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We have defined the variable exponent of the Cesàro complex function space of formal power series. We have constructed the
prequasi-ideal generated by s -numbers and this new space of complex functions. We present some topological and geometric
structures of this class of ideal. The existence of Caristi’s fixed point is examined. Some geometric properties related to the fixed
point theory are presented. Finally, real-world examples and applications show solutions to some nonlinear difference equations.

1. Introduction

Since the publishing of the book [1] on the Banach fixed
point theorem, several mathematicians have studied possible
extensions to the Banach fixed point theorem. The nonlinear
analysis relies heavily on the Banach contraction principle, a
powerful nonlinear analysis tool. The variable exponent
Lebesgue spaces LðrÞ contain Nakano sequence spaces. Vari-
able exponent spaces were thought to offer adequate frame-
works for the mathematical components of several issues.
Standard Lebesgue spaces were inadequate throughout the
second half of the twentieth century. Since these spaces
and their effects have become a well-known and efficient
instrument for solving a range of problems, they have
become a flourishing topic of research, with ramifications
that extend into a wide variety [2] of mathematical disci-
plines. The study of variable exponent Lebesgue spaces LðrÞ
received additional impetus from the mathematical descrip-
tion of non-Newtonian fluid hydrodynamics [3, 4]. Non-
Newtonian fluids, also known as electrorheological fluids,
have various applications ranging from military science to
civil engineering and orthopedics. Guo and Zhu [5] investi-
gated a class of stochastic Volterra-Levin equations with
Poisson jumps. Mao et al. [6] were concerned with neutral

stochastic functional differential equations driven by pure
jumps (NSFDEwPJs). They proved the existence and
uniqueness of the solution to NSFDEwPJs whose coefficients
satisfy the local Lipschitz condition and established the pth
exponential estimations and almost surely asymptotic esti-
mations of the solution for NSFDEwJs. Yang and Zhu [7]
concerned with a class of stochastic neutral functional differ-
ential equations of Sobolev type with Poisson jumps. The
mapping ideal theory is well regarded in functional analysis.
Using s-numbers is an essential technique. Pietsch [8–11]
developed and studied the theory of s-numbers of linear
bound mappings between Banach spaces. He offered and
explained some topological and geometric structures of the
quasi ideals of ℓp -type mappings. Then, Constantin [12]
generalized the class of ℓp -type mappings to the class of cesp
-type mappings. Makarov and Faried [13] showed some inclu-
sion relations of ℓp -type mappings. As a generalization of ℓp
-type mappings, Stolz mappings and mappings’ ideal were
examined by Tita [14, 15]. In [16], Maji and Srivastava studied

the class AðsÞ
p of s-type cesp mappings using s-number

sequence and Cesàro sequence spaces and they introduced a

new class AðsÞ
p,q of s-type cesðp, qÞ mappings by weighted cesp

with 1 < p <∞. In [17], the class of s-type Zðu, v ; ℓpÞ
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mappings was defined and some of their properties were
explained. Yaying et al. [18] defined and studied χη

r , whose
its r-Cesàro matrix in ℓn, with r ∈ ð0, 1� and 1 < η <∞. They
explained the quasi-Banach ideal of type χη

r , with r ∈ ð0, 1�
and 1 < η <∞. Kannan [19] gave an example of a class of
mappings with the same fixed point actions as contractions,
though that fails to be continuous. The only attempt to
describe Kannan operators in modular vector spaces was once
made in Reference [20]. Bakery and Mohamed [21] investi-
gated the concept of a prequasinorm on Nakano sequence
space with a variable exponent in the range ð0 ; 1�. They
discussed the adequate circumstances for it to generate
prequasi-Banach and closed space when endowed with a
definite prequasinorm and the Fatou property of various pre-
quasinorms on it. Additionally, they established a fixed point
for Kannan prequasinorm contraction mappings on it and
the prequasi-Banach mappings’ ideal generated from s
-numbers belonging to this sequence space. Also, in [22],
they found some fixed points results of Kannan nonexpan-

sive mappings on generalized Cesàro backward difference
sequence space of the nonabsolute type. The set of nonneg-
ative integers, real, and complex numbers will be denoted
by N , R, and ℂ, respectively. By RN and R+N , we denote
the space of real and positive real sequences. By ℓ∞ and ℓr,
we denote the spaces of bounded and r-absolutely summa-
ble sequences of R.

Lemma 1 (see [23]). Suppose τq > 0 and yq ∈R for all q ∈
N , then

yq + zq
��� ���τq ≤ 2K−1 yq

��� ���τq + zq
�� ��τq� �

, ð1Þ

where K =max f1, supqτqg.

If τ = ðτaÞ ∈R+N and τa ≥ 1, for all a ∈N , the variable
exponent Cesàro complex function space is denoted by

For more information on formal power series spaces
and their behaviors, see [24–27]. Many fixed point theo-
rems in a particular space work by either expanding the
self-mapping acting on it or expanding the space itself. In
this paper, we have introduced the concept of premodular
special spaces of formal power series, which are important
extensions of the concept of modular spaces. We have built
large spaces of solutions to many nonlinear summable and
difference equations. It is the first attempt to examine the
fixed point theory and Caristi’s fixed point in certain
premodular special spaces of formal power series. The
purpose of this study is arranged, as follows: In Section 2,
we present and study the space ðCτð⋅ÞÞh equipped with a
definite function h. In Section 3, we suggest a generalization
of Caristi’s fixed point theorem. In Section 4, the mapping
ideals formed by s-numbers and this function space are
constructed, and their geometric and topological properties
are presented. Speciffically, we explore, in Section 5, some
geometric properties connected with fixed point theory in
ðCτð⋅ÞÞh. Finally, in Section 6, we discuss several applica-
tions of solutions to summable equations and illustrate
our findings with some instances.

2. Some Properties of Cτð⋅Þ

In this section, we investigate sufficient setups of
Cτð⋅Þ equipped with definite function h to be prequasiclosed
and Banach (ssfps). We also present the Fatou property of
various h on Cτð⋅Þ.

Theorem 2. If ðτqÞ ∈ ℓ∞ and τa > 1, for all a ∈N , then

Cτ ⋅ð Þ = f ∈ℂℂ : f yð Þ = 〠
∞

v=0
f̂ vy

vand h μfð Þ<∞, for any μ > 0

( )
:

ð3Þ

Proof.

Cτ ⋅ð Þ = f ∈ℂℂ : f yð Þ = 〠
∞

v=0
f̂ vy

v and h μfð Þ<∞, for some μ > 0
( )

= f ∈ℂℂ : f yð Þ = 〠
∞

v=0
f̂ vy

v, inf μj jτa〠∞
a=0

∑a
k=0 f̂ k
��� ���

a + 1

0@ 1Aτa8<:
≤〠∞

a=0

∑a
k=0 μ f̂ k
��� ���

a + 1

0@ 1Aτa

<∞, for some μ > 0a

)

= f ∈ℂℂ : f yð Þ = 〠
∞

v=0
f̂ vy

v,〠∞
a=0

∑a
k=0 f̂ k
��� ���

a + 1

0@ 1Aτa

<∞

a

8>><>>:
9>>=>>;

= f ∈ℂℂ : f yð Þ = 〠
∞

v=0
f̂ vy

v and h μfð Þ<∞, for any μ > 0
( )

:

ð4Þ

Let us indicate ϑ, the zero function ofH and the space of

Cτ ⋅ð Þ = f ∈ℂℂ : f yð Þ = 〠
∞

v=0
f̂ vy

v and h μfð Þ<∞, for some μ > 0
( )

, when h fð Þ = 〠
∞

a=0

∑∞
k=0 f̂ k
��� ���

a + 1

0@ 1Aτa

: ð2Þ
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finite formal power series by F, i.e, when f ∈F, then there is
k ∈N so that f ðyÞ =∑k

a=0 f̂ ay
a. Nakano [28] introduced the

concept of modular vector spaces.

Definition 3. Suppose H is a vector space. A function h : H
½0,∞Þ is said to be modular, if the next conditions hold

(a) If g ∈H , then hðgÞ ≥ 0 and g = ϑ⟺ hðgÞ = 0
(b) hðηgÞ = hðgÞ holds, for all g ∈H and jηj = 1
(c) The inequality hðαg + ð1 − αÞf Þ ≤ hðgÞ + hð f Þ sat-

isfies, for all g, f ∈H and α ∈ ½0, 1�

Definition 4 (see [29]). The space H = f f ∈ℂℂ : f ðyÞ =
∑∞

a=0 f̂ ay
ag is said to be a special space of formal power series

(or in short ssfps), if it verifies the following settings:

(1) eðpÞ ∈H , for every p ∈N , where eðpÞðyÞ =∑∞
a=0e

ðpÞ
a ya

= yp

(2) For all g ∈H and j f̂ aj ≤ jĝaj, for every a ∈N , then
f ∈H

(3) If g ∈H then g½⋅� ∈H , where g½⋅�ðyÞ =∑∞
p=0

dg½p/2�yp
and ½p/2� indicates the integral part of p/2

Definition 5 (see [29]). A subspace Hh of the ssfps is said to
be a premodular ssfps, if there is a function h : H ⟶ ½0,∞Þ
verifies the following conditions:

(i) If g ∈H , then hðgÞ ≥ 0 and g = ϑ⇔ hðgÞ = 0
(ii) When f ∈H and λ ∈ℂ, then there are Q ≥ 1 such

that hðλf Þ ≤ jλjQhð f Þ
(iii) Suppose f , g ∈H , then there are P ≥ 1 such that h

ð f + gÞ ≤ Pðhð f Þ + hðgÞÞ
(iv) Suppose jcf b j ≤ jcgb j, for all b ∈N , then hð f Þ + hðgÞ
(v) There are P0 ≥ 1 such that hð f Þ ≤ hð f ½⋅� ≤ P0hð f ÞÞ
(vi) The closure of F=Hh

(vii) There are ξ > 0 so that hðλeð0ÞÞ ≥ ξjλjhðeð0ÞÞ, where
λ ∈ℂ

Clearly, the concept of premodular vector spaces is more
general than modular vector spaces, an example of premod-
ular vector space but not modular vector space.

Example 1. The function hð f Þ =∑∞
q=0ð∑q

p=0j f̂ pj/ðq + 1ÞÞð2q+3Þ/ðq+4Þ

is a premodular (not a modular) on the vector space Cð
ðð2q + 3Þ/ðq + 4ÞÞ∞q=0Þ. As for every f , g ∈Cð
ðð2q + 3Þ/ðq + 4ÞÞ∞q=0Þ, one has

h
f + g
2

� �
= 〠

∞

q=0

∑q
p=0 f̂ p + ĝp
� �

/2
��� ���
q + 1

0@ 1A2q+3/q+4

≤
2ffiffiffi
84

p h fð Þ + h gð Þð Þ,

ð5Þ

an example of premodular vector space and modular
vector space.

Example 2. The function hð f Þ = inf fα>− : ∑∞
q=0

ð∑q
p=0j f̂ p/αj/ðq + 1ÞÞð2q+3Þ/ðq+4Þ ≤ 1g is a premodular (modu-

lar) on the vector space Cððð2q + 3Þ/ðq + 2ÞÞ∞q=0Þ.

Definition 6 (see [29]). A subspace Hh of the ssfps is said to
be a prequasinormed ssfps, if there is a function h : H ⟶
½0,∞Þ verifies the following conditions:

(i) If g ∈H , then the hðgÞ ≥ 0 and g = ϑ⟺ hðgÞ = 0
(ii) When f ∈H and λ ∈ℂ, then there are Q ≥ 1 such

that hðλf Þ ≤ jλjQhð f Þ
(iii) Suppose f , g ∈H then there are P ≥ 1 such that

hð f + gÞ ≤ Pðhð f Þ + hðgÞÞ

Recall that Hh is said to be a prequasi-Banach ssfps,
when Hh is complete.

Theorem 7 (see [30]). All premodular ssfps Hh is a prequa-
sinormed ssfps.

Theorem 8 (see [30]). All quasinormed (ssfps) is a prequasi-
normed (ssfps).

Definition 9.

