e v )
(98)

In [3], we see that

Lemma 11. If K € %" is strictly convex, and f : "' — R
and F : 0K — R are both continuous, then

[ SR Thupheluasi
) 99)

= L,K(x Vi (0))f (Vi (%)) F(x)d ™™ (x),

where Vhy is the gradient of hy in R”, and vy is defined only
on 0K \ o, the set o has %" measure 0.

We will require a slight extension of Equation (97). To
be specific, if p € R, while K € %7 is strictly convex, and f
: "1 — R and F: 0K — R are both continuous, then
(see [4])

|| FE s, k.0
s (100)

= L,K(x V(X)) Pf (Vi (%)) F(x)dF" (x).

The following lemma will be used.



Journal of Function Spaces

Lemma 12 (see [4]). For each p € R, the set

(101)

{chﬁ—chﬁ:Ke%S, c>0}

is dense in C(S™™1).
3. Lp-Curvature Measures

For a star body Q € &7, define ||-[|, : R” — [0, 00) by let-
ting (see [4])

— ., ifx#0,
PQ(X)

0, ifx=0.

€[l = (102)

Note that [-||, is continuous and positively homoge-
neous of degree 1. If Q is an origin-symmetric convex body
in R”, then ||-[|, is just an ordinary norm in R", and (R",
[|lq) is the n-dimensional Banach space whose unit ball is
Q

Note that the definition (Equation (102)) is an extension
of Minkowski functional (Equation (53)) of convex body K
€.

Definition 13. Suppose g € R. For K, Q € #7, the g-th area
measure S, (K, Q,-) is defined by the following:

. (103)

5,000~ 1 | (72) tclwpi s,

for each Lebesgue measurable w € $"!, and the g-th curva-
ture measure C,(K, Q, ") is defined by the following:

C,(K:Qm)=—

1 J (1) (%)q(“KW))PE(u)d% (104)

for each Borel < S"'. Moreover, for each p € R, the L,
-curvature measure C, (K, Q, -) is defined by the following:

dcp,q(K’ Qa ) = hépqu(K, Q, ) (105)

Observe that
CO,Q(K’ Q’ ) = Cq(K) Q) ) (106)

Note that from definition (Equation (104)) and the fact
that Equation (84) holds off of the set wy of spherical Lebes-
gue measure 0, so for each Borel 77 < "', we get the follow-

9
ing:
JSVH 1"<V)dcq(K’ > V)
- _1 h_Q q , )
= Cq(K, Qn) " L‘K(q) (hK> (o (V) Pk (v)d
o4
- EjsnfllaK(n)(v) _I(j> (aK(V))PK(V>dV
_ _szl 1, (g (1) Y (g (1) Y o (1)) P () s
(107)
That is,
an—l lq(v)qu(K, Q’ v)
- %JSH1ﬂ(“K(“>)ho(“K(u))hK (ot (1)) Pl () .
(108)

We observed that C (K, Q,-) is absolutely continuous

with respect to spherical Lebesgue measure. Then, from
Equation (108), we deduce that

Lemma 14. Let K € %" and q € R. If each function f : "
—> R is bounded and Borel, then

| soc,man

B an,,f ek (u) Yy (e (1) Vi (o (1)) P () .

(109)

Proof. Because Equation (109) is shown by Equation (108) as
an indicator function of the Borel set, we see that Equation
(109) holds for a linear combination of the indicator func-
tions of the Borel set, namely, simple functions ¢ : $"!
— R, is given by the following:

m
¢= Zcilm’

i=1

(110)

where ¢; € R and Borel #,cS"'. Now let us choose a
sequence of simple functions ¢, : "' — R converging to
the bounded Borel function f : $' — R. Note that f is
bounded, ¢, can be selected as uniformly bounded. Then,
¢ o ag converges pointwise to f oa, on $"'\ wy. Since f
: 8”1 — R is a Borel function and the radial Gauss map
ag S\ wg — §"! is continuous; thus, f o a is a Borel
function on S$"'\wg. Because f is bounded, and wy
has spherical Lebesgue measure 0, we can infer that f is
C,(K,g,-) integrable, and f o ay is spherical Lebesgue inte-
grable in $"'. Since C,(K, g,) is a finite measure, by taking
the limit k — oo, we obtain Equation (109).0J O
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Proposition 15. Let p,q e R. If K, Q € ', then

1" (o (1) i (et () pic (1),

1
Cp)q(K’ Qarl) = EJ ( )
ay(n
(111)

for each Borel set n< 8"

Proof. From Equations (105), (109), and (84), we have for
each Borel < 8",

=

Cpq(K; Q1)

lrl(u)de,q(K, Q u)

o g
3

@
7

1,1(u)hQ(u)_Pqu(K, Q u)

) e () ) () )

«

o Lag () () (et (1) i (euge () P (u)

S|l I~ I

B (et (1) Y (g (1) Pl (1) s
ag(n)

(112)

d O

Obviously, the total measures of the g-th curvature mea-
sure and the g-th area measure are the g-th mixed volume,
ie.,

V(QK)=8,(K,Q8")=C,(K,Q8).  (113)

It follows immediately from Equations (103) and (104)
that

Cy(K, Q1) = §4(K, Q e (17))- (114)

The
properties.

L,-curvature measures have the following

Property 16. Let p,g € R. If K, Q € #7. Then, for each Borel
set 77 € $"! and each bounded Borel function g : "' — R,
we have the following:

| amac,,xan

1

B ZL,Hg(“K(”))hgp(“K(”))h}q(“K(u))p}l(u)du,

(115)
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| amac,, @

i EJ | ) el v 74 ),
(116)
Cralfo @)= lJ ) T )
XEXK ?’]
(117)

Proof. Because h(;p : 8" — R is a bounded Borel function,
from Equation (109) with f = ghg’ , we have the following:

an_l g(v)hg (v)dC, (K, Q,v)

B lL,H57(‘)‘K(”))”?ip(OCK(M))h,}q(ocK(u))p}@(,,t)du,

(118)

Thus, in light of Equation (105) is the desired result (Equa-
tion (115)).

By Equations (115), (89), and (90), and letting f = (g
ag ) (hh? o o) (h o ay) and g = n in Equation (98), we have
the following:

dC,,(K,Q,v)

—
@
o
«Q
—~
<
=

9o (u)) G (et (u)) i (exic (0)) Pl () du

(e (%)) 1y (o0 (%)) i (et (%)) (- ve ()™ (x) - (119)

v () (- v () G (v () A" )

Y]

K

R = = ==
—
=

L
=

IOV () (x - vie (%)) v (%) | " A" (x)-

O

This yields Equation (116).

