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We have defined the variable exponent of the Cesaro complex function space of formal power series. We have constructed the
prequasi-ideal generated by s -numbers and this new space of complex functions. We present some topological and geometric
structures of this class of ideal. The existence of Caristi’s fixed point is examined. Some geometric properties related to the fixed
point theory are presented. Finally, real-world examples and applications show solutions to some nonlinear difference equations.

1. Introduction

Since the publishing of the book [1] on the Banach fixed
point theorem, several mathematicians have studied possible
extensions to the Banach fixed point theorem. The nonlinear
analysis relies heavily on the Banach contraction principle, a
powerful nonlinear analysis tool. The variable exponent
Lebesgue spaces L, contain Nakano sequence spaces. Vari-

able exponent spaces were thought to offer adequate frame-
works for the mathematical components of several issues.
Standard Lebesgue spaces were inadequate throughout the
second half of the twentieth century. Since these spaces
and their effects have become a well-known and efficient
instrument for solving a range of problems, they have
become a flourishing topic of research, with ramifications
that extend into a wide variety [2] of mathematical disci-
plines. The study of variable exponent Lebesgue spaces L,
received additional impetus from the mathematical descrip-
tion of non-Newtonian fluid hydrodynamics [3, 4]. Non-
Newtonian fluids, also known as electrorheological fluids,
have various applications ranging from military science to
civil engineering and orthopedics. Guo and Zhu [5] investi-
gated a class of stochastic Volterra-Levin equations with
Poisson jumps. Mao et al. [6] were concerned with neutral

stochastic functional differential equations driven by pure
jumps (NSFDEwPJs). They proved the existence and
uniqueness of the solution to NSFDEwP]Js whose coeflicients
satisty the local Lipschitz condition and established the pth
exponential estimations and almost surely asymptotic esti-
mations of the solution for NSFDEw]s. Yang and Zhu [7]
concerned with a class of stochastic neutral functional differ-
ential equations of Sobolev type with Poisson jumps. The
mapping ideal theory is well regarded in functional analysis.
Using s-numbers is an essential technique. Pietsch [8-11]
developed and studied the theory of s-numbers of linear
bound mappings between Banach spaces. He offered and
explained some topological and geometric structures of the
quasi ideals of ¢, -type mappings. Then, Constantin [12]
generalized the class of €, -type mappings to the class of ces,
-type mappings. Makarov and Faried [13] showed some inclu-
sion relations of ¢, -type mappings. As a generalization of €,
-type mappings, Stolz mappings and mappings’ ideal were
examined by Tita [14, 15]. In [16], Maji and Srivastava studied
the class A1(>S> of s-type ces, mappings using s-number
sequence and Cesaro sequence spaces and they introduced a
new class A},f; of s-type ces(p, q) mappings by weighted ces,

with 1<p<oco. In [17], the class of s-type Z(u,v;¢,)


https://orcid.org/0000-0001-6709-8012
https://orcid.org/0000-0002-7240-2936
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3811326

mappings was defined and some of their properties were
explained. Yaying et al. [18] defined and studied x7, whose
its r-Cesaro matrix in €, with r € (0, 1] and 1 < # < co. They
explained the quasi- Banach ideal of type x7, with r € (0, 1]
and 1 <# < oco. Kannan [19] gave an example of a class of
mappings with the same fixed point actions as contractions,
though that fails to be continuous. The only attempt to
describe Kannan operators in modular vector spaces was once
made in Reference [20]. Bakery and Mohamed [21] investi-
gated the concept of a prequasinorm on Nakano sequence
space with a variable exponent in the range (0;1]. They
discussed the adequate circumstances for it to generate
prequasi-Banach and closed space when endowed with a
definite prequasinorm and the Fatou property of various pre-
quasinorms on it. Additionally, they established a fixed point
for Kannan prequasinorm contraction mappings on it and
the prequasi-Banach mappings’ ideal generated from s
-numbers belonging to this sequence space. Also, in [22],
they found some fixed points results of Kannan nonexpan-

(SZ()z{fe(CC:f(y):

For more information on formal power series spaces
and their behaviors, see [24-27]. Many fixed point theo-
rems in a particular space work by either expanding the
self-mapping acting on it or expanding the space itself. In
this paper, we have introduced the concept of premodular
special spaces of formal power series, which are important
extensions of the concept of modular spaces. We have built
large spaces of solutions to many nonlinear summable and
difference equations. It is the first attempt to examine the
fixed point theory and Caristi’s fixed point in certain
premodular special spaces of formal power series. The
purpose of this study is arranged, as follows: In Section 2,
we present and study the space (GT('))h equipped with a
definite function h. In Section 3, we suggest a generalization
of Caristi’s fixed point theorem. In Section 4, the mapping
ideals formed by s-numbers and this function space are
constructed, and their geometric and topological properties
are presented. Speciffically, we explore, in Section 5, some
geometric properties connected with fixed point theory in
(Q'T(,))h. Finally, in Section 6, we discuss several applica-
tions of solutions to summable equations and illustrate
our findings with some instances.

2. Some Properties of €,

In this section, we investigate sufficient setups of
G, equipped with definite function h to be prequasiclosed
and Banach (ssfps). We also present the Fatou property of
various h on €.

vayv and h(uf ) <oo, for some y > 0},whenh Z
v=0
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sive mappings on generalized Cesaro backward difference
sequence space of the nonabsolute type. The set of nonneg-
ative integers, real, and complex numbers will be denoted
by ., R, and C, respectively. By R and R+", we denote
the space of real and positive real sequences. By £, and ¢,
we denote the spaces of bounded and r-absolutely summa-
ble sequences of *R.

Lemma 1 (see [23]). Suppose 7,>0andy, € R for all qe€
N, then

’1<2K—1(

where K =max {1,sup,7,}.

+lz] "), 1)

T,
’yq+zq

If 7=(7,) e R™ and 7, > 1, for all a €./, the variable
exponent Cesaro complex function space is denoted by

T,

X Zk O‘fk‘

= a+1

Theorem 2. If (7,) € ¢, and 7,> 1, for all a € W, then

€y = {fE C®: f(y)= Zj?vyvandh([ztfkoo,foranyy > 0}.
(3)

and h <00, for some p > 0
vay (#f) u
v=0
o ZZ:O f ’ "
C TV 7, ®
{fec ) = ;fvy,mf\m Z( —
<

Ta

<00, for some y > 0, }

o 0 Z“:of "
_ fe(C‘C:f(y)=vayv»za=0< ZJI"‘) <o0
= {fe CC:f(y)= vayvandh(yf)<oo,foranyy>0}.
(4)

Let us indicate 9, the zero function of # and the space of
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finite formal power series by ¥, i.e, when f € &, then there is

ke sothat f(y) =Y f " Nakano [28] introduced the
concept of modular vector spaces. O

Definition 3. Suppose Z is a vector space. A function h : 7
[0,00) is said to be modular, if the next conditions hold