(a) The function h on Cτð⋅Þ is said to be h-convex, if

h αf + 1 − αð Þgð Þ ≤ αh fð Þ + 1 − αð Þh gð Þ, ð6Þ

for every α ∈ ½0, 1� and f , gCτð⋅Þ

(b) fgqgq∈N ⊆ ðCτð⋅ÞÞh is h-convergent to g ∈ ðCτð⋅ÞÞh, if
and only if, limq⟶∞hðgq − gÞ = 0. When the h
-limit exists, then it is unique

(c) fgqgq∈N ⊆ ðCτð⋅ÞÞh is h-Cauchy, if limq,r⟶∞hðgq
− grÞ = 0

(d) Γ ⊂ ðCτð⋅ÞÞh is h-closed, when for all h-converges,
fg1ga∈N ⊂ Γ to g, then g ∈ Γ

(e) Γ ⊂ ðCτð⋅ÞÞh is h-bounded, if δhðΓÞ = sup fhð f − gÞ:
f , g ∈ Γg <∞

(f) The h-ball of radius ε ≥ 0 and center f , for every f
∈ ðCτð⋅ÞÞh, is described as

3Journal of Function Spaces



Bh f , εð Þ = g ∈ Cτ ⋅ð Þ
� �

h
: h f − gð Þ ≤ ε

n o
ð7Þ

(g) A prequasinorm h on Cτð⋅Þ holds the Fatou property,
if for every sequence fgqg ⊆ ðCτð⋅ÞÞh under limq⟶∞
hðgq − gÞ = 0 and all f ∈ ðCτð⋅ÞÞh, one has hð f − gÞ
≤ supr inf q≥rhð f − gqÞ

Recall that the Fatou property explains the h-closedness
of the h-balls. We will mark the space of all increasing
sequences of real numbers by I.

Theorem 10. ðC τð⋅ÞÞh, where hð f Þ½∑∞
q=0ð∑q

p=0jcf p j/ðq + 1ÞÞτq �1/K .
for all f ∈Cτð⋅Þ, is a premodular (ssfps), when ðτqÞq∈N ∈ ℓ∞
∩ I with τ0 > 1.

Proof. Evidently, hð f Þ ≥ 0 and hð f Þ = 0⟺ = ϑ.

Let f , g ∈Cτð⋅Þ. One has ð f + gÞðyÞ =∑∞
v=0ðcf v +cgv Þyv ∈

ℂ with

h f + gð Þ 〠
∞

q=0

∑q
p=0

df p + gp
��� ���
q + 1

0@ 1Aτq
264

375
1/K

≤ 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

+ 〠
∞

q=0

∑q
p=0 cgp��� ���
q + 1

0@ 1Aτq
264

375
1/K

= h fð Þ + h gð Þ <∞:

ð8Þ

As αf ∈Cτð⋅Þ, hence from conditions (1-i) and (1-ii), one

has Cτð⋅Þ is linear. Also eðrÞ ∈Cτð⋅Þ, for all r ∈N , since

h e rð Þ
� �

= 〠
∞

q=0

∑q
p=0

c
e eð Þ
p

���� ����
q + 1

0BB@
1CCA

τq2664
3775
1/K

= 〠
∞

r=0

1
r + 1

� �τ0
" #1/K

<∞:

ð9Þ

There is Q =max f1, supqjαjðτq/KÞ−1g ≥ 1 with hðαf Þ ≤Q
jαjhð f Þ for all f ∈Cτð⋅Þ and α ∈ℂ

Assume j f qj ≤ jgqj, for all q ∈N and g ∈Cτð⋅Þ. One finds

h fð Þ = 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

= 〠
∞

q=0

∑q
p=0 cgp

��� ���
q + 1

0@ 1Aτq
264

375
1/K

= h gð Þ <∞,

ð10Þ

then f ∈Cτð⋅Þ.
Obviously, from (58).
Let ð f qÞ ∈Cτð⋅Þ, we get

h f p/2½ �
� �� �

= 〠
∞

q=0

∑q
p=0

df p/2½ �
��� ���

q + 1

0@ 1Aτq
264

375
1/K

= 〠
∞

q=0

∑2q
p=0

df p/2½ �
��� ���

2q + 1

0@ 1Aτ2q

+ 〠
∞

q=0

∑2q+1
p=0

df p/2½ �
��� ���

2q + 1

0@ 1Aτ2q+1
264

375
1/K

≤ 〠
∞

q=0

cf q��� ��� + 2∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq

+ 〠
∞

q=0

2∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

≤ 〠
∞

q=0

3∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq

+ 〠
∞

q=0

2∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

≤ 3K + 2K
� 	1/K 〠

∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

= 3K + 2K
� 	1/K

h Yq

� 	� 	
,

ð11Þ

then ð f ½p/2�Þ ∈Cτð⋅Þ.

From (59), we obtain P0 = ð3K + 2KÞ1/K ≥ 1.
Evidently the closure of F=Cτð⋅Þ.

There is 0 < σ ≤ supqjαjðτq/KÞ−1, for α ≠ 0 or σ > 0, for α
= 0 with hðαeð0ÞÞ ≥ σjαjhðeð0ÞÞ.

Theorem 11. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then ðCτð⋅ÞÞh is
a prequasi-Banach (ssfps), where

h fð Þ = 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

, ð12Þ

for every f ∈Cτð⋅Þ.

Proof. According to Theorems 10 and 7, the space ðCτð⋅ÞÞh is
a prequasinormed (ssfps). Assume f l = ð f lqÞ

∞

q=0 is a Cauchy

sequence in ðCτð⋅ÞÞh, hence for every ε ∈ ð0, 1Þ, one has l0 ∈
N such that for all l,m ≥ l0, one gets
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h f l − f m
� �

= 〠
∞

q=0

∑q
p=0

df lp − f mp

���� ����
q + 1

0BB@
1CCA

τq2664
3775
1/K

< ε: ð13Þ

This implies jcf lq − cf mq j < ε. Hence, ðcf mq Þ is a Cauchy

sequence in ℂ, for constant q ∈N , which implies limm⟶∞

jcf mq −cf 0q j = 0, for constant q ∈N . Hence, hð f l − f 0Þ < ε, for

every l ≥ l0. Since hð f 0Þ = hð f 0 − f l + f lÞ ≤ hð f l − f 0Þ + hð f lÞ
<∞. So, f 0 ∈Cτð⋅Þ.

Theorem 12. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then

ðCτð⋅ÞÞh is a pre-quasi closed (ssfps), where

h fð Þ = 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

, ð14Þ

for every f ∈Cτð⋅Þ.

Proof. According to Theorems 10 and 7, the space ðCτð⋅ÞÞh is
a prequasinormed (ssfps). Assume f l = ð f lqÞ

∞

q=0 ∈ ðCτð⋅ÞÞh and
liml⟶∞hð f l − f 0Þ = 0, then for all, ε ∈ ð0, 1Þ, there is l0 ∈N
such that for all l ≥ l0, we obtain

ε > h f l − f 0
� �

= 〠
∞

q=0

∑q
p=0
cf lp −cf 0p���� ����
q + 1

0BB@
1CCA

τq2664
3775
1/K

, ð15Þ

which implies jcf lq −cf 0q j < ε, as ℂ is a complete space.

Therefore, ðcf lq Þ is a convergent sequence in ℂ, for fixed q

∈N . So liml⟶∞jcf lq =cf 0q j, for fixed q ∈N . Since, hð f 0Þ ≤ h

ð f l − f 0Þ + hð f lÞ <∞. So, f 0 ∈Cτð⋅Þ.

Theorem 13. The function

h fð Þ = 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

, ð16Þ

holds the Fatou property, when ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1,

for all f ∈Cτð⋅Þ.

Proof. Let fgrg ⊆ ðCτð:ÞÞh such that lim
r⟶∞

hðgr − gÞ = 0: Since
ðCτð:ÞÞh is a pre-quasi closed space, one has g ∈ ðCτð:ÞÞh. For
all f ∈ ðCτð:ÞÞh, one gets

h f − gð Þ = 〠
∞

q=0

∑q
p=0
cf p −cgp��� ���
q + 1

0@ 1Aτq
264

375
1/K

≤ 〠
∞

q=0

∑q
p=0
cf p −cgp��� ���
q + 1

0@ 1Aτq
264

375
1/K

+ 〠
∞

q=0

∑q
p=0 cgr

p −cgp��� ���� �
q + 1

0@ 1Aτq
264

375
1/K

≤ sup
m

inf
r≥m

h f − grð Þ:

ð17Þ

Theorem 14. The function

h fð Þ = 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq

, ð18Þ

does not hold the Fatou property, for all f ∈Cτð⋅Þ, when ðτqÞ
∈ ℓ∞ and τq > 1, for all q ∈N .

Proof. Let fgrg ⊆ ðCτð⋅ÞÞh so that limr⟶∞hðgr − gÞ = 0.
Since ðCτð⋅ÞÞh is a pre-quasi closed space, one gets g ∈
ðCτð⋅ÞÞh. For every f ∈Cτð⋅Þ, we obtain

h f − gð Þ = 〠
∞

q=0

∑q
p=0
cf p −cgp

��� ���
q + 1

0@ 1Aτq

≤ 2K−1 〠
∞

q=0

∑q
p=0
cf p −cgp��� ���
q + 1

0@ 1Aτq

+ 〠
∞

q=0

∑q
p=0 cgr

p −cgp

��� ���
q + 1

0@ 1Aτq
0B@

1CA
≤ 2K−1 sup

m
inf
r≥m

h f − grð Þ:

ð19Þ

Example 3. For ðτqÞ ∈ ½1,∞ÞN , the function

h fð Þ = inf α > 0 : 〠
q∈N

∑q
p=0
cf p /α��� ���

q + 1

0@ 1Aτq

≤ 1

8<:
9=;, ð20Þ

is a norm on Cτð⋅Þ.

Example 4. The function

h fð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
q∈N

∑q
p=0
cf p��� ���

q + 1

0@ 1A3q+2/q+1
3

vuuut , ð21Þ
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is a prequasinorm (not a quasinorm) on Cððð3q + 2Þ/ðq +
1ÞÞ∞q=0Þ.

Example 5. The function

h fð Þ = 〠
q∈N

∑q
p=0
cf p��� ���

q + 1

0@ 1A3q+2/q+1

, ð22Þ

is a prequasinorm (not a quasinorm) on Cððð3q + 2Þ/ðq +
1ÞÞ∞q=0Þ.

Example 6. The function

h fð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
q∈N

∑q
p=0
cf p��� ���

q + 1

0@ 1Ad

d

vuuut , ð23Þ

is a prequasinorm, quasinorm, and not a norm on Cd , for
0 < d < 1.

3. Caristi’s Fixed Point Theorem in ðCτð⋅ÞÞh
In this section, the existence of Caristi’s fixed point in
ðCτð⋅ÞÞh is presented according to Farkas [31], where

h fð Þ = 〠
q∈N

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

, ð24Þ

for all f ∈Cτð⋅Þ.

Definition 15. The function Ψ1 : ðCτð⋅ÞÞh ⟶ ð−∞,∞� is said
to be lower semicontinuous at Gð0Þ ∈ ðCτð⋅ÞÞh if lim

G⟶
inf
Gð0Þ

Ψ1ðGÞ =Ψ1ðGð0ÞÞ, where lim
G⟶

inf
Gð0Þ

Ψ1ðGÞ = sup
v∈vðGð0ÞÞ

inf
G∈V

Ψ1ðGÞ,

where VðGð0ÞÞ is a neighborhood system of Gð0Þ.