Take g =1, in Equation (116). Notice that vi(x) €y &
x € X (n) for almost all x with respect to spherical Lebesgue
measure. So, we immediately obtain Equation (117).

Remark 17. Equation (115) tells us the rationality for Defini-
tion 1 of the L,-curvature measure Cp’q(K, Q).

Example 18 (L,-curvature measures of polytopes). Suppose
P e X" be a polytope with outer unit normal vectors v, v,
, o+ V. If A, is a cone consisting of all rays emanating from
the origin and passing through the face of P whose outer
normal is v;. Remember that we abbreviate aj({v;}) by a}
(v,), and from Equation (80), we get the following:

ay(v)=S""NA, ap(u) = v, foralmostallu € A; N "'
(120)
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If 7 < S is a Borel set such that {v,,v,, -, v, } "=
, then a}(y) has spherical Lebesgue measure 0. So, the L
-curvature measure C, (P, Q, -) is discrete and concentrated
on {vy,v,, --+, v, }. From Proposition 15 and Equation (120),
we have the following:

Cpy(PrQ-) = Zd,@vl, (121)

where §, represents the delta measure centered on v;, and
i

| _
di= )| e (122)
S$"Ina;

Example 19 (L,-curvature measures of strictly convex bod-

ies). Let K,Qe %" are strictly convex. Suppose g : "
—> R is continuous, then we start with Equations (116)
and (100)(taking F(x) = [[vi(x)[|§”) and combine the fact
that 0K/0'K has measure 0, it follows that

Ln_]g(v)dCM (K, Q)

2 e g ) o) )

n

1 _
= 2| AT ds, (0 ).
(123)
Using Equation (95), this shows that
1 .
ACyg (K, Q) = v (Vi) 5745, (K. )
(124)

1. _
= ZhK q”vKOVhKHqQ*pdS(K’ )-

Example 20 (L,-curvature measures of smooth convex bod-

ies). Let Q € %" has a C* boundary with everywhere positive
Gauss curvature. Because in this case, S(Q, ) is absolutely
continuous for the spherical Lebesgue measure; therefore,
C,4(K, Q,-) is absolutely continuous for the spherical Lebes-

gue measure, and from Equations (124), (94), and (47), we
get the following:

ac, (K,Qv) 1 ;. - 7
ol Q) Lpacao) e (T () + )57

. det (vth@) + hK(v)I),
(125)

where Vhy (v) represents the gradient of /i on $*~! at v and

ﬁth represents the Hessian matrix of hy with respect to an
orthonormal frame on $"~!. We write Equation (125) as 1/

11
nf,,(K, Q v), that is,

dc, (K, Q.v)

1 gl
Efp’q(K’ Qv)= = : (126)

We say convex body Q with respect to a fixed convex body K
as a parameter have a positive continuous (p, g)-curvature
function fp,q(K, Q).

The weak convergence of L,-curvature measure is an
important property contained in the following propositions.

Proposition 21. Let p,g € Rand Qe 7. IfK; € X with K;
— Ky e Hy, then C, (K, Q,-) — C, (K, Q. -), weakly.

Proof. Let g:S"!'— R is continuous. From Equation
(115) we know that

| omac,x.an
1

= . J 719(06Ki (M)) thfp ((xKi (u)) hI}? ((XKi (1,[))/)}2x (u)du,
g

(127)

for all i. Since K; — K, with respect to the Hausdorftf met-
ric, we have that by — hy , uniformly on $"”', and the sur-
face area measure has the following property (see [2, 7, 23]):

K; — Ky = Sg — Sk, weakly. (128)

Thus,

[ o (005 o (10 e () e

— anilg(“Ko (U))h‘gp (“Ko (u))h;& (“KO (u))pl’éo (u)du.

(129)

It follows that C,, (K}, Q,-) — C, (K, Q, ), weakly. O
O

The following statement contains the absolute continuity
of L,-curvature measure with respect to surface area

measure.

Proposition 22. Let p, g € R. If K, Q € 7, then L,-curvature
measure C, (K, Q, ) is absolutely continuous with respect to
the surface area measure S(K, -).

Proof. Let 7 §"" be such that S(K,7) =0, or equivalently
by definition (Equation (96)), #"'(x¢(n))=0. Then,
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Equation (117) states that

1
C, (K,Qn)=— : 1=
pa(K Q)= LW) (x - vi(x)) (130)

vg(x) ||g;pd?f”_l (x) =0.
Thus, the integration is over a set of measure 0.0J O

The following proposition shows that the L,-curvature

measure including the classical surface area measures and
the Lp—surface area measures. Therefore, the classical surface

area measures and the L,-surface area measures are special
cases of the L,-curvature measures.

Proposition 23. Suppose K, Q € " and p,q € R. Then,

Coy(K: Q) = %Sq(K, I, (131)
C, (KK, ) = %SP(K, ) (132)
C,,(K,B,)= =S,(K,"), (133)
Cpo(K K, ) = %SP(K, )s (134)
Coy(K. B, ") = %Sq(K, ) (135)

Proof. Let 1 C S be a Borel set. From Equations (117) and
(96), we have the following:

(x- vie(x)) T 1da" (x)

xexg (1)

C,ulK Q1) = J
(136)

1
= Cp,q(K’ B, ’7) = ;Sq(K’ ’7)

Therefore, we get Equations (131) and (133).
From Equations (117), (54), (90), and (96), we have the
following:

Gt R lj ) e a7 )
) %| (- Vi (%)) Ty (vie (%)) TP A (x)
J xexy(n) (137)
= lJ (x- v (NP (x)
n Xexg (1)
= %SP(K’ 1)

Therefore, we get Equation (132). Similarly, we can get
the rest.(J

Recall that the concept of the valuation. A function @
defined on the space #" of convex bodies and taking values
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in an abelian semigroup is called a valuation if

O(KUL)+D(KNL)=DK + DL, (138)
whenever K,L,KNL,KUL € #Z".