(a) f ge &, then h(g) =20 and g=9 = h(g) =0

(b) h(ng) =h(g) holds, for all ge # and |y =1

(c) The inequality h(ag+ (1—a)f) <h(g)+h(f) sat-
isfies, for all g, f € % and a € [0, 1]

Definition 4 (see [29]). The space # ={f€C®: f(y)=
Y% f."} is said to be a special space of formal power series
(or in short ssfps), if it verifies the following settings:

(1) e?) € Z, for every p € N, where e?)(y) = Zfl’ioe,(f)y“

(2) For all ge % and |f,| <|g,|, for every ae ¥, then
fe#x

(3) If g€ X then g, € #, where g (y) =Y% g@]y"
and [p/2] indicates the integral part of p/2

Definition 5 (see [29]). A subspace #’;, of the ssfps is said to
be a premodular ssfps, if there is a function h : # — [0,00)
verifies the following conditions:
(i) If ge Z, then h(g) >0 and g=9 h(g)=0
(ii) When f € # and A € C, then there are Q> 1 such
that h(Af) < |A|QA(f)
(ili) Suppose f, g € #, then there are P >1 such that h
(f +9) <P(h(f) +h(g))
(iv) Suppose |f,| < |g, |, for all b e #, then h(f) + h(g)
(v) There are Py > 1 such that h(f) <h(f; <Psh(f))
(vi) The closure of § =%,

(vii) There are & > 0 so that h(1e(®) > E|A|h(e®), where
AeC

Clearly, the concept of premodular vector spaces is more
general than modular vector spaces, an example of premod-
ular vector space but not modular vector space.

Example 1. The function h(f) = X2 (X |f, /(g + 1))(26”3)/(%4)
is a premodular (not a modular) on the vector space €(
((2q+3)/(q+4))). As  for every f,geC(
((29+3)/(q +4))2,), one has

S

= q+1

N 0 (743 2q+3/q+4
h(f;g)z(w> < 2 (h(f) + h(g)),

an example of premodular vector space and modular
vector space.

Example 2. The function h(f)=inf {a>-: 32,

(ZZ:O |]A‘P/0¢|/(q + 1))(2q+3)/(q+4) <1} is a premodular (modu-
lar) on the vector space €(((2q+3)/(q + 2));’20)

Definition 6 (see [29]). A subspace ), of the ssfps is said to
be a prequasinormed ssfps, if there is a function h : # —
[0,00) verifies the following conditions:

(i) If g€ #, then the h(g) =20 and g=9 < h(g)=0

(ii) When f € # and A € C, then there are Q> 1 such
that h(Af) <[A|Qh(f)

(iii) Suppose f, g€ Z then there are P>1 such that
h(f +g) <P(h(f) + h(g))

Recall that %) is said to be a prequasi-Banach ssfps,
when %), is complete.

Theorem 7 (see [30]). All premodular ssfps I, is a prequa-
sinormed. ssfps.

Theorem 8 (see [30]). All quasinormed (ssfps) is a prequasi-
normed (ssfps).

Definition 9.

(a) The function /& on G is said to be h-convex, if

h(af +(1 - a)g) <ah(f) + (1 - a)h(g), (6)
for every a €[0,1] and f, g€,

(b) {gq}qe/‘/ € (€,,)), is h-convergent to g € (€, (,),, if
and only if, lim;_, h(g, —g)=0. When the h

-limit exists, then it is unique

() {gq}qeﬂ < (€,,), is h-Cauchy, if lim,, ,h(g,
-9,)=0

(d) I'c ((ST(_))h is h-closed, when for all h-converges,
{91} ey CTtog thengel

(e) I' < (C,,), is h-bounded, if §,(I") = sup {h(f - g):
frgel't<oo

(f) The h-ball of radius £>0 and center f, for every f
€ (€)),, is described as



B(fe)={g¢(Cy) hf-g)sef @)

h

(g) A prequasinorm h on €, holds the Fatou property,
if for every sequence {g?} < (€,), under lim,__,
h(g?—g)=0 and all f € (C, ) , one has h(f - g)

<sup, inf . h(f - g7)

Recall that the Fatou property explains the h-closedness
of the h-balls. We will mark the space of all increasing
sequences of real numbers by I.

— T, 1/K
Theorem 10. (S ), where h(F)[X5%(S2ol 7, /(g + 1))
for all f € €., is a premodular (ssfps), when (t €l

NI with T,> 1.

q)qeﬂf

Proof. Evidently, h(f) >0 and h(f) =0 = =9.
Let f, g €G,,. One has (f +g)(y) = 3%(f, + 3,)y" €
C with
5 ‘f/\ ‘ 7,7 UK
Q [ Lp=0|tpt 9y
h(f + _
(f+9) qzo ( e )
] RRUS
i Zp:o’fp ‘
S\ g+l (8)
ERNEA RS
4 i Zp:O gp’
pari q+1
= h(f) + h(g) < co
Asaf € QT(_), hence from conditions (1-i) and (1-ii), one
has @T(,) is linear. Also el € Grc)’ for all r € /¥, since

/(\) 7,4 1/K
[e) ZZ:O ep 00
qg+1 B [Z‘)

h (em) =

q=0

There is Q = max {1, supq|oc| WO > 1 with h(af) <
|la|h(f) forall f €€, and a € C
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Assume |f | <|g,|, forall g€ # and g € €. One finds

— 7.7 /K 7.7 UK
& zq:r)f ! & ZqzogA !
mz[;o( ‘;Jﬁ) } M ;J;’) ] ) <oo

(10)

then f € (S'T()

Obviously, from (58).

Let (f,) € €, (), we get

Z ‘f 1/K
3 & p=0|J [pr2]
h((f@/z])) - qgo ( g+1 ) ]

1/K

® Zp o‘fu;/z]‘ = 2127 Sl fLD/Z] -
- ;0( 2q+1 Z S 2q+1

7 UK
o [|f +2Y1 ol f X ZZqzof !
z( et ”") +z(;+‘;’) }

IN

IA

M8
/0~
W

< [ D2

+| &
=
=)
N——————
o

+

gl Nl
/N
[38)
<[22

+] &L
~=
v
~
[
=

(11)

then (f[P/Z]) € GT()

From (59), we obtain P, = (3K + 2K
Evidently the closure of =€ .

There is 0 <o <sup, |oc| 1 for a#0 or >0, for a
=0 with h(ae®) > o|a|h(e®)). O

)1/K2 L

Theorem 11. If(Tq)qe/V
a prequasi-Banach (ssfps), where

€ by, NI with 7y > 1, then (C,,), is

1/K

o0 q70 R K
hf)=1|2 (ZZJ{P‘) , (12)

q=0

for every f € €.

Proof. According to Theorems 10 and 7, the space (€(,), is
a prequasinormed (ssfps). Assume f' = (flq):zo is a Cauchy
sequence in (€,,),, hence for every € € (0, 1), one has [, €

A such that for all [, m > [, one gets
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7,- /K

—
00 ZZ:O fp_fz1

q+1

W' -5") =

9=0

This implies |f; —f?| <& Hence, (f?) is a Cauchy

sequence in C, for constant g € .4/, which implies lim,,

|f? —fg\ =0, for constant g € 4. Hence, h(f' - f°) <e, for

every [>1,. Since h(f%) =h(f° - f + f1Y <h(f' = %) + h(f")
<00. So, f' € €.