Definition 16. The function Ψ1 : ðCτð⋅ÞÞh ⟶ ð−∞,∞� is said
to be proper, when

D Ψ1ð Þ = G ∈ Cτ ⋅ð Þ
� �

h
: Ψ1 Gð Þ<∞

n o
≠ 0: ð25Þ

Theorem 17. Suppose Ξ ≠ 0 and Ξ is a h-closed subset of
ðCτð⋅ÞÞh, and Ψ1 : Ξ⟶ ð−∞,∞� is a proper, h-lower semi-
continuous function with infG∈ΞΨ1ðGÞ > −∞. If γ > 0, fϖqg
⊂ ð0,∞Þ, and Gð0Þ ∈ Ξ so that Ψ1ðGð0ÞÞ ≤ infG∈ΞΨ1ðGÞ + γ.
One gets fGðqÞg ∈ Ξ which h-converges to some GðγÞ, and

(i) hðGðγÞ −GðqÞÞ ≤ γ/2qϖ0, with q ∈N

Ψ1 G γð Þ
� �

+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� �

≤Ψ1G
0ð Þ ð26Þ

(ii) when G ≠ GðγÞ, then

Ψ1 G γð Þ
� �

+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� �

<Ψ1 Gð Þ + 〠
∞

q=0
ϖqh G −G qð Þ
� �

ð27Þ

Proof. If SðGð0ÞÞ = fG ∈ Ξ : Ψ1ðGÞ + ϖ0hðG − Gð0ÞÞ ≤Ψ1ð
Gð0ÞÞg. Since Gð0Þ ∈ SðGð0ÞÞ, then SðGð0ÞÞ ≠ 0. As Ψ1 is h
-lower semicontinuous, h holds the Fatou property and Ξ
is h-closed, then SðGð0ÞÞ is h-closed. Take Gð1Þ ∈ SðGð0ÞÞ and

Ψ1 G 1ð Þ
� �

+ ϖ0h G 1ð Þ −G 0ð Þ
� �

≤ inf
G∈S G 0ð Þð Þ

Ψ1 Gð Þ + ϖ0h G − G 0ð Þ
� �n o

+ γϖ1
2ϖ0

:

ð28Þ

Choose

S G 1ð Þ
� �

= G ∈ S G 0ð Þ
� �

: Ψ1 Gð Þ + 〠
1

j=0
ϖjh G −G jð Þ
� �(

≤Ψ1 G 1ð Þ
� �

+ ϖ0h G 1ð Þ −G jð Þ
� �)

:

ð29Þ

As SðGð0ÞÞ, we get SðGð1ÞÞ ≠ 0 and h-closed. Suppose that
one has built fGð0Þ,Gð1Þ,Gð2Þ,⋯,GðqÞg and fSðGð0ÞÞ, SðGð1ÞÞ,
SðGð2ÞÞ,⋯, SðGðqÞÞg. Next, take Gðq+1Þ ∈ SðGðqÞÞ and

Ψ1 G q+1ð Þ
� �

+ 〠
q

j=0
ϖjh G q+1ð Þ − G jð Þ
� �

≤ inf
G∈S G qð Þð Þ

Ψ1 Gð Þ + 〠
q

j=0
ϖjh G − G jð Þ
� �( )

+
γϖq

2qϖ0
:

ð30Þ

Let

S G q+1ð Þ
� �

≔ G ∈ S G qð Þ
� �

: Ψ1 Gð Þ + 〠
q+1

j=0
ϖjh G − G jð Þ
� �(

≤Ψ1 G q+1ð Þ
� �

+ 〠
q

j=0
ϖjh G q+1ð Þ −G jð Þ
� �)

,

ð31Þ

hence we form by induction, the sequences fGðqÞg and fS
ðGðqÞÞg. Fix q ∈N . Suppose W ∈ SðGðqÞÞ. One obtains
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Ψ1 Wð Þ + 〠
q

j=0
ϖ jh W −G jð Þ
� �

≤Ψ1 G qð Þ
� �

+ 〠
q−1

j=0
ϖjh G qð Þ −G jð Þ
� �

,

ð32Þ

then

ϖqh W −G qð Þ
� �

≤Ψ1 G qð Þ
� �

+ 〠
q−1

j=0
ϖjh G qð Þ − G jð Þ
� �

− Ψ1 Wð Þ + 〠
q−1

j=0
ϖjh W − G jð Þ
� �" #

≤Ψ1 G qð Þ
� �

+ 〠
q−1

j=0
ϖjh G qð Þ − G jð Þ
� �

− inf
G∈S G q−1ð Þð Þ

� Ψ1 Gð Þ + 〠
q−1

j=0
ϖjh G − G jð Þ
� �" #

≤
γϖq

2qϖ0
:

ð33Þ

As fSðGðqÞÞg is decreasing with GðqÞ ∈ SðGðqÞÞ, for all
q ∈N , one gets

h G q+pð Þ −G qð Þ
� �

≤
γ

2qϖ0
, ð34Þ

with q, p ∈N . This implies fGðqÞg is h -Cauchy. Since ðCτð⋅ÞÞh
is h -Banach space; hence, fGðqÞg has h–limits GðγÞ and
∩ q∈N SðGðqÞÞ = fGðγÞg. Since Gðq+1Þ ∈ SðGðqÞÞ, we can see

Ψ1 G q+1ð Þ
� �

+ 〠
q

j=0
ϖjh G q+1ð Þ −G jð Þ
� �

≤Ψ1 G qð Þ
� �

+ 〠
q−1

j=0
ϖ jh G qð Þ −G jð Þ
� �

,

ð35Þ

hence, fΨ1ðGðqÞÞ +∑q−1
j=0ϖjhðGðq+1Þ − GðjÞÞg is decreasing.

After, let G ≠GðγÞ. One gets m ∈N with G∈SðGðqÞÞ, with q ≥
m, i.e.,

Ψ1 G qð Þ
� �

+ 〠
q−1

j=0
ϖjh G qð Þ −G jð Þ
� �

<Ψ1 Gð Þ + 〠
q

j=0
ϖjh G −G jð Þ
� �

:

ð36Þ

Since GðγÞ + ∈SðGðqÞÞ, with q ≥m, we get

Ψ1 G γð Þ
� �

+ 〠
q

j=0
ϖjh G γð Þ −G jð Þ
� �

≤Ψ1 G qð Þ
� �

+ 〠
q−1

j=0
ϖjh G qð Þ − G jð Þ
� �

≤Ψ1 G mð Þ
� �

+ 〠
m−1

j=0
ϖjh G mð Þ − G jð Þ
� �

:

ð37Þ

Put q⟶∞ in the previous inequality, then

Ψ1 G γð Þ
� �

+ 〠
∞

j=0
ϖjh G γð Þ −G jð Þ
� �

≤Ψ1 xmð Þ + 〠
m−1

j=0
ϖjh Gm −G jð Þ
� �

<Ψ1 Gð Þ + 〠
m

j=0
ϖjh G − G jð Þ
� �

≤Ψ1 Gð Þ + 〠
∞

j=0
ϖjh G − G jð Þ
� �

:

ð38Þ

This gives

Ψ1 G γð Þ
� �

+ 〠
q

q=0
ϖqh G γð Þ −G qð Þ
� �

<Ψ1 Gð Þ + 〠
∞

q=0
ϖqh G −G qð Þ
� �

:

ð39Þ

Theorem 18. Suppose Ξ ≠ 0 and Ξ is a h-closed subset of
ðCτð⋅ÞÞh. By taking γ > 0 and fϖng and 0 < ω =∑∞

n=0ϖn <∞.
If H : Ξ⟶ Ξ is a mapping and there is a function Ψ1 : Ξ
⟶ ð−∞,∞� holds a proper and h-lower semicontinuous with
infG∈ΞΨ1ðGÞ > −∞ and

(1) hðHðGÞ − YÞ − hðG − YÞ ≤ hðHðGÞ − YÞ, for any G,
Y ∈ Ξ

(2) hðHðGÞ −GÞ ≤Ψ1ðGÞ −Ψ1ðHðGÞÞ, with G ∈ Ξ

Then, H has a fixed point in Ξ.

Proof. As 0 < ω =∑∞
n=0ϖn <∞, one has Ψ2 ≔ ωΨ1 is also

proper, h-lower semicontinuous and bounded from below.
If G ∈ Ξ, one gets

ωh H Gð Þ −Gð Þ ≤Ψ2 Gð Þ −Ψ2 H Gð Þð Þ: ð40Þ

As infG∈ΞΨ2ðGÞ > −∞, one obtains Gð0Þ ∈ Ξ with Ψ2
ðGð0ÞÞ < infG∈ΞΨ2ðGÞ + γ. From Theorem 17, there is fGðqÞg
which h-converges to some GðγÞ ∈ Ξ, and

Ψ2 G γð Þ
� �

+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� �

<Ψ2 Gð Þ + 〠
∞

q=0
ϖqh G −G qð Þ
� �

,

ð41Þ

for every G ≠GðγÞ. Assume that HðGðγÞÞ ≠GðγÞ, we have
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Ψ2 G γð Þ
� �

+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� �

<Ψ2 H G γð Þ
� �� �

+ 〠
∞

q=0
ϖqh H G γð Þ

� �
−G qð Þ

� �
,

ð42Þ

then

Ψ2 G γð Þ
� �

−Ψ2 H G γð Þ
� �� �

< 〠
∞

q=0
ϖqh H G γð Þ

� �
−G qð Þ

� �
− 〠

∞

q=0
ϖqh G γð Þ − G qð Þ
� �

= 〠
∞

q=0
ϖq h H G γð Þ

� �
−G qð Þ

� �
− h G γð Þ −G qð Þ
� �� �

:

ð43Þ

From condition (40), then

Ψ2 G γð Þ
� �

−Ψ2 H G γð Þ
� �� �

< 〠
∞

q=0
ϖqh H G γð Þ

� �
−G γð Þ

� �
= ωh H G γð Þ

� �
− G γð Þ

� �
:

ð44Þ

The inequality (40) implies that

ωh H G γð Þ
� �

− G γð Þ
� �

≤Ψ2 G γð Þ
� �

−Ψ2 H G γð Þ
� �� �

< ωh H G γð Þ
� �

−G γð Þ
� �

:
ð45Þ

This is a contradiction, hence HðGðγÞÞ =GðγÞ.

4. Structure of Mappings’ Ideal

The structure of the mappings’ ideal by ðCτð⋅ÞÞh, where

h fð Þ = 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

, ð46Þ

for all f ∈Cτð⋅Þ, and s -numbers have been explained. We
study enough setups on ðCτð⋅ÞÞh such that the class ✠ðCτð⋅ÞÞh
is complete and closed. We investigate enough setups (not
necessary) on ðCτð⋅ÞÞh such that the closure of F =
✠αðCτð⋅ÞÞh. This gives a negative answer of Rhoades’ [32] open
problem about the linearity of s -type ðCτð⋅ÞÞh spaces. We
explain enough setups on ðCτð⋅ÞÞh such that ✠ðCτð⋅ÞÞh is strictly
contained for different powers, ✠αðCτð⋅ÞÞh is the minimum, the

class ✠ðCτð⋅ÞÞh is simple, and ð✠ðCτð⋅ÞÞhÞ
λ = ✠ðCτð⋅ÞÞh.

We denote the space of all bounded, finite rank linear
mappings from an infinite-dimensional Banach space Δ into
an infinite-dimensional Banach space Λ by LðΔ,ΛÞ, and F
ðΔ,ΛÞ and when Δ =Λ, we inscribe LðΔÞ and FðΔÞ. The

space of approximable and compact-bounded linear map-
pings from a Banach space Δ into a Banach space Λ will
be indicated by ϒðΔ,ΛÞ and LcðΔ,ΛÞ, and if Δ =Λ, we
mark ϒðΔÞ and LcðΔÞ, respectively.

Definition 19 (see [33]). An s-number function is a mapping
s : LðΔ,ΛÞ⟶R+N that sorts every V ∈LðΔ,ΛÞ unique
sequence ðsdðVÞÞ∞d=0 validates the following settings:

(a) kVk = s0ðVÞ ≥ s1ðVÞ ≥ s2ðVÞ ≥⋯≥0, for all V ∈L
ðΔ,ΛÞ

(b) sl+d−1ðV1 +V2Þ ≤ slðV1Þ + sdðV2Þ, for all V1, V2 ∈L
ðΔ,ΛÞ and l, d ∈N

(c) sdðVYWÞ ≤ kVksdðYÞkWk, for all W ∈LðΔ0, ΔÞ,
Y ∈LðΔ,ΛÞ, and V ∈LðΛ,Λ0Þ, where Δ0 and Λ0
are arbitrary Banach spaces

(d) when V ∈LðΔ,ΛÞ and γ ∈R, then sdðγVÞ = jγjsd
ðVÞ

(e) suppose rank ðVÞ ≤ d, then sdðVÞ = 0, for each V ∈
LðΔ,ΛÞ

(f) sl≥qðIqÞ = 0 or sl<qðIqÞ = 1, where Iq denotes the unit
map on the q-dimensional Hilbert space ℓq2

Some examples of s-numbers are as follows:

(1) The qth Kolmogorov number, described by dqðXÞ, is
marked by

dq Xð Þ = infdimJ≤qsup fk k≤1 infg∈J Xf − gk k: ð47Þ

(2) The qth approximation number, described by αqðXÞ,
is marked by

αq Xð Þ = inf X − Yk k: Y ∈L Δ,Λð Þand rank Yð Þ ≤ qf g:
ð48Þ

Definition 20 (see [10]). Assume L is the class of all
bounded linear mappings within any two arbitrary Banach
spaces. A subclass U of L is said to be a mappings’ ideal,
when all UðΔ,ΛÞ =U ∩LðΔ,ΛÞ verifies the following
conditions:

(i) IΓ ∈U, where Γ marks Banach space of one
dimension

(ii) The space UðΔ,ΛÞ is linear over R
(iii) If W ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ, and Y ∈LðΛ,Λ0Þ

then, YXW ∈UðΔ0,Λ0Þ
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Notations 21 (see [30]).