The set of Borel measures on $"! is represented by .#
(8"'). We are going to prove that now, for fixed indices p
,q€R, and a fixed convex body K e %7, the functional
Hy— M(S""), defined by Q C, (K, Q,) is a valua-
tion; namely, if K, L € #7, are such that KUL € % then

Cpy(KUL Q) +C, (KNL,Q,)

(139)
= Cp’q(K, Q)+ CM(L, Q).
To prove the valuation of Lp-curvature measure, we shall
employ Weil’s approximation lemma (see [4]):

Lemma 24. If K, L € %, are such that K U L is convex, then
K and L may be approximated by sequences of bodies K;, L;
€ K|, that are both strictly convex and smooth and such that
K,UL, e %7.

We appeal to Proposition 21 together with Weil’s
approximation lemma in order to complete our proof.

Theorem 25. Suppose p,q € R and Q € K. Then, the func-
tional

Cpy(» Qo) Ho— M (ST, (140)

Pq
defined by K — C, (K, Q,), is a valuation.

Proof. We will use the fact that if K, L € &7 are such that
KULeX?", then hg; =max {hg, h;} and hy; = min {hg
,h }. We will also take advantage of the fact that vy and
v, are defined "' almost everywhere on the boundaries
of K and L, respectively.

First of all, let us assume that K and L are both strictly
convex. For a fixed 6 ¢ $"!, write 0 as the union of three dis-
joint pieces 6 =0, U0y U8, where

Ok ={ue€O: hy(u)>h(u),0, ={ue: hg(u)<h(u)}

(141)
while
Oy ={ueb : hy(u)=h(u). (142)
In this case, we have the following:
| vl W v ) o
xexgy (Ok) (143)

j g O I ),
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while

j (5 Vi (1)) TS (v () AT ()
x€xgnr (Ok)

(144)
= ) T v ),
xexp (O )
Alternatively, using Equation (117), this has
Cp’q(K UL, Q,0¢)= CM(K, Q, %), Cp)q(K NL,0Ok) (145)

=C,q(L, Q 0x).
Similarly,

Cpa(KULQ.0;)=C, (L, Q.6,),C, (KNL Q6
Cog (K, Q.0,).

(146)
It is also the case that

Cpy(KUL, Q.0) = C, (K, Q.6,),C, (KN L, Q 6)
=C, (L Q.0p).
(147)

In order to see the fact that the last one, we observe that
the strict convexity of K and L forces xy; (6,) = Xgn (05)-

Using the fact that C, (K, , - ) is a measure in the third
argument on "', combined with the fact that the union 6
=0,U0, U0, is disjoint, by adding Equations (145),
(146), and (147) we obtain that

C,y(KUL Q.0)+C, (KNL Q,0)

(148)
= CM(K, Q.0)+ Cp,q(L, Q. 0),
which is the desired result.
For any K, L € %, we resort to Proposition 21 in order
to use the weak continuity of C, (-, Q,-) in the first argu-
ment.[J O

4. Variational Formulas for Lp’q-Mixed
Volumes

Suppose Q is a closed subset of "™ that is not contained in
any closed hemisphere. Let h,: Q— (0,00) and f:Q
— R be consecutive, and 8 > 0. Let h, : Q — (0,00) be a
positive continuous function defined as follows:

log h,(v) =log hy(v) + tf(v) + o(t, v), (149)

for each t € (=6, 8), where o(¢, ): O — R is continuous and
tlimoo( t,-)/t =0, uniformly on Q. And denote by

[h]={x €R" : x-v<h,(v)forallv e Q}, (150)
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Wulff shape determined by h,. We call [h,] the logarith-
mic Wulff shape family generated by (hy, f). If h, is the sup-
port function hy of convex body K, we also put [h,] written
K, f, ]

Let p, : Q2 — (0,00) and g: Q— R be continuous,
and 8 >0. Let p, : Q — (0,00) be a positive continuous
function defined by the following:

log p, (1) =log py(u) + tg(u) + o(t,uw),  (151)
for each t € (-3, §), where again o(t,-): Q — R is continu-
ous and thiqoo(t, -)/t = 0 uniformly on Q. And denote by

(p,) =conv{p (u)u:ueS '}, (152)
the convex hull generated by p,. We call (p,) the logarithmic
family of convex hull generated by (p,, g). If p, is the radial
function p; of convex body K, we also put (p,) as (K, g, ).

The following lemma shows that the support functions
of a logarithmic family of the polar of convex hulls are differ-
entiable with respect to the variational variable.

Lemma 26. Suppose Q ¢ S"! be a closed set that is not con-
tained in any closed hemisphere of S"™. Let p, : Q — (0,00)
and g : Q — R be continuous. If (p,) is a logarithmic fam-
ily of convex hulls of (p,, g) and q € R, then

h! vy =k (v) _
lim (py) (Po) — _qpo‘i(v)g(v),

t—0 t

*

(153)

for all ve S”’1/11<p0>*; namely, for all regular normals v of

(py)"> where Equation (153) holds a.e. with respect to spher-
ical Lebesgue measure. Moreover, there exist 6 >0 and M >
0 so that

log h?m*(v) ~log h?po>*(v) <M|t|, (154)
forall ve S and all t € (=8,9).
Proof. Obviously,
) ()
t—0 t
— ~ppy’(v) lim log p.(v) - log po(v) (155)
==ap" (V)9 (7).
Therefore,
1 - K -q -q
tiy fipy (V) : Moy (V) _ lim 7 (v) —to () 6
==4p" (v)g(v).

Since (p,) and (p,)" are two convex bodies in F#", and
(p,)" — (py)" as t —> 0, there exist m,, m; € (0,00) and
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8, > 0 such that

0 <my <hyyye <myonS*, (157)

for each t € (=8, d,). From this, it follows that there exists
M, > 1 so that

h*q
0< ()"
h -1
Po>

<M,onS"" (158)

It is easily seen that s—12>logs whenever s€(0,1),
whereas s — 1 < M, log s whenever s € [1, M,]. Thus,

|s— 1] < M, |log sj|whens € (0, M). (159)
It follows that
h q —q
h<2‘> 1| <M, |log —-—| whens € (0, M), (160)
{Po)” <P0>
that is
-
it =t | < bt M [log By, ~log M
" min {mo, mi} ‘log hipy: ~log iy,
M,
= —— v llog p, —log py|
min {mo, m }
(161)

on §"!, whenever t € (-8, 9,).