Theorem 12. Suppose (Tq)qe./l/ €, NI with 7,>1, then

(@T(_))h is a pre-quasi closed (ssfps), where
1K

00 q_o/\ K

9=0

for every f € €.

Proof. According to Theorems 10 and 7, the space (€.,), is

a prequasinormed (ssfps). Assume f' = (f ) €(C,,), and

lim, h(f' - f°) =0, then for all, ¢ € (0, 1), there islyeN
such that for all I > [;, we obtain
|\ T VK
o (S -1
h 1 ¢0 — I | , 15
o) [ Z) |

o Ao .
which 1n213hes |fg = fyl <& as Cis a complete space.
Therefore, ( fé) is a convergent sequence in C, for fixed g
€N So lim;__ | fi = fol, for fixed g € 4. Since, h(f*) <h
(f' = f*) + h(f') < c0. So, f € G, O

Theorem 13. The function

1/K

[e'e] q_o i T‘Z
h(f)= 2. (Zl;f‘?‘) , (16)

9=0

holds the Fatou property, when (Tq)qe./V et NI witht,>1,

Jorall f €€ .

(), such that llm h(g —g) =0. Since

Proof. Let {g"} € (G,
(€4()),, is a pre-quasi closed space, one has g€(Cy,),. For
all f € (GT())h

, one gets

5
i Zp Olfp gp _UK
h(f—g)=;0( oy
- Z ’f :1/K
p-olfp =G,
) qZ( q+1 ) (17)
o (LfE-5))
q;) q+1
<sup Infh(f - 7).
O

Theorem 14. The function
Yo-olf,
D) ( Sy ’ (18)
=0 q+1

does not hold the Fatou property, for all f € €, when (z,)
€l andt,> 1, forallge V.

Proof' Let {gr} < (GT('))h so that limr_woh(g'_g) =0
Since (6:1'(,))h is a pre-quasi closed space, one gets g€
(@T(,))h. For every f € €.

Zp 0’fp gp
Hi-9)= 3 (W

<2K71 i 22:0’?;’/9;‘ ”7+ i Zp O‘gp gp !
- q=0 q+1 q=0 q+1

<285t sup i>nfh(f—g’).

we obtain

Example 3. For (1,) € [1,00)”, the function

Yao }\/0‘
h(f)=inf{oc>0: y ("(H‘l’

‘) qg}, (20)
qenN

is a norm on (ST(,).

Example 4. The function

3q+2/g+1
ZUEND) (Zi]i‘{ ’) , (21)




is a prequasinorm (not a quasinorm) on €(((3q +2)/(q +

D)gZo)-
Example 5. The function

‘/\’ 3q+2/q+1

>,
=Y (== : (22)

oy q+1

is a prequasinorm (not a quasinorm) on C(((3g +2)/(q+

1)g=0)-

Example 6. The function

—~\ d
d Zq:o f
ZOEND) (%) : (23)

qeN

is a prequasinorm, quasinorm, and not a norm on €, for
0<d<l1.

3. Caristi’s Fixed Point Theorem in ((SZT(_)) A

In this section, the existence of Caristi’s fixed point in
(C.) , 18 presented according to Farkas [31], where

1/K

ol [\
m =Y (M) : (24)

forall fe € .

Definition 15. The function ¥, : (GT(,))h

to be lower semicontinuous at G e (€.,

—> (—00,00] is said

if lim inf
G— G

¥, (G) = ¥,(G?), where lim inf¥,(G)= sup inf¥,(G),
G— GO e ( G<°>) Gev

where V(G*) is a neighborhood system of G(*)

Definition 16. The function ¥,
to be proper, when

1 (), — (—00,00] is said

a(¥)={ce (@T<,>)h ¥, (G)<co £0. (25)

Theorem 17. Suppose £+ 0 and E is a h-closed subset of
(€.()),, and ¥, : & —> (-00,00] is a proper, h-lower semi-
continuous function with infg.z¥;(G) > —co. If y >0, {@,}
c (0,00), and G € & so that ¥,(G) <inf;.¥,(G) +7y.
One gets {G\7} € E which h-converges to some G), and

(i) h(GY) — G <y/29@,, with g€ N
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(i) when G+ G, then

¥, (G» Ooa)h GV -G <¥ (G 3 [ feiel)
(67)+ Lap(ov-67) <ry0)+ F oj(6-6")

(27)
Proof. If S(GV)= {Geu. ¥,(G) + @yh(G - G0) < (

0y}, Since G € S(G), then S(G)#0. As ¥, is h
-lower semicontinuous, h holds the Fatou property and =

is h-closed, then S(G(©)) is h-closed. Take G € S(G(?)) and
o) W _ GO i © o,
v, (Gl ) +¢Doh<G1 GO ) gGe;?ém){‘I’l(G)eroh(G G )} T
(28)

(29)

As S(G)), we get S(G) # 0 and h-closed. Suppose that
one has built {G*, GV, G?), ..., G} and {S(G?), S(GW)),
S(G?)), -+, S(G'P)}. Next, take G4*1) € §(G@)) and

(o) Sop(aen-o)

. : Y@
< inf {¥,(G @h(G-GY) Lt oy
<GESI?G(‘7)){ 1 H; J ( >}+2‘1a>0

Let

(31)

hence we form by induction, the sequences {G@} and {S
(G)}. Fix qe V. Suppose W € S(G). One obtains
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wqh(w - G@) <y

q-1
1<G<q>) £ Y ah (G<q> _ Go))
j=0

q-1

'AGED a)jh(W— G<f>>}

J=0

q-1
<y, <G<‘1>) + Z @h (G@ - G<J‘>) ol

@+ Fop(o-o")| < J

(33)

As {S(G@)} is decreasing with G@ GS(G@), for all

q €V, one gets
n(Glae) — g Y 34
(67 -6) < s (54

with g, p € 4. This implies { G@} is h -Cauchy. Since (€.,
is h Banach space, hence, {GW} has h-limits G and
E/VS( 9 = {G"}. Since G14*1) € §(G@)), we can see

#,(G) + Y ah(G) -6 s, (G) + z@h< ~a),

j=0

(35)

hence, {¥,(G?)+ Z]q 01 @;h(G G —GU)} s decreasing.
After, let G # GU). One gets m € ./ with GeS(G)), with g >
m, ie.,

#,(6) + z@]h( ~6Y) <¥,(@)+ Fio@jh(c_cm).