✠H ≔ ✠Hf

ðΔ,ΛÞg, where✠H ðΔ,ΛÞ≔ fV ∈L ðΔ,ΛÞ: f s ∈H , where
f sðyÞ = 〠 ∞

n=0snðVÞyng,✠α
H ≔ f✠α

H ðΔ,ΛÞg, where✠α
H ðΔ,ΛÞ

≔ fV ∈LðΔ,ΛÞ: : f α ∈H , where f αðyÞ = 〠
∞

n=0
αnðVÞyn g,✠d

H

≔ f✠d
H ðΔ,ΛÞg, where✠d

H ðΔ,ΛÞ≔ fV ∈LðΔ,ΛÞ: : f d ∈H

, where f dð yÞ = 〠
∞

n=0
dnðVÞyng:Theorem 22. (see [29]). Sup-

pose H is a (ssfps), then ✠H is mappings’ ideal.
According to Theorems 10 and 22, one concludes the next

theorem.

Theorem 23. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then
✠ðCτð⋅ÞÞh is a mappings’ ideal.

Definition 24 (see [34]). A function H ∈ ½0,∞ÞU is said to be
a pre-quasi norm on the ideal U, if it verifies the following
setups:

(1) Let V ∈UðΔ,ΛÞ, HðVÞ ≥ 0, and HðVÞ = 0, if and
only if, V = 0

(2) we have Q ≥ 1 so as to HðαVÞ ≤DjαjHðVÞ, for every
V ∈UðΔ,ΛÞ and α ∈R

(3) we have P ≥ 1 so that HðV1 + V2Þ ≤ P½HðV1Þ +H
ðV2Þ�, for each V1, V2 ∈UðΔ,ΛÞ

(4) we have σ ≥ 1 when V ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ, and
Y ∈LðΛ,Λ0Þ then HðYXVÞ ≤ σkYkHðXÞkVk

Theorem 25 (see [35]). Every quasinorm on the ideal U is a
prequasinorm on the same ideal.

Theorem 26. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then H is a pre-

quasinorm on ✠ðCτð⋅ÞÞh, so that HðZÞ = hð f sÞ, where f s
ðCτð⋅ÞÞh and f sðyÞ =∑∞

n=0snðZÞyn.

Proof.

(1) When X ∈ ✠ðCτð⋅ÞÞhðΔ,ΛÞ, HðXÞ = hð f sÞ ≥ 0, and H
ðXÞ = hð f sÞ = 0, if and only if, snðXÞ = 0, for all n ∈
N ; if and only if, X = 0

(2) There is Q ≥ 1 with HðεXÞ ≤ hðεf sÞ ≤QkεkHðXÞ for
every X ∈ ✠ðCτð⋅ÞÞhðΔ,ΛÞ and ε ∈ℂ

(3) One has PP0 ≥ 1 so that for X1, X2 ∈ ✠ðCτð⋅ÞÞhðΔ,ΛÞ;
hence, there are f 1s, f 2sðCτð⋅ÞÞh with f 1sðyÞ =∑∞

n=0
snðX1Þyn and f 2sðyÞ =∑∞

n=0snðX2Þyn. Therefore, for
gsðyÞ≕∑∞

n=0snðX1 + X2Þyn, we have KK0 ≥ 1 so that

H X1 + X2ð Þ = h gsð Þ ≤ h f 1sð Þ ⋅½ � + f 2sð Þ ⋅½ �
� �

≤ P h f 1sð Þ ⋅½ � + h f 2sð Þ ⋅½ �
� �

≤ PP0 H X1ð Þ +H X2ð Þð Þ

ð50Þ

(4) We have ϱ ≥ 1 if X ∈LðΔ0, ΔÞ, Y ∈ ✠ðCτð⋅ÞÞhðΔ,ΛÞ,
and Z ∈ LðΛ,Λ0Þ; hence, there is f s ∈ ðCτð⋅ÞÞh with f s
ðyÞ =∑∞

n=0snðYÞyn. Then, for gsðyÞ≕∑∞
n=0snðZYXÞ

yn, one has

H ZYXð Þ = h gsð Þ ≤ h Xk k Zk kf sð Þ ≤ ϱ Xk kH Yð Þ Zk k: ð51Þ

Theorem 27. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1 one has

ð✠ðCτð⋅ÞÞh,HÞ is a prequasi-Banach mappings’ ideal.

Proof. Suppose ðVaÞa∈N is a Cauchy sequence in ✠ðCτð⋅ÞÞh
ðΔ,ΛÞ. As LðΔ,ΛÞ ⊇ SðCτð⋅ÞÞhðΔ,ΛÞ, hence, there is f as ∈
ðCτð⋅ÞÞh with f as ∈ ðyÞ =∑∞

n=0snðVaÞyn for very a ∈N , then

H Vr −Vað Þ = 〠
∞

q=0

∑q
p=0sp Vr −Vað Þ

q + 1

 !τq
" #1/K

≥ inf
q

Vr −Vak kτq/K 〠
∞

q=0

1
q + 1

� �τq
" #1/K

,

ð52Þ

hence, ðVaÞa∈N is a Cauchy sequence in LðΔ,ΛÞ is a
Banach space, so there exists V ∈LðΔ,ΛÞ so that lim

a⟶∞
k

Va −Vk = 0 and since f as ðCτð⋅ÞÞh, for all a ∈N and
ðCτð⋅ÞÞh is a premodular (ssfps), hence, one can see

H Vð Þ = 〠
∞

q=0

∑q
p=0sp Vð Þ
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0s p/2½ � V −Vað Þ

q + 1

 !τq
" #1/K

+ 〠
∞

q=0

∑q
p=0s p/2½ � Vað Þ
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0
Va −Vk kτq

" #1/K
3K + 2K
� 	1/K 〠

∞

q=0

∑q
p=0sp Vað Þ
q + 1

 !τq
" #1/K

< ε:

ð53Þ

We obtain f as ðCτð⋅ÞÞh, hence V ∈ ✠ðCτð⋅ÞÞhðΔ,ΛÞ.

Theorem 28. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, one has

ð✠ðCτð⋅ÞÞh,HÞ is a prequasiclosed mappings’ ideal.
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Proof. Suppose Va ∈ ✠ðCτð⋅ÞÞhðΔ,ΛÞ, for all a ∈N and
lim

a⟶∞
HkVa −Vk = 0, hence, there is f as ∈ ðCτð⋅ÞÞh with f as ðyÞ

=∑∞
n=0snðVaÞyn, for all a ∈N , there is ς > 0 and as LðΔ,ΛÞ

⊇ SðCτð⋅ÞÞhðΔ,ΛÞ, one has

H Va −Vð Þ = 〠
∞

q=0

∑q
p=0sp Va −Vð Þ

q + 1

 !τq
" #1/K

≤ inf
q

Va −Vk kτq/K 〠
∞

q=0

1
q + 1

� �τq
" #1/K

:

ð54Þ

So ðVaÞa∈N is convergent in LðΔ,ΛÞ, i.e., lim
a⟶∞

kVa −
Vk = 0 and since f as ðCτð⋅ÞÞh, for all a ∈N and ðCτð⋅ÞÞh is a
premodular (ssfps), hence, one can see

H Vð Þ = 〠
∞

q=0

∑q
p=0sp Vð Þ
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0s p/2½ � V −Vað Þ

q + 1

 !τq
" #1/K

+ 〠
∞

q=0

∑q
p=0s p/2½ � Vað Þ

q + 1

 !τq
" #1/K

≤ 〠
∞

q=0
Va − Vk kð Þτq

" #1/K

+ 3K + 2K
� 	1/K 〠

∞

q=0

∑q
p=0sp Vað Þ
q + 1

 !τq
" #1/K

< ε:

ð55Þ

We obtain f s ∈ ðCτð:ÞÞh, hence V ∈ ✠ðCτð⋅ÞÞhðΔ,ΛÞ.

Definition 29. A prequasinorm H on the ideal ✠Hh
verifies

the Fatou property if for every fTqgq∈N ⊆ ✠Hh
ðΔ,ΛÞ so that

lim
q⟶∞

HðTq − TÞ = 0 and M ∈ ✠Hh
ðΔ,ΛÞ, one gets

H M − Tð Þ ≤ sup
q

inf
j≥q

H M − T j

� 	
: ð56Þ

Theorem 30. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then

ð✠ðCτð:ÞÞh ,HÞ does not verify the Fatou property.

Proof. Assume fTqgq∈N ⊆ ✠ðCτð:ÞÞhðΔ,ΛÞ with lim
q⟶∞

HðTq −

TÞ = 0: Since ✠ðCτð:ÞÞh is a prequasiclosed ideal, then T ∈
✠ðCτð:ÞÞhðΔ,ΛÞ. So for every M ∈ ✠ðCτð:ÞÞhðΔ,ΛÞ, one has

H M − Tð Þ = 〠
∞

q=0

∑q
p=0sp M − Tð Þ

q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0s p/2½ � M − T j

� 	
q + 1

 !τq
" #1/K

+ 〠
∞

q=0

∑q
p=0s p/2½ � T j − T

� 	
q + 1

 !τq
" #1/K

≤ 3K + 2K
� 	1/K sup

r
inf
j≥r

〠
∞

q=0

∑q
p=0sp M − T j

� 	
q + 1

 !τq
" #1/K

:

ð57Þ

Theorem 31. ✠ðCτð:Þ ÞαhðΔ,ΛÞ = the closure of FðΔ,ΛÞ, if

ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1. But the converse is not

necessarily true.

Proof. As eðqÞ ∈ ðCτð:ÞÞh, for every q ∈N and ðCτð:ÞÞh is a
linear space. Suppose Z ∈ FðΔ,ΛÞ with rank ðZÞ =m, where
m ∈N , hence f α ∈F with f αðyÞ =∑m−1

n=0 αnðZÞyn, one has f α
∈ ðCτð:ÞÞh. Therefore, the closure of FðΔ,ΛÞ ⊆ ✠

α
ðCτð:ÞÞh

ðΔ,ΛÞ.
Assume Z ∈ ✠α

ðCτð:ÞÞh
ðΔ,ΛÞ, we have gα ∈ ðCτð:ÞÞh. As hðgαÞ

<∞, assume ρ ∈ ð0, 1Þ, then there is q0 ∈N − f0g with h

ðgα − ∑q0−1
n=0 e

ðnÞÞ < ρ/2K+3ηd, for some d ≥ 1, where η =max
f1,∑∞

q=q0ð1/q + 1Þτqg. Since ðαqðZÞÞ is decreasing, we have

〠
2q0

q=q0+1

∑q
p=0α2q0 Zð Þ
q + 1

 !τq

≤ 〠
2q0

q=q0+1

∑q
p=0αp Zð Þ
q + 1

 !τq

≤ 〠
∞

q=q0

∑q
p=0αp Zð Þ
q + 1

 !τq

< ρ

2K+3ηd :

ð58Þ

Hence, there is Y ∈ F2q0ðΔ,ΛÞ so that rankðYÞ ≤ 2q0 and

〠
3q0

q=2q0+1

∑q
p=0 Z − Yk k
q + 1

 !τq

≤ 〠
2q0

q=q0+1

∑q
p=0 Z − Yk k
q + 1

 !τq

< ρ

2K+3ηd
,

ð59Þ

since ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, we have

sup∞
q=q0

2q0 Z − Yk kð Þτq < ρ

22K+2η : ð60Þ

Therefore, one has

〠
q0

q=0
Z − Yk kð Þτq < ρ

2K+3ηd : ð61Þ

As Z − Y ∈ ✠α
ðCτð:ÞÞh

ðΔ,ΛÞ, hence gα ∈ ðCτð:ÞÞh, where gα
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ðyÞ≔∑∞
n=0αnðZ − YÞyn. In view of inequalities (58)–(61),

one has

d Z, Yð Þ = h gαð Þ = 〠
3q0−1

q=0

∑q
p=0αp Z − Yð Þ

q + 1

 !τq

+ 〠
∞

q=3q0

∑q
p=0αp Z − Yð Þ

q + 1

 !τq

≤ 〠
3q0

q=0

∑q
p=0 Z − Yk k
q + 1

 !τq

+ 〠
∞

q=q0

∑q+2q0
p=0 αp Z − Yð Þ
q + 2q0 + 1

 !τq+2q0

≤ 〠
3q0

q=0
Z − Yk kð Þτq + 〠

∞

q=q0

∑q+2q0
p=0 αp Z − Yð Þ

q + 1

 !τq

≤ 3〠
q0

q=0
Z − Yk kð Þτq + 〠

∞

q=q0

∑2q0−1
p=0 αp Z − Yð Þ +∑q+2q0

p=2q0�ρ αp Z − Yð Þ, �0
� �

q + 1

0@ 1Aτq

≤ 3〠
q0

q=0
Z − Yk kð Þτq + 2K−1

� 〠
∞

q=q0

∑2q0−1
p=0 αp Z − Yð Þ

q + 1

 !τq

+ 〠
∞

q=q0

∑q+2q0
p=2q0αp Z − Yð Þ

q + 1

 !τq" #

≤ 3〠
q0

q=0
Z − Yk kð Þτq + 2K−1

� 〠
∞

q=q0

∑2q0
p=0αp Z − Yð Þ

q + 1

 !τq

+ 〠
∞

q=q0

∑q
p=0αp+2q0 Z − Yð Þ

q + 1

 !τq
" #

≤ 3〠
q0

q=0
Z − Yk kð Þτq + 2K−1 η sup∞

q=q0
2q0 Z − Yk kð Þτq + 〠

∞

q=q0

∑q
p=0αp Zð Þ
q + 1

 !τq
" #

ð62Þ

Therefore, ✠
α
ðCτð:ÞÞh

ðΔ,ΛÞ ⊆ the closure of FðΔ,ΛÞ. Con-

trarily, one has a counter example as I2 ∈ ✠α
ðCðð0,0,2,2,2,⋯ÞÞÞhðΔ,

ΛÞ, but τ0 > 1 is not verified.