Let M, = megi|g(u)|. Since o(t,-)/t — 0 as t — 0 uni-
ue

formly on Q, we may choose 8, >0 so that for all t € (-5,
8;), we have |o(t,-)| <|t| on Q. From Equation (151) and
the definition of M, we immediately see that

log p, ~log po| < (M, + D] (162)
on S"!, whenever t € (=68,,8,). Let (=68,8) = (-8,,8,) N (-
81, 0,). Together with Equations (161) and (162), we give
Equation (154).0 O

The following theorem gives variational formulas for the
L,-mixed volume and L,-mixed entropy for a family of log-

arithmic convex hulls.

Theorem 27. Let Q € "' is a closed set not contained in any
closed hemisphere of S*'. If p,: Q— (0,00) and g:Q
— R are continuous, and (p,) is a logarithmic family of
convex hulls of (p,, g), then for K € &) and q# 0,

lim Vq(K’ <Pt>*) - Vq(K

t—0 t

»(Po)")

=-a| gwdc,(K.(p)" 0. (163)
Q
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for g=0,
[llno E(K, (p)") _tE(K> {Po)") _ _J g(w)dCy(K, (p,))*, u),
lim log ‘70( (p)") —log Vi (K, (py)”)
t—0 t
1
=—mj (u)dCo(K; (pg)"> )

(164)

Proof. Abbreviate #. by . Recall that 7, is the set of spher-
ical Lebesgue measure zero that consists of the complement,
in $"!, of the regular normal vectors of the convex body K*.
Note that the continuous function

ap. 1 8"\, — ! (165)

is well defined by af.(v) € ag-(v)=
Sn—l \ 170.
Let v € §"'/n,. To see that aj. (v) C O, let

{ag.(v)} for all ve

hg-(v) = maxpy: (W)u-v = pg-(ug)uy - v, (166)
for some u,, € Q. This means that
P (o) thg € Hye (v), (167)

and hence py. (14,)u, € 0K*. Because in addition to p.
(ugy)uy obviously belonging to K*, it also belongs to Hy- (v
). But v is a regular normal vector of K*, and therefore,
e (v) = uy € Q. Then,

ag- (S \ 1) c (168)

From this, Equation (168), Equation (52), and Lemma 9
yield the following facts:

ag (S \ 1) = ag (8" \ 1) € 2 (169)

As Q is closed, by using the Tietze extension theorem,
extend the continuous function g : O — R to a continuous
function g : $"! — R. Therefore, using Equation (169) we
see that

glag(v)) = (g1x)(ax (v)), (170)

for ve ™1\ 5,.
Using Equation (22), the fact that 7, has measure zero,

Equation (51), Equation (154), the dominated convergence
theorem, Lemma 26, Equation (86), Equation (170), Lemma
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14, and again Equation (170), we have the following:

V(K (p)") = V(K {po)”)

lim
t—0 t
1 J [+ () = B ()| i (e () i () v
t—0n sl t
ot J [ e () = B (o (7)) | B e (1) i () v
t—0n N 1/’1(1 ¢

(171)
0 O

According to Equations (70) and (51), the fact that #,
has measure zero, the dominated convergence theorem,
Equation (151), together with Equations (170) and (86),
Lemma 14, and again Equation (170), we have the following:

E(K, (p)") ~E(K. (py)")

[ A :log ( () () o
= Jim, | 18 e (1) 2208 B ()
S
=tim . " 8 ) OB ) 1)
=, SOy =2 | | (910)(@x()pk()dv
- L (L) (W)dCo (K, (po)" 1) = - Jﬂg@)dCU(K’ o)
(172)

Using the same argument as in the second part of the
proof, we get that

1y 198 2 (p)") g V)
t—
_ ! limJ 1°gh<pt>*(“1<(v));loghwo)*(“K(V))
Sn*l

PRy = | 9K, (py)" ).
(173)

The following theorem gives the variational formulas for
the L,-mixed volumes and mixed entropy of the logarithmic

family of Wulft shapes.

Theorem 28. Suppose Q  S"! is a closed set not contained
in any closed hemisphere of S"™!. Let h, : Q — (0,00) and
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f 1 Q—> R be continuous, and [h,| be a logarithmic family
of Wulff shapes associated with (hy, f). If K € &7, then for
q#0,

im, A PDZTEND o fvpac o v
t— Q
(174)
for q=0,
t@o E(K’ [ht]) ;E(K’ [hOD _ JQf(V)dCO(K’ [ho]’ V),
. log VO(K’ [h]) —log VO(K> he]) _ 1 v v
Jim : = g | SO )

(175)

Proof. The logarithmic family of Wulff shape [4,] is defined
as the Wulff shape of h,, where h, is given by the following:

log h, =log h, + tf + o(t,-). (176)
Let p, = i, ". Then,
log p, =log p, —tf —o(t, ). (177)

Let (p,) be the logarithmic family of convex hulls associ-
ated with (p,,—f). Then from Lemma 7, we obtain that

[he] = {p) "> (178)
and the desired conclusions now follow from Theorem 27.
O

We describe the special cases of Theorem 27 and Theo-
rem 28 for logarithmic families of convex hull and Wulft
shape generated by convex bodies.

Theorem 29. If K, Q € #” and g : S — R is continuous,
then for q # 0,

V(K (@ g.)) - V(K. Q)

lim
t—0 t (179)
B _qum g(V)qu (K Qv),
for q=0,
lim E(K, (Q", g, tt> )-EK.Q _ J 9(v)dCy(K, Q, ),
—_ Snfl
lm log V,(K, (Q*, g, tt>*) ~log V,(K, Q)
t—
1
T VK) J  I0CK, Q).
(180)

Proof. In Theorem 27, let p;=1/hg=pq.. Then, p,) =
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(Q*, g.t)". In particular, from (53) we have (p;)* = (p,:)"

Above variational formulas for convex hulls imply varia-
tional formulas for Wulft shapes.

Theorem 30. If K, Q€ &} and f : S"' — R is continuous,
then for q # 0,

lim V(@ r. tj) mZCS qLHf (v)dC,(K, Q,v),
(181)
forq=0,
lim OE(K, Qf, tl) ~E(K,Q) _ J N FAC(K, Quv),

lim log VO(K) [Q,f) t]) - lOg VO(K’ Q)

t—0 t

- L L FM)AC(K, Q. v).