(36)
Since G) + €S(G\), with g > m, we get
w,(G7) + éwjh(gm ~a9)
S‘I’I(G ) + ga)]h(c - G<J’>) (37)
<v,(cm)+ ¥ ap(cm-c0)

7
Put ¢ — 00 in the previous inequality, then
w, (G0 + 2 ah(G - )
m—1
<Y (x,)+ Y @h(G"-GY
| I ( ) (38)
<¥,(G)+ Z @;h (G _ G(J))
=0
<V (G)+ ]ijh(c - G<J>)
This gives
() $opon-60) enor+ Sapfe-c),
(39)
|

Theorem 18. Suppose =+ 0 and Z is a h-closed subset of
(€+()), By takingy>0 and {®,} and 0<w=}.2,®, < co.
If H: E— E is a mapping and there is a function ¥, : E
— (—00,00] holds a proper and h-lower semicontinuous with
inf; z¥,(G) > —c0 and

(1) h(H(G)-Y)-h(G-Y)<h(H(G)-Y), for any G,
YeE
(2) h(H(G) - G) <¥,(G) - ¥,(H(G)), with Ge E

Then, H has a fixed point in =.

Proof. As 0<w=Y2,®, <00, one has ¥, :=w¥, is also
proper, h-lower semicontinuous and bounded from below.
If G e E, one gets

Wh(H(G) - G) <W,(G) ~ ¥,(H(G)).  (40)

As inf; s¥,(G) > —co, one obtains G € £ with ¥,
(GO <inf; z¥,(G) +y. From Theorem 17, there is {G(9}
which h-converges to some G € &, and

@,h(GY) -Gl S o,(G-G),
i (6)« (6 -60) v S op(o-64)
(41)
for every G #+ G, Assume that H(G")) # G, we have



From condition (40), then

ACORACIEDIR ;2) an(H(G) -G")

= wh (H (G<V>) - G<V>) .

(44)
The inequality (40) implies that
wh(H(G") -GW) <w,(GV) -w,(H(GY)
(o(o7) o) emsfor) ma(e)
<wh(H(GW)-GM).
This is a contradiction, hence H(G")) = G, O
4. Structure of Mappings’ Ideal
The structure of the mappings’ ideal by (€,,),, where
5 ‘A) T, UK
© [ 2po|fp
W= |3 ((11> , (46)
q

forall f € €, and s -numbers have been explained. We
study enough setups on (€,(,), such that the class *(C,(,),

is complete and closed. We investigate enough setups (not
necessary) on (C€), such that the closure of F=

*(€+(,),- This gives a negative answer of Rhoades’ [32] open
problem about the linearity of s -type (€,,) , spaces. We
explain enough setups on (€(,), such that *(€_ ), is strictly
contained for different powers, **(€.)) ,, is the minimum, the
class *(€,), is simple, and (*((ST(_))h)A =*(C.()),

We denote the space of all bounded, finite rank linear
mappings from an infinite-dimensional Banach space A into

an infinite-dimensional Banach space A by #(A, A), and F
(A, A) and when A=A, we inscribe Z£(A) and F(A). The

T
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space of approximable and compact-bounded linear map-
pings from a Banach space A into a Banach space A will
be indicated by Y'(A, A) and Z,.(A, A), and if A=A, we
mark Y(A) and Z.(A), respectively.

Definition 19 (see [33]). An s-number function is a mapping
s L(A,A) — R that sorts every V e Z(A, A) unique
sequence (s;(V))32, validates the following settings:

@) ||Vl =5y(V)=25(V)=25,(V)=---20, for all VeZ
(4,2)

() spa(Vi+ V) <s(Vy) +54(V,), forall V|, V, e &
(A A)and L de sV

(©) su(VYW) <[ V]|sa(M|W]|, for all W e ZL(A,, A),
YeZ(A A), and Ve L(A, A,), where Ay and A,
are arbitrary Banach spaces

(d) when Ve Z(A, A) and y e R, then s;(yV) =|yls,
(V)

(e) suppose rank (V) <d, then s;(V) =0, for each V €
ZL(AA)

() s54(I,) =0 or s.4(I;) = 1, where I, denotes the unit
map on the g-dimensional Hilbert space €1

Some examples of s-numbers are as follows:

(1) The gth Kolmogorov number, described by d, (X)), is
marked by

dy(X) =inf g ;e psup) oy Inf o | XF - g (47)

(2) The gth approximation number, described by a,(X),
is marked by

a,(X) =inf {||X - Y]] Y € Z(A, A)and rank (Y) <q}.
(48)

Definition 20 (see [10]). Assume & is the class of all
bounded linear mappings within any two arbitrary Banach
spaces. A subclass % of & is said to be a mappings’ ideal,
when all %(A,A)=%nZF(A, A) verifies the following
conditions:

(i) Ir €%, where I' marks Banach space of one
dimension
(i) The space %(A, A) is linear over R

(iii) If W e L(Ay, A), X €%(A,A), and Y € Z(A, A,)
then, YXW € % (A, Ay)
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Notations 21 (see [30]).
Hy = {Fy

(4, A)}, where gy (A, A) = {V € Z (A, A): f, € I, where
F0) = 205, (V)y" 1y = {25,(A, A)}, where £, (4, A)
={VeZAA): :f,eH, wheref (y)= Z a,

= {#%,(A, A)} where ¥4, (A, A) = {V € Sf(A, A):
Z d,(
pose X is a (ssfps) then &g, is mappings’ ideal.

According to Theorems 10 and 22, one concludes the next
theorem.

V)y'" b
ifa e

,wheref,( y V)y"}.Theorem 22. (see [29]). Sup-

Theorem 23. Suppose (Tq)qe./l/ €, NI with 7,>1, then

*((ST(.))h is a mappings’ ideal.

Definition 24 (see [34]). A function H € [0,00)% is said to be
a pre-quasi norm on the ideal %, if it verifies the following
setups:

(1) Let Ve%(A,A), H(V)=0, and H(V) =0, if and
only if, V=0

(2) we have Q>1s0 as to H(aV) < D|a|H(V), for every
Ve¥U(A A) and a e R

(3) we have P>1 so that H(V, +V,)
(V,)], for each V|, V, € %(A, A)

(4) we have 0 > 1 when V e Z(A), A), X € (A, A), and
Y e Z(A Ay) then HYXV) <o|Y|HX)|| V]

<P[H(V,)+H

Theorem 25 (see [35]). Every quasinorm on the ideal % is a
prequasinorm on the same ideal.

Theorem 26. If(Tq)qe/V €., NI witht,> 1, then H is a pre-
quasinorm on *(€.)) , so that H(Z)=h(f,), where f,
(Co(y)y, and f(y) = X205, (Z2)y".

Proof.

(1) When X € *(€), (A, A), H(X) =h(f,) 20, and H
(X)=h(f,) = 1fand only if, 5,(X) =0, for all n €
./V;ifandonlyle 0

(2) There is Q> 1 with H(eX) < h(ef,) < Q|le||H(X) for
every X €%(C,(,), (4, A) and e € C

(3) One has PP > 1 so that for X;, X, €*(C,,), (A A)
hence, there are f1;,f2(C,), with f1,(y)=

$,(X1)y" and f2,(y) = 0205, (X,)y" Therefore, for
g.(y) = Y0205, (X, + X,)y", we have KK > 1 so that

H(X, +X2) =h(g.) <h((f1)+ (f2.),)

( (f1,) +h(f2,), ) (50)
<PP,(H(X,) +H(X;))

(4) We have g>1 if X € Z(A,, 4), Y e*(€,
and Z € L(A, A); hence, there is f, € (€
(7) = Z3208,(Y)y". Then, for g (y)

y", one has

o), (4, ),
), with f
= chxz)osn (ZYX)

H(ZYX) = h(g,) <h(IX]||IZ|lf,) < | XIH(Y)|1Z]|. (51)

O

Theorem 27. Suppose (T )q €., NI with 7,> 1 one has

(*(Cr))yp

H) is a prequasi-Banach mappings’ ideal.