Theorem 32. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with 1 < τð1Þx < τð2Þx ,

for all x ∈N , hence

✠
C τ

1ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ✠
C τ

2ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ ⫋L Δ,Λð Þ: ð63Þ

Proof. Let Z ∈ ✠ðCððτð1Þx ÞÞÞhðΔ,ΛÞ, hence ðgsÞ ∈ ðCððτð1Þx ÞÞÞh,
where gsðyÞ≔∑∞

n=0snðZÞyn. One gets

〠
∞

x=0

∑x
p=0sp Zð Þ
x + 1

 !τ
2ð Þ
x

< 〠
∞

x=0

∑x
p=0sp Zð Þ
x + 1

 !τ
1ð Þ
x

<∞, ð64Þ

then ðgsÞ ∈ ðCððτð2Þx ÞÞÞh this implies Z ∈ ✠ðCððτð2Þx ÞÞÞhðΔ,ΛÞ.
After, if we choose ðsxðZÞÞ∞x=0 with ∑x

p=0spðZÞ =
ðx + 1Þ1−ð1/τð1Þx Þ, we have Z ∈LðΔ,ΛÞ such that

〠
∞

x=0

∑x
p=0sp Zð Þ
x + 1

 !τ
1ð Þ
x

= 〠
∞

x=0

1
x + 1 =∞,

〠
∞

x=0

∑x
p=0sp Zð Þ
x + 1

 !τ
2ð Þ
x

≤ 〠
∞

x=0

1
x + 1

� �τ
2ð Þ
x /τ 1ð Þ

x

<∞:

ð65Þ

Then, Z ∉ ✠ðCððτð1Þx ÞÞÞhðΔ,ΛÞ and Z ∈ ✠ðCððτð2Þx ÞÞÞhðΔ,ΛÞ.
Clearly, ✠ðCððτð2Þx ÞÞÞhðΔ,ΛÞ ⊂LðΔ,ΛÞ. Next, if we put

ðsxðZÞÞ∞x=0 with ∑x
p=0spðZÞ = ðx + 1Þ1−ð1/τð2Þx Þ. We have Z ∈L

ðΔ,ΛÞ such that Z ∉ ✠ðCððτð2Þx ÞÞÞhðΔ,ΛÞ.

Theorem 33. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, hence

✠
α
ðCτð:ÞÞh

is minimum.

Proof. Let ✠α
Cτð:Þ

ðΔ,ΛÞ =LðΔ,ΛÞ, one has η > 0 so that H

ðZÞ ≤ ηkZk, where

H Zð Þ = 〠
∞

q=0

∑q
p=0αp Zð Þ
q + 1

 !τq

, ð66Þ

for all Z ∈LðΔ,ΛÞ. According to Dvoretzky’s theorem
[36], with r ∈N , we get quotient spaces Δ/Yr and
subspaces Mr of Λ which can be transformed onto ℓr2 by
isomorphisms Vr and Xr with kVrkkV−1

r k ≤ 2 and kXrkk
X−1
r k ≤ 2. If Ir is the identity map on ℓr2, Tr is the quotient

map from Δ onto Δ/Yr and Jr is the natural embedding
map from Mr into Λ.

Assume mq is the Bernstein numbers [9], then

1 =mq Irð Þ =mq XrX
−1
r IrVrV

−1
r

� 	
≤ Xrk kmq X−1

r IrVr

� 	
V−1

r



 


= Xrk kmq JrX

−1
r IrVr

� 	
V−1

r



 

 ≤ Xrk kdq JrX
−1
r IrVr

� 	
V−1

r



 


= Xrk kdq JrX

−1
r IrVrTr

� 	
V−1

r



 

 ≤ Xrk kαq JrX
−1
r IrVrTr

� 	
V−1

r



 

,
ð67Þ

for 0 ≤ q ≤ r. Then, we have

1 ≤ Xrk k V−1
r



 

� 	τq ∑q
p=0αp JrX

−1
r IrVrTr

� 	
q + 1

 !τq

: ð68Þ

So, there are ϱ ≥ 1, we obtain
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〠
r

q=0
1 ≤ ϱ Xrk k V−1

r



 

〠r
q=0

∑q
p=0αp JrX

−1
r IrVrTr

� 	
q + 1

 !τq

⟹ 〠
r

q=0
1

≤ ϱ Xrk k V−1
r



 

H JrX
−1
r IrVrTr

� 	
⟹ 〠

r

q=0
1

≤ ϱη Xrk k V−1
r



 

 JrX
−1
r IrVrTr



 

⟹ 〠
r

q=0
1

≤ ϱη Xrk k V−1
r



 

 JrX
−1
r



 

 Irk k VrTrk k
= ϱη Xrk k V−1

r



 

 X−1
r



 

 Irk k Vrk k ≤ 4ϱη:
ð69Þ

So there is a contradiction, if r⟶∞. Therefore, Δ
and Λ both cannot be infinite dimensional if ✠α

Cτð:Þ
ðΔ,ΛÞ

=LðΔ,ΛÞ.
As with the previous theorem, we can easily prove the

following theorem.

Theorem 34. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, hence ✠
d
Cτð:Þ

is

minimum.

Lemma 35 (see [10]). If B ∈LðΔ,ΛÞ and B ∉ϒðΔ,ΛÞ, then
D ∈LðΔÞ and M ∈LðΛÞ with MBDIb = Ib, with b ∈N .

Theorem 36 (see [10]). In general, we have

F Δð Þ ⫋ϒ Δð Þ ⫋Lc Δð Þ ⫋L Δð Þ: ð70Þ

Theorem 37. Let ðτqÞq∈N ∈ ℓ∞ ∩ I with 1 < τð1Þx < τð2Þx , for all

x ∈N , hence

L ✠
C τ

2ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ, ✠
C τ

1ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ
� �
=ϒ ✠

C τ
2ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ, ✠
C τ

1ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ
� �

:

ð71Þ

Proof. Assume X ∈Lð✠ðCððτð2Þx ÞÞÞhðΔ,ΛÞ, ✠ðCððτð1Þx ÞÞÞhðΔ,ΛÞÞ
and X ∉ϒð✠ðCððτð2Þx ÞÞÞhðΔ,ΛÞ, ✠ðCððτð1Þx ÞÞÞhðΔ,ΛÞÞ. By using

Lemma 35, we have Y ∈Lð✠ðCððτð2Þx ÞÞÞhðΔ,ΛÞÞ and Z ∈L
ð✠ðCððτð1Þx ÞÞÞhðΔ,ΛÞÞ so that ZXYIb = Ib, hence with b ∈N ,

one has

Ibk k
✠

C τ
1ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ = 〠
∞

x=0

∑x
p=0sp Ibð Þ
x + 1

 !τ
1ð Þ
x

≤ ZXYk k Ibk k
✠

C τ
2ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ

≤ 〠
∞

x=0

∑x
p=0sp Ibð Þ
x + 1

 !τ
2ð Þ
x

:

ð72Þ

This fails Theorem 32. So, X ∈ϒð✠ðCððτð2Þx ÞÞÞhðΔ,ΛÞ,
✠ðCððτð1Þx ÞÞÞhðΔ,ΛÞÞ.

Corollary 38. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with 1 < τð1Þx < τð2Þx ,

for all x ∈N , hence,

L ✠
C τ

2ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ, ✠
C τ

1ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ
� �
=Lc ✠

C τ
2ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ, ✠
C τ

1ð Þ
x

� 	� 	� 	
h

Δ,Λð Þ
� �

:

ð73Þ

Proof. Evidently, as ϒ ⊂Lc.

Definition 39 (see [10]). A Banach space Δ is said to be sim-
ple, if there is an unique nontrivial closed ideal in LðΔÞ.

Theorem 40. Let ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, hence ✠ðCτð:ÞÞh
is simple.

Proof. Let X ∈Lcð✠ðCτð:ÞÞhðΔ,ΛÞÞ and X ∉ϒð✠ðCτð:ÞÞhðΔ,ΛÞÞ.
From Lemma 35, there exist Y , Z ∈Lð✠ðCτð:ÞÞhðΔ,ΛÞÞ with

ZXYIb = Ib, which gives that I
✠ðCτð:ÞÞh

ðΔ,ΛÞ ∈Lcð✠ðCτð:ÞÞhðΔ,
ΛÞÞ. Then, Lð✠ðCτð:ÞÞhðΔ,ΛÞÞ =Lcð✠ðCτð:ÞÞhðΔ,ΛÞÞ; hence,

✠ðCτð:ÞÞh is simple Banach space.

Notations 41.

✠Hð Þλ ≔ ✠Hð Þλ Δ,Λð Þ ; Δ andΛ are Banach Spaces
n o

, where

ð74Þ

ð✠H Þλð Δ,ΛÞ≔ fX ∈LðΔ,ΛÞ: f λ ∈Hh, where f λð yÞ =
∑∞

n=0λnð TÞyn and kX − λxð XÞIk = 0, for every x ∈N g:

Theorem 42. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, hence,

✠ Cτ :ð Þð Þh
� �λ

Δ,Λð Þ = ✠ Cτ :ð Þð Þh Δ,Λð Þ: ð75Þ

Proof. Let X ∈ ð✠ðCτð:ÞÞhÞ
λðΔ,ΛÞ, hence f λ ∈ ðCτð:ÞÞh, where

f λðyÞ =∑∞
n=0λnðTÞyn and kX − λxðXÞIk = 0, with x ∈N .

We have X = λxðXÞI, for all x ∈N , so

sx Xð Þ = sx λx Xð ÞIð Þ = λx Xð Þj j, ð76Þ

with x ∈N . One gets f s ∈ ðCτð:ÞÞh; hence, X ∈ ✠ðCτð:ÞÞhðΔ,ΛÞ.
Next, supposeX ∈ ✠ðCτð:ÞÞhðΔ,ΛÞ. Hence, f s ∈ ðCτð:ÞÞh. One gets

〠
∞

x=0
sx Xð Þð Þτx ≤ 〠

∞

x=0

∑x
p=0sp Xð Þ
x + 1

 !τx

<∞: ð77Þ
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Then, lim
x⟶∞

sxðXÞ = 0: If kX − sxðXÞIk−1 exists, with x ∈

N . Then, kX − sxðXÞIk−1 exists and bounded, for all x ∈N .
So, lim

x⟶∞
kX − sxðXÞIk−1 = kXk−1 exists and bounded. Since

ð✠ðCτð:ÞÞh ,HÞ is a pre-quasi mappings’ ideal, one has

I = XX−1 ∈ ✠ Cτ :ð Þð Þh Δ,Λð Þ⇒ gs ∈Cτ :ð Þ ⟹ lim
x⟶∞

sx Ið Þ = 0,

ð78Þ

where gsðyÞ =∑∞
n=0snðIÞyn. This gives a contradiction, as

lim
x⟶∞

sxðIÞ = 1. Therefore, kX − sxðXÞIk = 0, with x ∈N ,

which explains X ∈ ð✠ðCτð:ÞÞhÞ
λðΔ,ΛÞ.