(182)

Proof. The logarithmic family of Wulff shapes [Q, f, o, ] is
defined by the Wulff shape [h,], where

log h, =log hy +tf +o(t,-). (183)

This, and the fact that 1/hg = p,., allows us to define

log p; =log po- —tf —o(t,-), (184)

and p; will generate a logarithmic family of convex hulls (
Q*,—f,—o,t). Since p! = 1/h,, Lemma 7 gives the following:

[Q.f,0,t] =(Q",—f,—0, t)". (185)

Therefore, Theorem 30 now follows directly from Theo-
rem 29.00 O

The following theorem gives the variational formulas of
L,-mixed volumes and mixed entropies with respect to L,
Minkowski combinations.

Theorem 31. If p,qe R" and K, L, Q € X, then for p+0,
q#0,

i Va (K, Q+pt-L) =V, (K, Q)
t—0 t

JJ 1, (v)dC, (K, Q.v),
p s

(186)

Journal of Function Spaces

for p=0and q#0,

V(K Qtt-L) -V (K, Q)
lim

t—0 t

= qJ log by (v)dCy(K, Qv),
Snfl

(187)

for p#0and q=0,

i 5002 f) ~E(K,Q)
t—

1
_ I_)LH H(v)dC, (K, Q ),

(188)

log Vy(K, Q+,t-L) ~log V,(K, Q)
m

t—0 t

1
ey L W (1)dC, (K, Q u),

(189)

and ifp=q=0,

iy EOG Qo 1)~ E(K, Q)
t—0 t
:J log h; (v)dCy(K, Q,v),
- _ (190)
lim log V(K, Q+yt-L) —log V,(K, Q)
t—0 t

1
= VE®) L}H log h; (v)dCy(K, Q, u).

Proof. For small t, h, is defined by the following:

W =, + thf for p # 0, h, = hhj for p=0. (191)

From Equations (61) and (62), the Wulff shape [h,] = Q
+,t- L. For sufficiently small ¢, it follows from Equation
(191) that

th
logh, =log h, + ——% +0(t,-), p+0,
g Ny g 1qQ Phg (), p (192)

log h, =log hy +tlogh;, p=0.

Let f = (1/p)(h}/hf)) when p #0, and let f = log h; when
p=0. The required formulas now follow Theorem 30 and
Equation (105).00 Ul

We use the normalized power function, and we can write
the formula in Theorem 31 as a single formula.

Theorem 32. Suppose p,q € R. For K,L,Q e %7,

p )
7 Va(K QL) = Ln_lhf(v)dcp’q(K, Qv). (193)
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For L, Minkowski linear combinations, it would help to
have an affine version of Theorem 31. This is contained in

Theorem 33. Suppose g+ 0. If K, L, Q € %, then

Vq(K, (I-1)-Q+yt-L) - Vq(K, Q)

tlimo ;
- 194
=qJ log ") 4 (K, Qv), o
sl ]’lQ(V) a
limOE(K’ (I-1)- Q+tot 1) - E(K,Q)
t—
195)
() (
=| log ——2dC,(K,Q,v),
Jy o8 ey 4ot @
limo log Vo(K, (1-1)- QJ;ot-L) —log V,(K, Q)
t—>
(196)
21 hi(v)
Proof. Let
hy=hg by (197)

From Equation (58) we know the Wulff space [h,] = (1
—t)- Q+yt- L. From the above definition of h,, it follows
immediately that for sufficiently small ¢,

log h, =log h, +t log Z—L (198)
Q

Let f=logh;/hy. The desired formulas now follow
directly from Theorem 30.0] O

Theorem 34. If p # 0 and q # 0, then for all K, L, Q € " and
¢ € SL(n),

Cpq (9K, Q. -) = 914G, 4(K, Q. ), (199)
Cpo($K, Q. ) = ¢,H4C, 4(K, Q. ), (200)

Cy(¢K, ¢Q. ) = $4-C, (K, Q. ), (201)
Co(¢K, ¢Q, ) = ¢p/-Cy(K, Q, ). (202)

Proof. Obviously, the case p#0 and g=0 is handled by
Equation (200). The case p =0 and g # 0 is handled by Equa-
tion (201), while the case p =0 and g = 0 is handled by Equa-
tion (202).

We adopt the methods and techniques of paper [4].
Recall that Haberl and Parapatits refer to the [9] classified
measure-valued operators on %, which are SL(n)-inverse
degree p and corresponding to the transformation behavior
in Theorem 34. From Equations (63), (65), and (186), we
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see that for all K, L, Q € %) and all ¢ € SL(n),

W (v)dC, (K, Qv),

Snfl

[ Hutcy (o000 = |

(203)

or equivalently for all K, L, Q € %7 and all ¢ € SL(n),

| e, ex0en=| K., 0, ke,
(204)
By Definition 8, and note the important fact that support

functions are positively homogeneous of degree 1, from
Equations (45) and (204), we have the following:

J h{(y)d¢;4cp)q(1<, Qv)
snfl

- J lh{(qs—rv)dcp,q(K, Q)
: (205)
- My, (v)dC, (K, Q. v)

= h’L’(v)de’q@)K, Q. v).

Snfl

This shows that the measures ¢;—{Cp)q(K, Q) and C,,(

K, $Q, -) when integrated against the p-th power of support
functions of bodies in F#7 are identical; thus, Lemma 12 now
indicates that

Cp’q(¢K’ (/)Q’ ) = (/)lt)_'Cp,q (K’ Q ')) (206)

it can be concluded that Equation (199).

The proof for Equation (200) is the same as the proof for
Equation (199): As long as p#0, it will be the case that
Equation (204) continues to hold even if g =0 provided we
appeal to Equations (188) and (71) when previously we
had turned to Equations (188) and (65).