Proof. Suppose (V,),., is a Cauchy sequence in *(@T(_))h

(A, A). As ZL(A A) QS(GT(_))h(A, A), hence, there is f7 €
(Cr)), with fe(y) =

H(V,~ V)= [i <—Z}q’ e m) ]
q=0

(e8] 1 Tq
>inf|[V, -V, A <_)
=0 q+1

Y2os,(V,)y" for very a €/, then

e 52)

>

hence, (V,),.s is a Cauchy sequence in Z(A,A) is a
Banach space, so there exists V € £(A, A) so that lim ||
a—00

V,=V|[[=0 and since f{(C,,), for all aet and
((ST(_))h is a premodular (ssfps), hence, one can see

00 z 7, 1/K
w55 |
<Zp Os[p/Z] (V-V,) )Tq

q+1

1/K

(Nl

q
1/K

+

JIi
——— ©

< Z:OSLDZ](Va) K
S

1/K T
7 e[ (Zhas (V)
q;uva—vw (3" +2%) [Z("qﬂ )

9=0

1/K

8

< <e.

(53)
We obtain f{(C€,,),, hence V.€*(C ), (A, A). O

one has
ideal.

Theorem 28. If (Tq)qu €l NI with 1,>1,

(*(Cr())o H)

is a prequasiclosed mappings’
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Proof. Suppose V,€*(€,,), (4,A), for all ae./ and
lim H||V, - V|| =0, hence, there is f{ € (€,(,), with f{(y)
=008, (V,)y" for all a € A, there is ¢ > 0 and as (A, A)
2 S(@T(_>)h (A, A), one has

7,7 VK
H(V —V)= OZO: ZZ:OSP(Va_V) !
? per) qg+1
(54)
1/K
<inf|v, ~ v[<| 3 ()"
Tq S\a+1 '
O

So (V,) e is convergent in Z(A, A), ie., lim ||V, -
a—00
V|| =0 and since f{(€,,),, for all ae ./ and (€
premodular (ssfps), hence, one can see

)), isa

_ i Z; 05( V) K 1/K< i Zgzosp/z](v_va) Kl
pur] q+1 - = q+1
. {i (Zp oéuizl(v )) a
< 1S ava-vips
q=0
0 7, 1/K
+ (3% +2K)“K LZO (Zf,;if(l‘/a)> <e.
(55)

We obtain f, € (C,)),, hence V ¢ 6, (4, A).

Definition 29. A prequasinorm H on the ideal %y verifies
the Fatou property if for every {Tq}qe L S, (A, A) so that

lim H(T,-T)=0and M € %4 (A, A), one gets

q—00

H(M ~T) <sup infH(M - T}). (56)
q 24

€t NI with 7,>1, then

Theorem 30. Suppose (T q)
(® o H) does not verzfy the Fatou property.

Proof. Assume {Tq}qem c ’I*(@T(A))h(A’ A) with ql'gnooH(Tq -

T) =0. Since H6,), is a prequasiclosed ideal, then T €

Fe,)), (A, A). So for every M € ), (4, A), one has

Journal of Function Spaces

HM-T)=

IN
W'—‘

Y oS (M= T)) T)\" "
= q+1
z oSt T T 7, 1/K
)
00 ZqZOS (M—T‘) 7, 1/K
i () |

r

< (38425

Theorem 31. ¥4 | )h (A, A) =the closureof F(A, A), if
(Tq)q €, NI with v,>1. But the converse is not

necessarily true.

Proof. As el € (€;()), for every g€ # and (€,
linear space. Suppose Z € F(A, A) with rank (Z) = m, where
me N, hence f, € § with f_(y) =Y " a,(Z)y", one has f,
€(C,()),- Therefore, the closure of F(A, A) *(Gm)h (A A).

Assume Z e . (A, A), we have g_€(C,)),. As h(g,)
(@TO)h o 7(.)/p o

() I8

< 00, assume p € (0,1), then there is g, € /' — {0} with h
(9,- @ le(m) < p/2K34d, for some d > 1, where 1 = max
{1, 252, (1/g + 1)™}. Since (a,(Z)) is decreasing, we have

& (Y, (Z " i, (Z K
Z <pq“+qi) )> < Z <pq+p1( )>

9=9p+1 g=q,+1
. T
_§ (T e
> & q+1 2K+3’7d
(58)

Hence, thereis Y € E,,

T, T,
35% YiollZ-Y| ' 22‘1: YoollZ-Y| .
g+1 - g+1 28434’

,(4, A) so that rank(Y) < 2g, and

4=2o+1 4=qo+1
(59)
since (Tq)qe/V € €., NI with 7, > 1, we have
%0 T P
SUp (24,12 = Y1)" < Sz - (60)
=4, n
Therefore, one has
9o p
Z-Y|)< - 61
D12 Y el (61)
AsZ-Ye %‘("GT(.))h(A, A), hence g, € (€, (,),, where g,
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) = o (Z = Y)y".

one has

In view of inequalities (58)-(61),

d(,Y)=h(g,) =

Y2\ & (Y, (Z-1)\"
O

9=0 4=34,
3q, 0 q+24, Tg+2q9
<y ool Z-Y| .y Ym0 %(Z-Y)
= q+1 fr q+2q,+1

39, © Z‘l”‘loa (Z _ Y) 7
< Z-Y|)+ £p=0 T )
Y 02-v)e 3 < o

4=90

4o 22‘10 (ny)Jr qziqu ai(Z—Y),f) T
<3 (jZ- ¥+ Y, ( ST ))
9=0

=4, q+1

o
<3) (|Z- Y| +25!
q=0
, 'i <z§% (2~ Y))
L9=40 q+1

L)

2 (1Z =Yy + 25

& (Tiha,(z-Y)
25

4=

<

w

q=0
_4:zqo< ‘1+1 +qz,;‘ﬂ q+1
0 0 q Tq
<3 (12 i)+ 2 i gz vy 3 ()
=0 ) = q+1
(62)
O
Therefore, »F("G ), (A, A) ¢ the closure of F(A, A). Con-
trarily, one has a counter example as I, € &, (600222, (A,

A), but 7, > 1 is not verified.

(2

Theorem 32. Suppose (Tq)qeﬂ/ €l NI with 1< W<

for all x € N, hence

'I'(G((ri“)))hm, A)%(G((Tﬁz))))hm’ A §L(AAN).  (63)

Proof. Let Z¢€ ey
where g (y) =

(@ (@, (4 A) hence (9.) € (€((¥"))y
YmcoSa(Z)y". One gets

(2) (1)

OZO: (Z;;ijl(Z)> ) < OZO: <Z;;O4S—p1(2)> ' < 00, (64)

x=0 x=0

then (g,) € (G((Tf))))h this implies Z € &
After,

(x+1)

(©(()), (4, 4).