5. Nonexpansive Mappings on ðCτð:ÞÞh
In this section, we have presented some geometric properties
connected with the fixed point theory in ðCτð:ÞÞh.

In the next part of this section, we will use the func-
tion h as

h fð Þ = 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

, ð79Þ

for all f ∈Cτð:Þ.

Definition 43 (see [37]). A sequence fgpg ⊆H h, is said to be
ε-separated sequence for some ε > 0, if

sep gp
� �

= inf h gp − gq
� �

: p ≠ q
n o

> ε: ð80Þ

Definition 44. [37]. If k ≥ 2 is an integer, a Banach space Hh
is said to be k-nearly uniformly convex (k-NUC) when for
all ε > 0 one has δ ∈ ð0, 1Þ so that for every sequence fgpg
⊆ BðHhÞ, with sepðgpÞ ≥ ε, we have p1, p2, p3,⋯, pk ∈N .

Such that

h
gp1

+ gp2
+ gp3+⋯+gpk
k

� �
< 1 − δ: ð81Þ

Definition 45 [38]. A function h is said to be hold the δ2
-condition (h ∈ δ2), if for any ε > 0, there exists a constant
k ≥ 2 and a > 0 such that,

h 2gð Þ ≤ kh gð Þ + ε for eachg ∈Hh, with h gð Þ ≤ a: ð82Þ

If h satisfies the δ2-condition for any a > 0 with k ≥ 2
depending on a, we say that h satisfies the strong δ2-condi-
tion (ρ ∈ δs2).

Theorem 46 ((see [38]), Lemma 2.1). Suppose h ∈ δs2, then
for any L > 0 and ε > 0 one has δ > 0 with jhð f + gÞ − h
ð f Þj < ε,f , g ∈Hh, with hð f Þ ≤ L and hðgÞ ≤ δ.

Theorem 47. Pick an ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then for

any L > 0 and ε > 0 one has δ > 0 with jhð f + gÞ − hð f Þj < ε,
for every f , g ∈ ðCτð:ÞÞh, so that hð f Þ ≤ L and hðgÞ ≤ δ.

Proof. Since ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then h ∈ δs2.
According to Theorem 46, the proof follows.

We denote SðHhÞ and BðHhÞ for the unit sphere and the
unit ball of Hh, respectively.

Theorem 48. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then is k-

NUC, for any integer k ≥ 2.

Proof. Assume ε ∈ ð0, 1Þ and f f ng ⊆ BððCτð:ÞÞhÞ, where f nðyÞ
=∑∞

i=0
df nðiÞyi so that sepð f nÞ ≥ ε. For all m ∈N , suppose f mn

ðyÞ =∑∞
i=0
df mn ðiÞyi, where ð df mn ðiÞÞ∞i=0 = ð0, 0, 0,⋯, df nðmÞ ,df nðm + 1Þ ,⋯Þ. As for all i ∈N , ð df nðiÞÞ∞n=0 ∈ ℓ∞, from the

diagonal method, one has a subsequence ð f nj
Þ of ð f nÞ with

ð df nj
ðiÞÞ converges for all i ∈N , 0 ≤ i ≤m. One obtains an

increasing sequence of positive integers ðtmÞ so that sep

ðð f mnj
Þ
j>tm

Þ ≥ ε. Therefore, one has a sequence of positive

integers ðrmÞ∞m=0 with r0 < r1 < r2 <⋯, so that

hK f mrm

� �
≥
ε

2 , ð83Þ

for all m ∈N . For constant integer k ≥ 2, assume ε1
= ððkp0−1 − 1Þ/ððk − 1Þkp0ÞÞðε/4Þ from Theorem 47, one
gets δ > 0 with

hK f + gð Þ − hK fð Þ�� �� < ε1: ð84Þ

If hKðgÞ ≤ δ. As hKð f nÞ ≤ 1, for every n ∈N , one has
positive integers miði = 0, 1, 2,⋯, k − 2Þ with m0 <m1 <m2
<⋯<mk−2 with hKð f mi

i Þ ≤ δ. Define mk−1 =mk−2 + 1. From
inequality (83), one can see hð f mk

rmk
Þ ≥ ε/2. Suppose pi = i for

0 ≤ i ≤ k − 2 and pk−1 = rmk−1
. According to inequalities (83),

(84), and convexity of JnðuÞ = jujτn for every n ∈N , one has

hK
f p0 + f p1 + f p2+:⋯ +f pk−1

k

� �

= 〠
∞

n=0

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn

= 〠
m1−1

n=0

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn

+ 〠
∞

n=m1

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn
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≤ 〠
m1−1

n=0

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn

+ 〠
∞

n=m1

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn

+ ε1

≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0

df pj ið Þ��� ���
n + 1

0@ 1Aτn

+ 〠
m2−1

n=m1

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn

+ 〠
∞

n=m2

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn

+ ε1

≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0

df pj ið Þ��� ���
n + 1

0@ 1Aτn

+ 〠
m2−1

n=m1

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn

+ 〠
∞

n=m2

∑n
i=0

df p2 ið Þ + f p3 ið Þ+⋯+ df pk−1 ið Þ
� �

/k
��� ���

n + 1

0@ 1Aτn

+ 2ε1

≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0

df pj ið Þ��� ���
n + 1

0@ 1Aτn

+ 〠
m2−1

n=m1

1
k
〠
k−1

j=1

∑n
i=0

df pj ið Þ��� ���
n + 1

0@ 1Aτn

+ 〠
m3−1

n=m2

1
k
〠
k−1

j=2

∑n
i=0

df pk ið Þ
��� ���
n + 1

0@ 1Aτn

+⋯+ 〠
mk−1

n=mk−1

1
k

〠
k−1

j=k−2

∑n
i=0

df pk ið Þ
��� ���
n + 1

0@ 1Aτn

+ 〠
∞

n=mk

∑n
i=0

df pk ið Þ
��� ���/k
n + 1

0@ 1Aτn

+ k − 1ð Þε1

≤
hK f p0 + f p1 + f p2+:⋯ +f pk−2
� �

k
+ 1
k
〠
mk−1

n=0

∑n
i=0

df pk ið Þ
��� ���
n + 1

0@ 1Aτn

+ 〠
∞

n=mk

∑n
i=0

df pk ið Þ/k
��� ���
n + 1

0@ 1Aτn

+ k − 1ð Þε1

≤
k − 1
k

+ 1
k
〠
mk−1

n=0

∑n
i=0

df pk ið Þ
��� ���
n + 1

0@ 1Aτn

+ 1
kτ0

〠
∞

n=mk

∑n
i=0

df pk ið Þ
��� ���
n + 1

0@ 1Aτn

+ k − 1ð Þε1

≤ 1 − 1
k
+ 1
k

1 − 〠
∞

n=mk

∑n
i=0

df pk ið Þ
��� ���
n + 1

0@ 1Aτn
0B@

1CA

+ 1
kτ0

〠
∞

n=mk

∑n
i=0

df pk ið Þ
��� ���
n + 1

0@ 1Aτn

+ k − 1ð Þε1

= 1 + k − 1ð Þε1 −
kτ0−1 − 1

kτ0

 !
〠
∞

n=mk

∑n
i=0

df pk ið Þ
��� ���
n + 1

0@ 1Aτn

≤ 1 + k − 1ð Þε1 −
kτ0−1 − 1

kτ0

 !
ε

2 = 1 − kτ0−1 − 1
kτ0

 !
ε

4 : ð85Þ

So, ðCτð:ÞÞh is k-NUC.
Recall that k-NUC implies reflexivity.

Definition 49 (see [39]). A Banach space Hh holds the uni-
form Opial property, if for all ε > 0 one has γ > 0 so that
for every weakly null sequence f f ng ⊂ SðH hÞ and f ∈Hh
so that hð f Þ ≥ ε, then

1 + γ ≤ lim inf
n⟶∞

h f n + fð Þ: ð86Þ

Definition 50 (see [40]). For a bounded subset E ⊂Hh, the
set-measure of noncompactness defined by

α Eð Þ = inf ξ > 0 : E can be covered by finitely many sets of diameter ≤ ξf g:
ð87Þ

Definition 51 (see [41, 42]). The ball-measure of noncom-
pactness is defined by

β Eð Þ = inf ξ > 0 : E can be covered by finitely many balls of diameter ≤ ξf g:
ð88Þ

Definition 52 (see [43]). For a subset E ⊂Hh is said to be α
-minimal if αðCÞ = αðEÞ, for any infinite subset C of E.

Definition 53 (see [43]). The packing rate of a Banach space
H h is denoted by γðHhÞ, and the formula defines it

γ Hhð Þ = δ Hhð Þ
σ Hhð Þ , ð89Þ

where δðHhÞ and σðHhÞ are defined as the supremum and
the infimum, respectively, of the set

β Eð Þ
α Eð Þ : E ⊂Hh, E is α −minimal, α Eð Þ > 0
� �

: ð90Þ

Definition 54 (see [41]). The function Δ is said to be the
modulus of noncompact convexity, if for every ξ > 0 define

Δ ξð Þ = inf 1 − inf
f ∈E

h fð Þ: Eis a closed convex subset of B H hð Þwithβ Eð Þ ≥ ξ

� �
:

ð91Þ

Definition 55 (see [39]). A Banach space Hh is said to be
hold property ðLÞ, when lim

ε⟶1−
ΔðεÞ = 1:.
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Definition 56. An operator V : Hh ⟶Hh is said to be a h
-contraction, if one gets α ∈ ½0, 1Þ with hðVg −Vf Þ ≤ αhðg
− f Þ, for all g, f ∈H h. The operator V is said to be h-non-
expansive, when α = 1. An element g ∈Hh is said to be a
fixed point of V , when VðgÞ = g:.

Theorem 57 (see [39]).

(1) Suppose a Banach space Hh holds property ðLÞ, then
it has the fixed point property, i.e., for every nonex-
pansive self-mapping of a nonempty, closed, bounded,
convex subset has a fixed point

(2) A Banach space Hh holds property ðLÞ, if and only if,
it is reflexive and has the uniform Opial property

Theorem 58. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then

ðCτð:ÞÞh has the uniform Opial property.

Proof. Let ε > 0 one finds a positive number ε0 ∈ ð0, εÞ with

1 + εK

2 > 1 + ε0ð ÞK : ð92Þ

If f ∈ ðCτð:ÞÞh and hð f Þ ≥ ε:, one has n1 ∈N with

〠
∞

n=n1+1

1
n + 1〠

n

i=0
df ið Þ
��� ��� !τn

< ε0
4
� �K

: ð93Þ

Therefore, one gets

h 〠
∞

i=n1+1

df ið Þe ið Þ
 !

< ε0
4 < ε

4 : ð94Þ

Also, one has

εK ≤ 〠
n1

n=0

1
n + 1〠

n

i=0

df ið Þ
��� ��� !τn

+ 〠
∞

n=n1+1

1
n + 1〠

n

i=0

df ið Þ
��� ��� !τn

< 〠
n1

n=0

1
n + 1〠

n

i=0
df ið Þ
��� ��� !τn

+ ε0
4
� �K

< 〠
n1

n=0

1
n + 1〠

n

i=0
df ið Þ
��� ��� !τn

+ εK

4 ,

ð95Þ

if

3εK
4 ≤ 〠

n1

n=0

1
n + 1〠

n

i=0

df ið Þ
��� ��� !τn

: ð96Þ

For any weakly null sequence f f mg ⊂ SððCτð:ÞÞhÞ, in

virtue of df mðiÞ ⟶ 0 for i = 0, 1, 2,⋯, one has m0 ∈N with

h 〠
n1

i=0
df m ið Þe ið Þ

 !
< ε0

4 , ð97Þ

for m >m0. One can see

h f m + fð Þ = h 〠
n1

i=0
df m ið Þ + df ið Þ

� �
e ið Þ + 〠

∞

i=n1+1
df m ið Þ + df ið Þ

� �
e ið Þ

 !

≥ h 〠
n1

i=0
df ið Þe ið Þ + 〠

∞

i=n1+1
df m ið Þe ið Þ

 !

− h 〠
n1

i=0
df m ið Þe ið Þ

 !
− h 〠

∞

i=n1+1
df ið Þe ið Þ

 !