From Equations (63), (65), and (194), we know that for
all K, L, Qe %7 and all ¢ € SL(n),

h¢’1L(V)

lo
J o8 he(v)

_ hy(v)
_ J _log e dC, (9K, $Q, ).

qu (K,Q,v)
(207)

In Equation (207), choose L = B. Then, by Equation (45),
we see that by (v) = hy (¢7'v) = [¢7v], and (6.15) becomes
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the following form:

J log I (v)dC, (K, Q,v)
Snfl
=J log |¢~v|dC,(K, Q. v) (208)
SYL—]

+ LH log h¢K(v)qu(¢K, $Q, v),

for all ¢ € SL(n) and all K, Q € #". Together with Equations
(207) and (208), we have the following:
h¢-1L(V>

1
Js"-l o8 |</>_tVI
- g wyic, 000,

qu (K, Q,v)
(209)

this and Equation (45) give that for all ¢ € SL(n) and all K
b LS Q E ‘%2)

J ] loghL(<¢_tv>)qu(K, Q)
s (210)

_ J log I, (v)dC, (¢K, $Q, v).
Sn*l
Equivalently,

J log I, (v)d¢t4C, (K, Q. v)
s (211)

= LH log h; (v)dC,(¢K, ¢Q, v),

for all ¢ € SL(n) and all K, Q € #. Using Lemma 12, we see
that Equation (211) yields

Cy (9K, Q) = $5-4C, (¢K, $Q, v), (212)

for all ¢ € SL(n) and all K, Q € 7. This establishes Equa-
tion (201).

The proof of Equation (202) is identical to the proof of
Equation (201) except that instead of appealing to Equations
(194) and (65) we appeal to Equations (195) and (71).0 O

5. The Lp’q-Mixed Volumes

For K, L € %7, the L,-mixed volume V (K, L) has the inte-
gral representation

V,(K.L)= ! L hy (v dS, (K, v).

. (213)
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From Equation (115), with g = p and g = h¢, we have that

| e, x.an)

. (214)

= 2| P () e (e
By Equation (131), the L,-mixed volume V (K, L) has a
dual integral formulation. If K, L € %7, then

P
kD=2 ] (L) i @9

n

The dual integral formulation of L,-mixed volume was

first introduced by Lutwak et al. in [4]. This leads us to
define following L,  -mixed volumes.

Definition 35. Let p,g € R and K, L, Q € #,. The Lp,q-mixed
volume V, (K, L, Q) is defined by the following:

(216)

VKL= [ R )4C,,(K.Qv)

Snfl

Using Equation (115) with g = h’i, Equation (216) can be
written as follows:

Ve 0= [ () ) (52) (e

n

(217)

From Equations (216) and (124), the Lp-mixed volume
V(K L, Q) can be written as follows:

1 _ _
Vp)q(K, LQ)= E‘[anh}z(v)hK(V)l qhQ(v)th ois)

(v (Vhg(v)))dS(K, v),

where the function vy : {Vhg(v): ve S} cd'K — §"L.

From Lp)q—mixed volume (Equation (30)) (or Equation
(217)), the Lp-mixed volume (Equation (9)) (or Equation
(22)) will be shown to be the special cases.

Proposition 36. Suppose p,qe R. If K, L, Q € X, then

VM(K, LK)= V,(K,L), (219)
V(K L, Q) =V, (K, L), (220)
Vpg(K L L) =V (K, L), (221)
V,,(K,L,B)=V,(K,L), (222)
V(KL Q) =V, (K, Q). (223)

Proof. Identity (Equations (219)-(221)) follow from
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Equation (22) and Equation (34) (or Equation (217)). Simi-
larly, we can prove Equations (222) and (223). O

Proposition 37. The L,, -mixed volume V,, is SL(n)
-invariant. That is, for p,q€ R, K,L,Q € X, and ¢ € SL(n
))

Vp’q(gbK, oL, Q) = VM(K, L, Q). (224)

Proof. For p =0, the conclusion follows from Equation (223)
and the SL(n)-invariance of L,-mixed volumes (Equation
(65)). We assume p # 0. By Definition 35, Equation (199),
and Equation (200), the fact that support functions are pos-
itively homogeneous of degree 1, Equation (45), and Defini-
tion 8, we have the following:

V,4($K, $L, ¢Q)
=| M (v)dC,,($K,$Q,v)

Snfl
= | L ()dgjAC, (K, Q)

S (225)
- KL (¢7v)dC, (K, Qv)

) K (v)dC, (K, Q,v)

SYI
V,, (KL Q).

From the dual Equation (217) of L,, -mixed volume and
Equation (44), we have for real 1 >0,

V, (AK, AL, AQ) = A"V, (K, L, Q). (226)

O

Proposition 37, together with Equations (216) and (226),
shows that for ¢ € GL(n),

V(8K 8L, ¢Q) = 9|V, (K, L, Q). (227)

For L, ,-mixed volume, the following inequality is a gen-
eralization of the L,-Minkowski inequality for L,-mixed
volume.

Theorem 38. Suppose p, q are such that q>1 and p <0. If
K,L,Qe X", then

Vpa(K L, Q)" = V(K)"MV(LYV(Q)T?, (228)

with equality if and only if K, L, Q are dilates when q > 1 and
K, Q are homothetic when q=1.
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Proof. From Equations (21) and (217), we have the follow-
ing:

Vol 1,Q) = 1 | ) () ) )

%Ln_lhL(“K(”))th(“K(“))WdSq(K, )
1

= L [y (ot (1) )11 [Py (enge ()] TS, (K, w).

(229)

From this, by the Holder inequality (see [47]), the dual
integral formulation (Equation (22)) of Lp—mixed volume

and LP-Minkowski inequality (Equation (11)), we have the
following:

Vralfol Q2 (l Ln,th(“K(u))"dSq(K, u))P/q

n

. (l JS”" ho (e (u))7dS, (K, u)) (a-p)iq

n

(1. (,’j—;)qu(u))pK(u)"du)m

1 hQ q (a-p)/q
(5. () taxtwnpcturan)
= Vq (K, L)P/q Vq (K, Q)(q-P)/q

2 V(K)(niq)pmq V(L)P/” V(K)((”’W(‘i*}’))/"q V(Q)(q—p)/n
= V(Q) (g-p)in V(L)P/n V(K)(n—q)/n'
(230)

O

The equality conditions follow from the equality condi-
tions of Holder inequality and the L,-Minkowski inequality

(Equation (11)) for L,-mixed volumes. Namely, the equality

for the above inequality holds if and only if K,L,Q are
dilates when g > 1 and K, Q are homothetic when g =1.

Over the past three decades, valuation theory has
become an ever more important part of convex body geom-
etry. See, e.g, [11-13, 18, 48-53]. The convex L, -mixed
volume is the valuation for each entry.

Proposition 39. The L, -mixed volume V, (K,L,Q) is a
valuation over H', with respect to all K, L, and Q.