(5:(2)):20  with  37_45,(2) =
~r , we have Z € Z(A, A) such that

if we choose

11
A
i Zp:Osp(Z) — i 1 =00
= x+1 SZx+1 ’
@ @, (©5)
o0 X Tx 0 T > It Y
Z ZP—OSP(Z) Z <o
= x+1 = \x+ 1
O

Then, Z ¢ + ©
Clearly,

@y, (A A) and Z ek o)) (4 A).

*(c((Tf))))h(A’A)Cg(A A). Next, if we put

(5.(2))20 with ¥5s,(Z) = (x +1)" 1) We have Z € £

(A, A) such that Z ¢ %(G((Tiz))))h(A, A).

Theorem 33. Assume (1 €t NI with 7,> 1, hence

‘I)qe./lf
7 is minimum.
(€,

Proof. Let &g ()(A, A) =
(Z) <#||Z||, where

Z(A, A), one has >0 so that H

i(zl’qofl ) ) (66)
q=0

for all Ze L(A, A). According to Dvoretzky’s theorem
[36], with re./, we get quotient spaces A/Y, and
subspaces M, of A which can be transformed onto ¢} by
isomorphisms V, and X, with ||V, |||V, <2 and || X,]|]|
X;'|| 2. If I, is the identity map on €, T, is the quotient
map from A onto A/Y, and ], is the natural embedding
map from M, into A. O

Assume m,, is the Bernstein numbers [9], then

1=m,(I,) = (XXIIVV ) < |1X,[Im, (X X;'1,V,) VA

rorr

= 1%,y (1.5 1V ) [V < 11, 0 L V)| V7|

ror r T

=X, \d, (X LV, T) ||V < 1X, ey (X, 'LV, T,)

rr roror rr roror

(67)

for 0 < g <r. Then, we have

q+1

(V) (ZP 0, (1,X; IrVrT,)> -

So, there are @ > 1, we obtain
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s q+1

:
<X IV [HO X LY, T,) = 31

r
<onllX | VX LY, T = Y1
q=0

<X VXAV, T
= X[ VX IV < 4.
(69)

So there is a contradiction, if » — co. Therefore, A
and A both cannot be infinite dimensional if & ()(A, A)
=Z(A,A).

As with the previous theorem, we can easily prove the
following theorem.

d

Theorem 34. If (t,) €€, NI with 7,> 1, hence ¥ , s

4’ qeV
minimum.

Lemma 35 (see [10]). If Be £(A, A) and B¢ Y(A, A), then
DeZ(A) and M € Z(A) with MBDI, =1, with be .

Theorem 36 (see [10]). In general, we have

F(A)E Y(4)§ Z.(8) $ Z(4). (70)

Theorem 37. Let (t,) €. NI with 1< W< T,(CZ),fOT’ all

9/ gey = " *
x € N, hence

2 (e, B o)), 4 )

(71)
= Y 2 A,A 5 1 A,A .
@@wm»f (), 0
Proof. Assume X € Z( €2y, (A,A),&«(Q((TLI)))M(A,A))
and X¢ Y(*(@(( o~ (A A), % S, (A, A)). By using

Lemma 35, we have Y € Z(% ©(?)) (A A) and Ze &£
x h

(»f(@(( M, (A, A)) so that ZXYI, =1,, hence with be .,
one has

||Ib||»i<(c((7il))))h(A,A) ;_:3(

< [|ZXY |||y

s (Iw)

x+1

(), 7

§p<wxmvwz(3”““X”VT§ — 3

Journal of Function Spaces

This fails Theorem 32. So, X € Y (&
(4, 4)).

(@), LA

Fe())),

(n _ (2

Corollary 38. Assume (Tq)qe/V et NI with 1<1y’ <71y,

for all x € WV, hence,

3@MwwﬁAMﬂmwwwﬁm)
:3(ﬂquMA“ﬁ@wwm“A0'

Proof. Evidently, as Y’ ¢ Z.. O

(73)

Definition 39 (see [10]). A Banach space A is said to be sim-
ple, if there is an unique nontrivial closed ideal in Z(A).

Theorem 40. Let (‘L'q)qE P

is simple.

€., NI with ,> 1, hence ,),

Proof. Let X € gc(%(gr(_))h(A, A)) and X ¢ Y’(&«(@T(_>>h(A, A)).

From Lemma 35, there exist Y, Z ¢ Sf(»{«((gf(»))h(A, A)) with

ZXYI,=1,, which gives that I%(c (an) € gc(%(g ())h(A,
) n o

A)). Then, 3(»{«(51(»))}!(& A)) = SJ’C(%“;T(»))h (A, A)); hence,

e, is simple Banach space. m

Notations 41.

(%%)’\ = {(%%)’\(A, A); Aand A are Banach Spaces}, where

(74)

(32)" (A A) ={X € Z(A,A): f) € ), wheref,( y) =
Yoo, ( T)y"and ||X — A, ( X)I|| =0, forevery x € /}.

Theorem 42. Assume (Tq)qE/V €., NI with T,> 1, hence,

(%(@T(‘))h)A(A, A) = %(@T(‘))h(A, A) (75)

Proof. Let X € (%(G ) (A, A), hence f, € (C,)),, where
F10) = EZA, (T and X = A, (X)1]| =0, with x e
We have X = (X)L, for all x € /4, so

$:(X) =5, (A (X01) = [A(X); (76)

with x € /. One gets f, € (€)),; hence, X € (G,
6.0, (4, A) Hence, f, € (C,

)(A A).

Next, suppose X € # g ) One gets

i (5,(X))™ < i <M> ) < 00. (77)
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Then, lim s (X)=0. If ||X—sx(X)I||_l
X—>00

. Then, | X = s (X)I||”" exists and bounded, for all x € /.
So, lim || X —s, (X)I||™" = [|X||”" exists and bounded. Since
X—>00

(»f((gm ), H) is a pre-quasi mappings’ ideal, one has

exists, with x €

I=xx" %(s,), (B A) = g, €€y = lim 5,(I) =0,
(78)
where g (y) = Y20s,(I)y". This gives a contradiction, as

lim s,(I) =1. Therefore, || X —s,.(X)I||

which explains X € ('I'(@d.))h)A(A’ A).

=0, with xe

5. Nonexpansive Mappings on (C_ ) L

In this section, we have presented some geometric properties
connected with the fixed point theory in (€,)), .

In the next part of this section, we will use the func-
tion h as

for all fe@, .