≥ h 〠
n1

i=0
df ið Þe ið Þ + 〠

∞

i=n1+1
df m ið Þe ið Þ

 !
−
ε0
2 ,

ð98Þ

if m >m0. For a≔∑n1
i=0jdf ðiÞj, one obtains

hK 〠
n1

i=0
df ið Þe ið Þ + 〠

∞

i=n1+1
df m ið Þe ið Þ

 !
= 〠

n1

n=0

1
n + 1〠

n

i=0
df ið Þ
��� ��� !τn

+ 〠
∞

n=n1+1

1
n + 1〠

n

i=0
a + df m ið Þ
��� ���� � !τn

≥ 〠
n1

n=0

1
n + 1〠

n

i=0
df ið Þ
��� ��� !τn

+ 〠
∞

n=n1+1

1
n + 1〠

n

i=0
df m ið Þ

��� ��� !τn

≥
3εK
4 + 1 − εK

4

� �
= 1 + εK

2 > 1 + ε0ð ÞK :

ð99Þ

Combining this with the previous inequality, one has

h f m + fð Þ ≥ h 〠
n1

i=0
df ið Þe ið Þ + 〠

∞

i=n1+1
df m ið Þe ið Þ

 !
−
ε0
2

≥ 1 + ε0 −
ε0
2 = 1 + ε0

2 :

ð100Þ

Therefore, the space ðCτð:ÞÞh has the uniform Opial
property.

From Theorem 58 and the reflexivity of the space
ðCτð:ÞÞh, by applying Theorem 47, we get the following.

Corollary 59. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then ðCτð:ÞÞh
has the property ðLÞ and the fixed point property.

Definition 60. Hh holds the h-normal structure property, if
and only if, for every nonempty h-bounded, h-convex, and
h-closed subset Γ of Hh not decreased to one point, one
has f ∈ Γ with
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sup
g∈Γ

h f − gð Þ < δh Γð Þ≔ sup h f − gð Þ: f , g ∈ Γf g <∞:

ð101Þ

Definition 61 (see [44]). The weakly convergent sequence
coefficient of a Banach space Hh, denoted by WCSðH hÞ, is
defined as follows:

WCS H hð Þ = inf A f nf gð Þ: f nf g∞n=1 ⊂ S Hhð Þ,A f nf gð Þ

= A1 f nf gð Þ, f n ⟶

w 0g,
ð102Þ

where

A f nf gð Þ = lim sup
n⟶∞

h f i − f j
� �

: i, j ≥ n, i ≠ j
n o

,

A1 f nf gð Þ = lim inf
n⟶∞

h f i − f j
� �

: i, j ≥ n, i ≠ j
n o

:

ð103Þ

Theorem 62 (see [45]). A reflexive Banach space Hh such
that WCSðHhÞ > 1 has the normal structure property.

Theorem 63. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then ðCτð:ÞÞh
holds the h-normal structure property.

Proof. Take any ε > 0 and an asymptotic equidistant
sequence f f ng ⊂ SððCτð:ÞÞhÞ with f n ⟶

w 0 and let v1 = f1.
One has i1 ∈N with

h 〠
∞

i=i1+1
dv1 ið Þe ið Þ

 !
< ε: ð104Þ

As f n ⟶ 0 coordinate-wise, one gets n2 ∈N with

h 〠
i1

i=1
df n ið Þe ið Þ

 !
< ε: ð105Þ

For n ≥ n2, put v2 = f n2 , one gets i2 > i1 with

h 〠
∞

i=i2+1
dv1 ið Þe ið Þ

 !
< ε: ð106Þ

As f nðiÞ⟶ 0 coordinate-wise, one obtains n3 ∈N with

h 〠
i2

i=1
df n ið Þe ið Þ

 !
< ε: ð107Þ

For n ≥ n3. By induction, one has a subsequence fvng of
f f ng with

h 〠
∞

i=in+1
dvn ið Þe ið Þ

 !
< ε, h 〠

in

i=1
dvn+1 ið Þe ið Þ

 !
< ε: ð108Þ

Take

zn = 〠
in

i=in−1+1
dvn ið Þe ið Þ, ð109Þ

for n = 2, 3,⋯. So,

1 ≥ h znð Þ = h 〠
∞

i=1
dvn ið Þe ið Þ − 〠

in−1

i=1
dvn ið Þe ið Þ − 〠

∞

i=in+1
dvn ið Þe ið Þ

 !

≥ h 〠
∞

i=1
dvn ið Þe ið Þ

 !
− h 〠

in−1

i=1
dvn ið Þe ið Þ

 !
− h 〠

∞

i=in+1
dvn ið Þe ið Þ

 !
> 1 − 2ε:

ð110Þ

For every n,m ∈N so that n ≠m, one can see

h vn − vmð Þ = h 〠
∞

i=1
dvn ið Þe ið Þ − 〠

∞

i=1
dvm ið Þe ið Þ

 !

≥ h 〠
in

i=in−1+1
dvn ið Þe ið Þ − 〠

im

i=im−1+1
dvm ið Þe ið Þ

 !

− h 〠
in−1

i=1
dvn ið Þe ið Þ

 !
− h 〠

∞

i=in+1
dvn ið Þe ið Þ

 !

− h 〠
im−1

i=1
dvm ið Þe ið Þ

 !
− h 〠

∞

i=im+1
dvm ið Þe ið Þ

 !
≥ h zn − zmð Þ − 4ε,

ð111Þ

which gives Aðf f ngÞ = AðfvngÞ ≥ AðfzngÞ − 4ε: Take
un = zn/kznk, for n = 2, 3,⋯. Then,

un ∈ S Cτ :ð Þ
� �

h

� �
; ð112Þ

A f nf gð Þ ≥ 1 − εA unf gð Þ − 4ε: ð113Þ

On the other hand,

h vn − vmð Þ ≤ h zn − zmð Þ + 4ε ≤ h un − umð Þ + 4ε, ð114Þ

for any n,m ∈N with n ≠m. Therefore,

A unf gð Þ ≥ A f nf gð Þ − 4ε: ð115Þ

By the arbitrariness of ε > 0, we have from the relations
(112), (113), and (115) that

WCS Cτ :ð Þ
� �

h

� �
= inf A unf gð Þf g, ð116Þ

such that
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un = 〠
in

i=in−1+1
dun ið Þe ið Þ ∈ S Cτ :ð Þ

� �
h

� �
, 0

= i0 < i1 <⋯, un ⟶
w 0 and unf gis asymptotic equidistant:

ð117Þ

Take m ∈N large enough such that

〠
∞

k=im−1+1

b
k

� �τk

< ε, ð118Þ

where b≔∑in
i=in−1+1junðiÞj: One gets for

hK un − umð Þ = 〠
im−1

k=in−1+1

1
k
〠
k

i=1
dun ið Þ
��� ��� !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
dum ið Þ
��� ��� ! !τk

≥ 〠
im−1

k=in−1+1

1
k
〠
k

i=1
dun ið Þ
��� ��� !τk

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
dum ið Þ
��� ��� !τk

= 〠
∞

k=in−1+1

1
k
〠
k

i=1
dun ið Þ
��� ��� !τk

− 〠
∞

k=im−1+1

b
k

� �τk

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
dum ið Þ
��� ��� !τk

> 1 − ε + 1 = 2 − ε,

ð119Þ

that is AnðfungÞ ≥ ð2 − εÞ1/K . Note that

〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
dum ið Þ
��� ��� ! !τk

" #1/K

≤ 〠
∞

k=im−1+1

b
k

� �τk
" #1/K

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
dum ið Þ
��� ��� !τk

" #1/K
< ε1/K + 1:

ð120Þ

Therefore,

hK un − umð Þ = 〠
im−1

k=in−1+1

1
k
〠
k

i=1
dum ið Þ
��� ��� !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
dum ið Þ
��� ��� ! !τk

≤ 〠
∞

k=in−1+1

1
k
〠
k

i=1
dum ið Þ
��� ��� !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
dum ið Þ
��� ��� ! !τk

≤ 1 + 1 + ε1/K
� 	K ,

ð121Þ

with n,m ∈N and n ≠m. Therefore, AnðfungÞ ≤

ð1 + ð1 + ε1/KÞKÞ1/K and, by the arbitrariness of ε > 0, one has
WCSððCτð:ÞÞhÞ = 21/K . From Theorems 48 and 62, then, the
function space ðCτð:ÞÞh has the h-normal structure property.

Theorem 64 (see [46]). If Hh is reflexive Banach space with
the uniform Opial property, one has γðHhÞ = 2/WCSðHhÞ:.

Theorem 65. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then γ

ððCτð:ÞÞhÞ = 21−ð1/KÞ:.

Proof. Since ðCτð:ÞÞh is reflexive Banach space with the
uniform Opial property, one obtains

γ Cτ :ð Þ
� �

h

� �
= 2
WCS Cτ :ð Þ

� �
h

� � = 21−1/K : ð122Þ

Theorem 66. If ðτqÞq∈N ∈ ℓ∞ ∩ Iwith τ0 > 1 andW : ðCτð:ÞÞh
⟶ ðCτð:ÞÞh is h-contraction mapping, where hð f Þ =
½∑∞

q=0ð∑q
p=0jcf p j/ðq + 1ÞÞτq �1/K , for every f ∈Cτð:Þ, thenW has a

unique fixed point.

Proof. Let the setups be satisfied. For every f ∈ ðCτð:ÞÞh, then
Wp f ∈ ðCτð:ÞÞh. As W is a h-contraction mapping, one gets

h Wp+1 f −Wp f
� 	

≤ αh Wp f −Wp−1 f
� 	

≤ α2h Wp−1 f −Wp−2 f
� 	

≤⋯≤ αph Wf − fð Þ:
ð123Þ

So, for all p, q ∈N so that q > p, one has

h Wq f −Wp fð Þ ≤ αph Wq−p f − fð Þ: ð124Þ

Therefore, fWp f g is a Cauchy sequence in ðCτð:ÞÞh.
Since the space ðCτð:ÞÞh is prequasi-Banach (ssfps). One gets
g ∈ ðCτð:ÞÞh with lim

p⟶∞
Wp f = g, to prove that Wg = g.

According to Theorem 13, h verifies the Fatou property;
one can see

h Wg − gð Þ ≤ sup
i

inf
p≥i

h Wp+1 f −Wp f
� 	

≤ sup
i

inf
p≥i

αph Wf − fð Þ = 0,

ð125Þ

so Wg = g. Then, g is a fixed point of W. To prove that the
fixed point is unique, let us have two different fixed points
f , g ∈ ðCτð:ÞÞh of W. One obtains

h f − gð Þ ≤ h Wf −Wgð Þ ≤ αh f − gð Þ: ð126Þ

So, f = g:
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Example 7. Assume

V : C
2q + 3
q + 2

� �∞

q=0

 ! !
h

⟶ C
2q + 3
q + 2

� �∞

q=0

 ! !
h

,

ð127Þ

where

h gð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

q=0

∑q
p=0 cgp��� ���
q + 1

0@ 1A2q+3/q+2
vuuut , ð128Þ

for every g ∈Cððð2q + 3Þ/ðq + 2ÞÞ∞q=0Þ and VðgÞ = g/4:
Since for all f1, f2 ∈ ðCððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh, one gets

h V f 1 −Vf 2ð Þ = h
f1
4 −

f2
4

� �
≤

1ffiffiffiffiffi
644

p h f1 − f2ð Þð Þ: ð129Þ

So V is h-contraction. Assume V : Γ⟶ Γ with VðgÞ
= g/4, where

Γ = f ∈ C
2q + 3
q + 2

� �∞

q=0

 ! !
h

: bf0 = bf1 = 0
( )

: ð130Þ

Since V is h-contraction. So, it is h-nonexpansive. By
Corollary 59, V holds a fixed point ϑ in Γ.

6. Applications to Nonlinear
Summable Equations

Numerous authors, for example in [47], have examined non-
linear summable equations such as (132). This section is
dedicated to locating a solution to (132) in ðCτð:ÞÞh, where
the conditions ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1 are satisfied and

h fð Þ = 〠
∞

q=0

∑q
p=0
cf p��� ���

q + 1

0@ 1Aτq
264

375
1/K

, ð131Þ

for every f ∈Cτð:Þ. Take a look at the equations that are
summable:

cga = bra + 〠
∞

m=0
A a,mð Þf m, cgm� 	

, ð132Þ

and assume W : ðCτð:ÞÞh ⟶ ðCτð:ÞÞh defined by

W gð Þð Þ zð Þ = 〠
∞

a=0
bra + 〠

∞

m=0
A a,mð Þf m, cgm� 	 !

za: ð133Þ

Theorem 67. The summable equations (132) have only one
solution in ðCτð:ÞÞh if A : N 2 ⟶ℂ,f : N ×ℂ⟶ℂ,

r̂ : N ⟶ℂ,̂t : N ⟶ℂ, assume there is κ ∈ℂ so that
sup
q
jκjτq/K ∈ ½0, 1Þ and for every a ∈N , we have

〠
∞

m=0
A a,mð Þ f m, cgm� 	

− f m,ctm� �� ������
����� ≤ κj j cga − bta�� ��:

ð134Þ

Proof. Let the setups be verified. Consider the mapping
W : ðCτð:ÞÞh ⟶ ðCτð:ÞÞh defined by (133). We have

h Wg −Wtð Þ = 〠
∞

q=0

∑q
a=0 dWgð Þa − dWtð Þa
��� ���

q + 1

0@ 1Aτq
264

375
1/K

= 〠
∞

q=0

∑q
a=0 ∑

∞
m=0A a,mð Þ f m, cgm

� 	
− f m,ctm� �h i��� ���

q + 1

0@ 1Aτq
264

375
1/K

≤ sup
q

κj jτq/K 〠
∞

q=0

∑q
a=0 cga − bta�� ��

q + 1

 !τq
" #1/K

:

ð135Þ

According to Theorem 66, one obtains a unique solution
of equation (132) in ðCτð:ÞÞh.