Proof. The L, ,-mixed volume V, (K, L, Q) is a valuation on

K" respect to the third argument can be seen easily by writ-
ing Equation (216) as follows:

(231)

1
Vpg(K.LQ) =~ L W (w)dC, (K, Q, u),

and from Equation (139) (or Theorem 25), observing that
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for K, K, € Z?,, we have the following:

dCM(Kl, Q) +dC,,(K; Q) (232)
= de’q(K1 UK,, Q")+ dCM(K1 NK,, Q).

Together with Equations (216) and (232), we have the
following:

V,q(Ky UKy, L Q)+ V, (K N Ky, L, Q)

(233)
=V, (KL Q)+ V, (K, L, Q).

Namely, V, (K,L,Q) is a valuation in the third

argument.
Observing that for L,, L, € %, such that L, UL, € #7.
Then, we have the following:

W oo, +h o, =h +h ,onS"" (234)
Note that h; ; =max {h; ,h; } and h; o =min {h;

»hy }. Together with Equations (216) and (234), we see that

V,q(K L, Q) is a valuation in the second argument, i.e,

Journal of Function Spaces
is defined by the following:

- 1
dCy(K, Q w) = ————-dC (K, Q w).

TEQ (240)

IfK, L, Q€ X}, then for each real p, g € R, we define the
normalized L, ,-mixed volume by the following:

1/p
_ V,. (K L,Q)
— Pq

- <L (Z(L)((l:l)))p(aK(u))qu(K, ,u)> "
(241)

Let p — 0. We give the following:
_ h, _
Vo, 1.Q) =exp (| tog e ) ()G, (K. Q) ).
(242)

The g-th mixed entropy E (K, L, Q) of convex bodies

- .
V(K LiULy, Q)+ V, (K, Ly NLy, Q) =V, (K, L, Q) + Vp,q(KgiIZ? % K, is defined by the following:

(235)

Note that if Q,,Q, € #|, are such that Q, UQ, € %7,
then we have the following:

q-p P _pd-p  pap n-1
ho.ua, + 1o na, =hg, +hg, onS". (236)

Together with Equations (218) and (236), we see that
V,q(K L, Q) is a valuation in the first argument, i.e,

V(KL QUQy) +V, (K, L QN Q) =V, (K, L Q) + V, (K, L, Q).
(237)

Let K, Qe %#. The g-th mixed cone-volume measure
C,(K,Qw) of K and Q is a Borel measure on the unit

sphere "' is defined by for a Borel w € $"! and u € w,

(K, Q) = 1 (2 (axlu)peuPds (238

Since the g-th mixed volume, V (K, Q) has a dual inte-
gral formulation:

v Q= 1] (52) ke (9

n

We can turn the g-th mixed cone-volume measure into
the probability measure on the unit sphere by normalizing
it by g-th mixed volume of the bodies. The g-th mixed
cone-volume probability measure Cq(K, Q;-) of K and Q

Eq(K, LQ)= Ln_l log (Z—Z) (ocK(u))qu(K, Q u). (243)

In particular,

Voo(K, LK) = Vo(K, L), E,(Q L,Q) =E(QL).  (244)

d O

6. The Lp)q-Minkowski Problems

The existence and uniqueness of L, ,-Minkowski problem is

the central problem to be investigated here. Its existence
problem can be expressed as follows:

Problem 40. Let p, g € R, and Q € %7, is fixed. Given a Borel
measure y € /(S""), what are necessary and sufficient con-
ditions on y such that there exists a K € %) whose L,-cur-

vature measures Cp)q(K, Q, ) is the given measure u?

L,-Minkowski problem when g = p. When the given data
measure y has a density f, it follows from Equation (125)

that L, .-Minkowski problem is equivalent to solving the fol-

lowing Monge-Ampére-type equation on $"':
By o (V][4 det (vzh + hI) =f,  (245)

where h is the unknown function on "', and V# is the gra-

dient vector function in R" of the extension from & to R" as
a vector function that is positively homogeneous of degree 1.
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If we assume that the range of the gradient function Vh is D,
thenv : D— §"! is also an unknown function related to h.
Our uniqueness result for the L, .-Minkowski problem is

presented in the following:

Problem 41. For fixed p,q € Rand Q € #,if K, L € #7 such
that

Cp)q(K’ Q’ ) = Cp,q (L’ Q’ ')r (246)

then how is K related to L?

Now, we establish uniqueness of the solution to the
problem with g > for the case of polytopes.

Theorem 42. Let P,P' € X" be polytopes and let Q € K.
Suppose

Cpa(P. Q) =C,, (P’, Q ) . (247)

Then, P =P’ when q>n and P’ is a dilate of P when q
=n.

Proof. According to Equations (121) and (122), we get that
the curvature measures of polytopes are discrete, and that
Cpy(P,Q, ") = CM(P', Q, ) implies that P and P' must have
the same outer unit normal vectors v;, v,, -+, v,, and

Cpy(P.Q-)=C,, (P’, Q ) =Yds,, (248)
i=1

where §, denotes the delta measure concentrated at v;, and

1 ) ! n
d; = ;hgp(vi)hpq(vi)J pp(u)du
S$Ina;

(249)

1 ~ - n
= ;h‘ép(vi)hpfl(vi)J Pl (u)du.

sna

Here A; and A'; are the cones formed by the origin and
the facets of P and P" with vector v,, respectively.

Assume that P# P'. Tt is easy to see that PC P’ is not
possible. Set A be the maximal number with AP ¢ P'. This

has A < 1. Since AP and P’ have the same outer unit normal
vectors, there is a facet of AP which is contained in a facet of

P’. The outer unit normal vector of those facets is denoted
by v; . It follows that

hp(vi,) =hp (vi)>
A <A, (250)

pap(u) = pp(u)forallu e A; .
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Thus,
1 . - n
Ehgp(vil)hkg(vil)blm Pl (u)du
1 . (251)
< LHP (v, )y (Vil)an-lnA' " () du

with equality if and only if A; = A'il. By this and Equation
(249), we can obtain that

A<, (252)

But A < 1 implies that A"™? > 1 if g > n. Obviously, this is
a contradiction.(] O

If g = n, then Equation (249) forces equality in Equation
(251). So, 4; = A'il, and the facets of AP and P’ with outer
unit normal vector v; are the same. Let v; is the outer unit
normal vector to a facet, which is adjacent to the facet whose
outer unit normal vector is v; . Thus, the facet of AP with
outer unit normal vector v; is contained in the facet of p'
with outer unit normal vector v; . A similar argument holds
that the two facets are the same. Continuing in this manner,
it follows that AP =P’

7. Several Other Problems

Here, we present several issues that need to be discussed in
the future. Some of the definitions and problems below are
different from the paper [40, 43, 44, 54].