Definition 43 (see [37]). A sequence {gp} C ), is said to be
e-separated sequence for some ¢ > 0, if

sep(gp) =inf {h(gp -9,

Definition 44. [37]. If k > 2 is an integer, a Banach space 7,
is said to be k-nearly uniformly convex (k-NUC) when for
all £>0 one has § € (0,1) so that for every sequence {g,}

):p:#q}>£. (80)

€ B(#),), with sep(g,) > &, we have p,, p,, p5, -+, p € N
Such that
+g, +g,++
h(gp1 ng ]‘cgps gpk) <1-6. (81)

Definition 45 [38]. A function h is said to be hold the &,
-condition (h € §,), if for any € > 0, there exists a constant
k>2 and a > 0 such that,

h(2g) <kh(g) + eforeach g € ), withh(g) <a.  (82)

If h satisfies the §,-condition for any a >0 with k>2
depending on a, we say that & satisfies the strong §,-condi-
tion (p € 83).

Theorem 46 ((see [38]), Lemma 2.1). Suppose h € &5, then
for any L>0 and e€>0 one has 6> 0 with |h(f +g)—
()l <ef,ge ), with h(f) <L and h(g)<é.

13

Theorem 47. Pick an (Tq)qe/lf €., NI with t,> 1, then for

any L>0 and € > 0 one has 8 > 0 with |h(f + g) — h(f)| <&,
Jor every f, g € (€,(,),, so that h(f) <L and h(g) < 6.

Proof. Since (Tq)qeﬂ/

According to Theorem 46, the proof follows.
We denote S(%},) and B(),) for the unit sphere and the
unit ball of 7, respectively. O

el,NI with 75>1, then hed).

Theorem 48. Suppose (Tq)q6 P
NUCG, for any integer k > 2.

€€, NI witht,> 1, then is k-

Proof. Assume € € (0,1) and {f,} < B((€,,), ), where f,(y)
=S ( i)y' so that sep(f,) > & Forall me ./, supposef

)= TS fui)ys where (£7(0))y =(0,0,0,-+ f,(m),

fa (m+1) ). As for all ie (fn())nzoel’,oo, from the
diagonal method, one has a subsequence (f nj) of (f,) with

( fn/a)) converges for all i€/, 0<i<m. One obtains an
J

increasing sequence of positive integers (t,) so that sep

(..,

) = &. Therefore, one has a sequence of positive
17>t

integers (r,,)0, with ry<r; <r,<--, so that

hK(ﬂZ)zg, (83)

for all me /. For constant integer k>2, assume ¢
= ((kP™' =1)/((k=1)kP))(e/4) from Theorem 47, one
gets 6>0 with

15 (f +) - K (f)| <y (84)

O

<1, for every ne ./, one has
positive integers m,(i=0,1 2 - k—2) with my < m; <m,
< -ee<my_, with hK(fm ) < 6. Define m;_; =m;_, + 1. From
inequality (83), one can see h(f:'j:k) > ¢/2. Suppose p, =i for

If K¥(g) <o. As KX(f,)

0<i<k-2andp;_,=r, .According to inequalities (83),

(84), and convexity of ], (u) = |u|™ for every n € /¥, one has

WK <fp0 +fp, +f;;z+' +fpk,1>

& (Y| (fp, () + )+ +f 1k
_ ;)( )( I Z+1 P > ‘)
mt (Yo (S, () + fp, (1) + +f 1k
- V;) ( ( - iz+1 = > ‘>
. i (z,o (fpz<>+f2 ( >1+ i )/k\)

n=m-
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S (z of (5.0 + £, ()44, (i )/k\)
n+1

(zln <fp2()+fP() "'+fpk1 )/k‘) e
1 n+1 '

. zm (z, of (£, +fZ <+ )1 ot )/k\)
3 (Bl

meii (il @]\

. Z (z, Lol (£ +f:(+ )1 (i )/k)>

+

5 (z,o(fpwfZ O 4f ] )”") v

! lk’l Z,n:o‘f;(\l)‘ " my—1 1k71 Z?:() /J—(\I)‘ Tn
< L% (m DI e

n=my_; " j=k-2

o (Th|f K"
+ Z <n+1 ‘ ) +(k-1)g,

W (o 4o thpt o ) 1% Zrol @]\
= k Tk 2 n+1

(Z"O‘nf#) +(k-1)g,

) ( ’l‘f’; ’) + (k=12

+
§M8

n=my

S io|f,
g ( (50 )

ml k1 (3 f;@)‘ " mel oy ket (3R f;@‘ -
) (m) RPN ) (m
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W |

Kol-1\ e Kol-1) e
§1+(k—l)sl—<—kr0 >§_1_<—k"’ )

So, (€,,), is k-NUC.
Recall that k-NUC implies reflexivity.

Definition 49 (see [39]). A Banach space #, holds the uni-
form Opial property, if for all €>0 one has y >0 so that
for every weakly null sequence {f,} cS(%)) and f € %,
so that h(f) > ¢, then

1 +y<liminfh(f, +f). (86)

Definition 50 (see [40]). For a bounded subset E C %, the
set-measure of noncompactness defined by

«(E) =inf {& >0 : E can be covered by finitely many sets of diameter < £}.
(87)

Definition 51 (see [41, 42]). The ball-measure of noncom-
pactness is defined by

B(E) =inf {£>0 : E can be covered by finitely many balls of diameter < &}.
(88)

Definition 52 (see [43]). For a subset E C &, is said to be «
-minimal if «(C) = a(E), for any infinite subset C of E.

Definition 53 (see [43]). The packing rate of a Banach space
), is denoted by y(%),), and the formula defines it

_ ()

V) = o(%,)’ (89)

where 8(%,) and o(%),) are defined as the supremum and
the infimum, respectively, of the set

{% :Ec ), Eisa — minimal, a(E) > 0}~ (90)

Definition 54 (see [41]). The function A is said to be the
modulus of noncompact convexity, if for every & > 0 define

A(&) = inf {1 - 1fn}f3h(f) Eis a closed convex subset of B(#,) with B(E) > E}
(91)

Definition 55 (see [39]). A Banach space %), is said to be
hold property (L), when lirr}fA(s) =1.
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Definition 56. An operator V : ), — 7}, is said to be a h
-contraction, if one gets a €[0,1) with h(Vg - Vf) <ah(g
—f), for all g, f € #),. The operator V is said to be h-non-
expansive, when a=1. An element g € %, is said to be a
fixed point of V, when V(g) = g..

Theorem 57 (see [39]).

(1) Suppose a Banach space &, holds property (L), then
it has the fixed point property, i.e., for every nonex-
pansive self-mapping of a nonempty, closed, bounded,
convex subset has a fixed point

(2) A Banach space %), holds property (L), if and only if,
it is reflexive and has the uniform Opial property

Theorem 58. Suppose (Tq)qe/y €l NI with 7,> 1, then
((ST('))h has the uniform Opial property.