Example 1. Assume the function space
ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh, where

h fð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

a=0

∑a
b=0
cf b��� ���

a + 1

0@ 1A3a+2/a+1
3

vuuut , ð136Þ

for all f ∈Cððð3a + 2Þ/ða + 1ÞÞ∞a=0Þ.

cga = 5− 2a+3ið Þ + 〠
∞

m=0
−1ð Þai+3m cos cga�� ��

sinh cga

�� �� + sin ma + 1

 !q

,

ð137Þ

where q > 0, i2 = −1 and let W : ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh
⟶ ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh defined by

W gð Þð Þ zð Þ = 〠
∞

a=0
5− 2a+3ið Þ + 〠

∞

m=0
−1ð Þai+3m cos cga�� ��

sinh cga�� �� + sin ma + 1

 !q !
za:

ð138Þ

It is easy to see that

〠
∞

m=0
−1ð Þai cos cga

�� ��
sinh cga

�� �� + sin ma + 1

 !q

−1ð Þ3m − −1ð Þ3m� 	�����
����� ≤ 1

3 cga − bta�� ��:
ð139Þ
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By Theorem 67, the summable equations (137) have one
solution in ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh.

Example 2. Given the function space
ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh, where

h fð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

a=0

∑a
b=0
cf b��� ���

a + 1

0@ 1A2a+3/a+2
vuuut , ð140Þ

for all f ∈Cððð2a + 3Þ/ða + 2ÞÞ∞a=0Þ. Consider the summable

equations (137) with a ≥ 2 and let W : Ξ⟶ Ξ, where Ξ =
f f ∈ ðCððð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞh : bf0 = bf1 = 0g, defined by

W fð Þð Þ zð Þ = 〠
∞

a=2
5− 2a+3ið Þ + 〠

∞

m=0
−1ð Þai+3m

cos cf a��� ���
sinh cf a��� ��� + sin ma + 1

0B@
1CA

q0B@
1CAza:

ð141Þ

Clearly, Ξ is a nonempty, h-convex, h-closed, and h
-bounded subset of ðCððð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞh. It is easy to
see that

〠
∞

m=0
−1ð Þai cos cga�� ��

sinh cga�� �� + sin ma + 1

 !q

−1ð Þ3m − −1ð Þ3m� 	�����
����� ≤ 1

9 cga − bta�� ��:
ð142Þ

By Theorem 67 and Corollary 59, the summable equa-
tions (137) with a ≥ 2 have a solution in Ξ.

Example 3. Assume the function space
ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh, where

h gð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

a=0

∑a
b=0 cgb

�� ��
a + 1

 !3a+2/a+1
3

vuut , ð143Þ

for all g ∈Cððð3a + 2Þ/ða + 1ÞÞ∞a=0Þ.
Consider the non-linear difference equations,

cga = e− 2a+3ið Þ + 〠
∞

m=0

tan 2m + 1ð Þ cosh 3mi − að Þ cosp dga−2�� ��
sinhq dga−1�� �� + sin ma + 1 ,

ð144Þ

where dg−2 ,dg−1 , p, q > 0, i2 = −1 and let W :

ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh ⟶ ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh
defined by

W gð Þð Þ zð Þ = 〠
∞

a=0
e− 2a+3ið Þ + 〠

∞

m=0

tan 2m + 1ð Þ cosh 3mi − að Þ cosp dga−2
�� ��

sinhq dga−1
�� �� + sin ma + 1

 !
za:

ð145Þ

It is easy to see that

〠
∞

m=0

cosh 3mi − að Þ cosp dga−2�� ��
sinhq dga−1�� �� + sin ma + 1 tan 2m + 1ð Þ − tan 2m + 1ð Þð Þ

�����
�����

≤
1
5 cga − bta�� ��:

ð146Þ

By Theorem 67, the nonlinear difference equations (144)
have one solution in ðCððð3a + 2Þ/ða + 1ÞÞ∞a=0ÞÞh.

Example 4. Given the function space

ðCððð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞh, where hðgÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

a=0ð∑a
b=0jcgb j/ða + 1ÞÞð2a+3Þ/ða+2Þ

q
, for all g ∈Cð

ðð2a + 3Þ/ða + 2ÞÞ∞a=0Þ. Consider the non-linear difference
equations (144) with a ≥ 1 and let W : Ξ⟶ Ξ, where Ξ =
fg ∈ ðCððð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞh : cg0 = 0g, defined by

W gð Þð Þ zð Þ = 〠
∞

a=1
e− 2a+3ið Þ + 〠

∞

m=0

tan 2m + 1ð Þ cosh 3mi − að Þ cosp dga−2�� ��
sinhq dga−1�� �� + sin ma + 1

 !
za:

ð147Þ

Clearly, Ξ is a nonempty, h-convex, h-closed, and h
-bounded subset of ðCððð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞh. It is easy to
see that

〠
∞

m=0

cosh 3mi − að Þ cosp dga−2�� ��
sinhq dga−1�� �� + sin ma + 1 tan 2m + 1ð Þ − tan 2m + 1ð Þð Þ

�����
�����

≤
1
5 cga − bta�� ��:

ð148Þ

By Theorem 67 and Corollary 59, the nonlinear differ-
ence equations (144) with a ≥ 1 have a solution in Ξ.

Example 5. The summable equations (132) have a solution in
ðCτð:ÞÞh if

K 〠
∞

q=0

∑q
a=0 bra −cga +∑∞

m=0A a,mð Þf m, cgm

� 	�� ��
q + 1

 !τq
" #1/K

≤ ln
∑∞

q=0 ∑q
a=0 bra +∑∞

m=0A a,mð Þf m, cgm� 	�� ��� 	
/ q + 1ð Þ� 	τq

∑∞
q=0 ∑q

a=0 cga�� ��/ q + 1ð Þ� 	τq :

ð149Þ
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Evidently, we have

h Wg − gð Þ = 〠
∞

q=0

∑q
a=0 bra −cga +∑∞

m=0A a,mð Þf m, cgm

� 	�� ��
q + 1

 !τq
" #1/K

≤
1
K

ln
∑∞

q=0 ∑q
a=0 bra +∑∞

m=0A a,mð Þf m, cgm� 	�� ��� 	
/ q + 1ð Þ� 	τq

∑∞
q=0 ∑q

a=0 cga

�� ��/ q + 1ð Þ� 	τq
= ln h Wgð Þð Þ − ln h gð Þð Þ:

ð150Þ

By Theorem 18, one gets a solution of equation (132)
in ðCτð:ÞÞh.

Example 6. The summable equations (132) have a solution
in ðCτð:ÞÞh, if

〠
∞

q=0

∑q
a=0 bra −cga +∑∞

m=0A a,mð Þf m, cgm

� 	�� ��
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
a=0 cga�� ��
q + 1

 !τq
" #1/K

− 〠
∞

q=0

∑q
a=0 bra +∑∞

m=0A a,mð Þf m, cgm� 	�� ��
q + 1

 !τq
" #1/K

:

ð151Þ

Clearly, we have

h Wg − gð Þ = 〠
∞

q=0

∑q
a=0 bra −cga +∑∞

m=0A a,mð Þf m, cgm

� 	�� ��
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
a=0 cga�� ��
q + 1

 !τq
" #1/K

− 〠
∞

q=0

∑q
a=0 bra +∑∞

m=0A a,mð Þf m, cgm� 	�� ��
q + 1

 !τq
" #1/K

= h gð Þ − h Wgð Þ:
ð152Þ

By Theorem 18, one gets a solution of equation(132)
in ðCτð:ÞÞh.

Assume Ω is the set of all closed and bounded inter-
vals on the real line R. For t = ½t1, t2� and g = ½g1, g2� in
Ω, suppose

t ≤ g if and only if t1 ≤ g1 and t2 ≤ g2: ð153Þ

Define a metric ρ on Ω by

ρ t, gð Þ =max t1 − g1j j, t2 − g2j jf g: ð154Þ

Matloka [48] showed that ρ is a metric on Ω, and
ðΩ, ρÞ is a complete metric space.

Definition 68. A fuzzy number g is a fuzzy subset ofR, i.e., a
mapping g : R⟶ ½0, 1� which verifies the following four
settings:

(a) g is fuzzy convex, i.e., for x, y ∈R and α ∈ ½0, 1�,
gðαx + ð1 − αÞyÞ ≥min fgðxÞ, gðyÞg

(b) g is normal, i.e., there is y0 ∈R such that gðy0Þ = 1

(c) g is an upper semicontinuous, i.e., for all α > 0, g−1
ð½0, x + αÞÞ for all x ∈ ½0, 1� is open in the usual topol-
ogy of R

(d) The closure of g0 ≔ fy ∈R : gðyÞ > 0g is compact

Recall that the β-level set of a fuzzy real number g, 0 <
β < 1 indicated by gβ is defined as

gβ = y ∈R : g yð Þ ≥ βf g: ð155Þ

The set of every upper semicontinuous, normal, convex
fuzzy number, and is compact and is denoted by Rð½0, 1�Þ.
The set R can be embedded in Rð½0, 1�Þ, if we define r ∈R
ð½0, 1�Þ by

�r tð Þ =
1, t = r,
0, t ≠ r:

(
ð156Þ

Consider the summable equations of fuzzy reals (132)
and assume W : ðCτð:ÞÞh ⟶ ðCτð:ÞÞh defined by

W gð Þð Þ zð Þ = 〠
∞

a=0
�ρ bra + 〠

∞

m=0
A a,mð Þf m, cgm� 	

, �0
 !

za,

ð157Þ

where �ρ : R½0, 1� ×R½0, 1�⟶R+ ∪ f0g is defined by �ρðt,

gÞ = sup
0≤β≤1

ρðtβ, gβÞ: For more details about the fuzzy num-

bers and their properties, see Zadeh [49].

Theorem 69. The summable equations (132) have an unique
solution in ðCτð:ÞÞh if A : N 2 ⟶R+,
f : N ×R+½0, 1�⟶R+½0, 1�, bra : N ⟶R+½0, 1�,bta : N ⟶R+½0, 1�, assume there is κ ∈ℂ so that sup

q
jκjτq/K

∈ ½0, 1Þ and for every a ∈N , we have

〠
∞

m=0
A a,mð Þ f m, cgm� 	

− f m,ctm� �� ������
����� ≤ κj j cga − bta�� ��:

ð158Þ
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Proof. Let the setups be verified. Consider the mapping
W : ðCτð:ÞÞh ⟶ ðCτð:ÞÞh defined by (157). We have

According to Theorem 66, one obtains a unique solution
of equation (132) in ðCτð:ÞÞh.

7. Conclusion

We discuss in this paper some topological and geometric
structure of ðCτð:ÞÞh, the existence of Caristi’s fixed point in

it, of the class ✠ðCτð:ÞÞh , and of the class ð✠ðCτð:ÞÞhÞ
λ. Moreover,

some geometric properties related to the fixed point theory
in ðCτð:ÞÞh are introduced. Finally, we investigate several
solutions applications to summable equations and illustrate
our findings with some instances. This article has several
advantages for researchers, such as studying the fixed points
of any contraction mapping on this prequasispace, which is
a generalization of the quasinormed spaces, a new general
space of solutions for many difference equations, examining
the eigenvalue problem in these new settings, and noting that
the closed mappings’ ideals are certain to play an important
function in the principle of Banach lattices, hence since many
fixed point theorems in a particular space work by either
expanding the self-mapping acting on it or expanding the
space itself, as future work, we can enlarge the space ðCτð:ÞÞh
by q-analogue or generalize the self-mapping acting on it.
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