7.1. L, ,-Mixed Affine Surface Areas. In [7], Lutwak defined
the L,-affine surface area ,(K) for p > 1 by the following:

n "0, (K) "D = inf {nV, (K, L*)V(L)P" : Le S1}.
(253)

Hug in [55] observed that the LP-afﬁne surface area is
well defined for 0 < p < 1.

The following affine isoperimetric inequality was estab-
lished in [7] for p>1, and in [56] for 0<p< 1. If K € 7,
then

QP(K)”+P <n"Pw?V(K)"P,

p>0, (254)

with equality if and only if K is an ellipsoid. Here, w,, is the
volume of the n dimensional unit sphere.

Definition 43. Suppose g € R. For K € &7 and Q € &7, the g
-th curvature measure Cq(K, Q*,-) of K (related to star body
Q) is defined by the following:

C,(K, Q1) =~ e g,

nL,w (pa) (@) (259)
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for each Borel ¢ $*1, and Lp—curvature measure Cp)q(K,
Q",-) of K is defined by the following:

Pr() 4

N N 4 < ' B
G (K, Q1) = nL;((n)P‘é((XK(M)) (thK)q(“K(”))

1 .
-] Pl ()4, (K, Q")
(256)
for each Borel < S".
It follows from Definition 43 that
dC, (K, Q") = phdC,(K, Q" ). (257)

Definition 44. Suppose g€ R. If Ke #),L e S), the g-th
mixed volume V (K, L") is defined by the following:

N . (O
VL) = anH (PLhx) (e (1))

1 _
_ ;J Py (u)dS, (K, u).
snfl

(258)

Definition 45. Suppose p,q € R.If K € #) and Q, L € &7, the
L, -mixed volume V,, (K, L", Q") of K and L* (with respect
to Q) is defined by the following:

V(K L*,Q") = J pL(v)’Pde’q(K, Q*,v). (259)

Snfl

Inspired by [40, 54], from Equations (258) and (259) we
define Lp’q-mixed affine surface area as follows:

[

-mixed affine surface area Qp’q(K, Q) of K (relate to Q) is
defined by the following:

Definition 46. For p€R,q>0 and K € %, Qe &y, the L,

n_mep,q (K, Q) (n+q)/n

(260)
=inf {nV, (K,L*,Q")V,(L, Q" : Le S} }.

When Q = L, from Equation (219) we have the following:

V(KL L) =V, (K, L"). (261)

0Q,,(K, L) is the L -affine surface area O, (K).

Problem 47. For the Lp)q-mixed affine surface area, does it

maintain affine invariance and continuity? How to establish
its affine isoperimetric inequality?

7.2. Lp’q—Mixed Geominimal Surface Area. In [7], Lutwak
defined the L,-geominimal surface area G,(K) by the follow-
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ing:
@"G,(K) = inf {an(K, L)V(L*Y": Le ,%} (262)

and proved the following affine isoperimetric inequality:
If K e %7, then

G,(K)" <n"@h V(K)"?,

A (263)

with equality if and only if K is an ellipsoid.
Motivated by the L,-mixed geominimal surface area

(Equation (257)), we define Lp,q-mixed geominimal surface

area, G, (K, Q), of K relative to Q as follows:

Definition 48. For peR,q>1, and K,Qe Xy, the L,,
-mixed geominimal surface area G, (K, Q) of K relative to
Q is defined by the following:
"G, (K, Q) = inf {nVM(K, LQV,(LQ)": Le %}
(264)

When Q = L, from Equation (219) we have the following:

V(K L L) =V, (K, L). (265)

G,4(K, L) is the L -geominimal surface area G,(K).

Problem 49. For the L, -mixed geominimal surface area,

does it maintain affine invariance and continuity? How to
establish its affine isoperimetric inequality?

7.3. L, -John Ellipsoids. Suppose p € (0,00) and K is a con-
vex body in R" with the origin in its interior. Among all
origin-symmetric ellipsoids E, the unique ellipsoid that
solves the constrained maximization problem:

()

subject to \_/p(K, E)<1

(266)

is called the Lp—]ohn ellipsoid of K which defined in [45]
and denoted by E, K. Clearly, E,B = B. Here,

V,(K.E) = (%(K) JS (ZIE(EZ)))th(u)dS(K, u)) Y p<oo

(267)

is the normalized Lp-mixed volume of K and E. In the case
p = 00, we define the following:

Voo (K, E) =sup {hE(u) : u € supp S(K, )} (268)

hy (u)

In general, the L,-John ellipsoid E,K is not contained in
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K (except when p =o00). However, when 1< p < oo, it has
V(E,K) < V(K). In reverse, for 0<p< o0, the L, version
of ball’s volume-ratio inequality [45] states that

V(K) 2"
VER) <o (269)

with equality if and only if K is a parallelotope.
We know that from Equation (241), for 0 < p <00,g € R,
the normalized L, -mixed volume is calculated by the fol-

lowing:

V,a(K L Q)= (L (MYdCQ(K, Q u)) l/p.

ha(ax (1))

In the case p = 0o, define the following:

Voo,q(K, L, Q) = max {M uesupp C (K, Q, )}

ha(ax ()
(271)
By Equation (271), we have the following:
Vooq(K, L, Q) < 1if and onlyif L € Q. (272)

Let &" denote the class of origin-symmetric ellipsoids in
R”. Inspired by the constrained maximization problem
(Equation (266)), the reader may consider its L, -version.

Problem 50. Let 0<p<oo,q€R. For K,Qe %7, find an
ellipsoid, among all origin-symmetric ellipsoids, which
solves the following constrained maximization problem:

(V(E)) 1/n
max| ——
Ee&" w

n

(273)
subject to VM(K, E,Q)<1.

An ellipsoid that solves the constrained maximization
problem will be called L, -John ellipsoid for K,Q and

denoted by E, (K, Q).

In particular, when Q =K, from Equations (219) and
(22), we have the following:

V, (K EK)=V,(K,E),V (K,K)=V(K).  (274)

Thus, V,,,(K, E, K) = V,(K, E). So, Problem 50 degener-
ates into the problem.

Data Availability

All data included in this study are available upon request by
contact with the corresponding author.
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