Proof. Let € > 0 one finds a positive number ¢, € (0, ¢) with
K
1+7>(1+£0)K. (92)

If f € (€,(,), and h(f) > &., one has n; € /" with

S (shsol) <@ e

Therefore, one gets

(Zf > ZO Z. (94)

i=n;+1

n=n;+1

Also, one has

01
K
¢ <nZ6<n+l
<Z< !

M3
2

W
<

N
o

AN
=
N
S S
+ =+
— —
M= IDM=
S
— —
= N
~ O~~~
~
+
—
|
~—
=

N
o

(95)

\) (96)

For any weakly null sequence {f,}cS((€,,),), in
virtue off;E) —0fori=0,1,2,-

if

270

1:0

<

, one has m, € / with

15

(98)

if m > my. For a:= Z:’;O|f/(?) |, one obtains

(e $ o) 5 (o 5lm))

5 (5 n)
2§<ni1§‘f(i)’> ﬂ+n;§+1 <ni1§f;@)‘> "
2§+<1—ZK>=1+§>(1+80)

(99)

Combining this with the previous inequality, one has

h(f+f) zh(Zf’(?)e<’> ) f;@ew) -2

i=n;+1 (100)
e e
>l+gy— = =1+,
2 2
O

Therefore, the space (€,)), has the uniform Opial
property.

From Theorem 58 and the reflexivity of the space
(€4()),» by applying Theorem 47, we get the following.

Corollary 59. If (1 ) €, NI with 7y> 1, then (€)),
has the property (L) and the fixed point property.

Definition 60. 7, holds the h-normal structure property, if
and only if, for every nonempty h-bounded, h-convex, and
h-closed subset I' of %), not decreased to one point, one
has f € I with
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suph(f —g) <8, (I') =sup {h(f - g): f,g € '} <oo.

ger
(101)

Definition 61 (see [44]). The weakly convergent sequence
coefficient of a Banach space &, denoted by WCS(%,), is
defined as follows:

WCS(7 ) =inf {A({f,}): {f,}02 € S(Z), A({f,})
=A1({fn})’fn_)0}’
(102)
where
A({f,}) =lim sup{h(fi—fj): i,jzn,i;&j},
e (103)

A1) =liminf {h(f,-f,): b jzmit ).

Theorem 62 (see [45]). A reflexive Banach space ), such
that WCS(},) > 1 has the normal structure property.

Theorem 63. If (Tq)qeﬂ/ €, NI with 7> 1, then (€)),

holds the h-normal structure property.

Proof. Take any e>0 and an asymptotic equidistant
sequence {f,} CS((€,,),) with f, —" 0 and let v, =f,.
One has i, € # with

h<§ VT@M) <e

i=i;+1

(104)

As f, — 0 coordinate-wise, one gets n, € /" with

W
h(an(i)e(’)> <e. (105)
i=1
For n>n,, put v, =f, , one gets i, > i, with
LS} —_ -
h( z vl(i)e(’)> <e. (106)
i=iy+1

As f (i) — 0 coordinate-wise, one obtains n; € 4 with

h (’Zz f:(?) e<i)> <e

For n > n;. By induction, one has a subsequence {v,} of

{f,} with
h( i v:\ ><8, <Zvn+1 ) €. (108)

i=i,+1

(107)
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Take
z,= Z v, (i)e®, (109)
i=i, ;+1
forn=2,3,---. So,
© [ o)
1>h(z,)= h(z v, (i)el) — Z v, (i) e - Z v, (i) e(’)>
i=1 i=1 i=i,+1
© i1 ) 0
>h (Z vn(z)e(’)> -h <Z vn(z)e(’)> -h z v( )e(‘)> >1-2¢
i=1 i=1 i=i,+1
(110)

(111)
which gives A({f,})=A({v,}) 2A({z,}) - 4e. Take
u, =z,/z,|, for n=2,3,---. Then,
u, € s(((sm)h) ; (112)
A({f}) 21 -eA({u,}) - 4e (113)
On the other hand,
h(v,=v,,) <h(z,-z,) +4e<h(u, —u,)+4e, (114)
for any n, m € N/ with n # m. Therefore,
A{u,}) 2 AU, ) - (115)

By the arbitrariness of € >0, we have from the relations
(112), (113), and (115) that

wcs((cg(,))h) = inf {A({u,})}, (116)

such that
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= Y e es((s,) )oo

=i, ;+1

=iy <i < il —0 and{u, }is asymptotic equidistant.

(117)
Take m € /' large enough such that
o0 b) Tk
-] <s (118)
k=imZ_;+1 <k

where b:= Zj":i 41|, (9)]. One gets for

- ko
W)= 3 (;z u,,@()
: 0 1 k — Tk
DI b+;um(z)‘
k+

k=i, 41
3 (ii)?) \) k

i

kziz}ﬂ (kzz:

1 kl L;(\i)DT
0 1 & . T b\

) k:inz,,:ﬂ (E; un(I)D ) k=i,,_,+1 (%)
© 1&
>

i=1

e i, +1

B

Mg

Tk
u;a)D >l—-e+1=2-¢
(119)

that is A, ({u,}) > (2 — ). Note that

- . f . 77 UK
RAECEH TN

0 b\ Tk UK & 1& — e 1/K
S I P ol N AR

Therefore,

IN

=1

1

'm’I k — T
(= ,) = . (izum@\)
k=i,_+1

5 (1o o))

k=i, +1 i-1

0 1k /\ Tk
R =)

L i)

k=i, +1 i-1

(121)

<1+(1 +s”K)K

>

with n,mes and n#m. Therefore, A,({u,})<

17

K
(L+(1+ e”K)K)U and, by the arbitrariness of & > 0, one has
WCS((€,,)),) = 2K From Theorems 48 and 62, then, the

function space (€, ) , has the h-normal structure property. []

Theorem 64 (see [46]). If #'), is reflexive Banach space with
the uniform Opial property, one has y(#),) = 2IWCS(I},)..

Theorem 65. If (Tq)qe/y €l NI with 1y>1, then 7y
((Gfm)h)=2L%UKX~

Proof. Since (€, ,), is reflexive Banach space with the
uniform Opial property, one obtains

=217k, (122)

y((crm)h)::{56§(i%;;5;5

O

Theorem 66. If(Tq)qe/V €l NTwithty>Tand W : (€ )),
— (Q’T('))h is h-contraction mapping, where h(f)=

—~ 7, 1K
(220 (Zp=ol £, /(@ + 1) "] for every f € G, then B has a
unique fixed point.

Proof. Let the setups be satisfied. For every f € (€, ,),, then
Wf € (C,)),- As B is a h-contraction mapping, one gets

h(TP*Lf ~ S ) < ah (WP f — B

<h(Bf - W) < < oPh(BWS - f).
(123)

So, for all p, g € /# so that g > p, one has

h(ZBIf — BWPf) < aPh(TWIFf — f). (124)

Therefore, {¥W/f} is a Cauchy sequence in (€,)),.
Since the space (€,()), is prequasi-Banach (ssfps). One gets
g€ (€, ), with plim Wf=g, to prove that Wg=g.

—00

According to Theorem 13, h verifies the Fatou property;
one can see

h(Bg - g) < sup infh (W' f — W) <sup infa’h(Wf - f) =0,
i p=2i i p=2t
(125)
so Wy = g. Then, g is a fixed point of LY. To prove that the
fixed point is unique, let us have two different fixed points
f>9€(Cy,)), of B. One obtains
h(f - g) <h(Bf ~Wg) <ah(f-g).  (126)

So, f=g. O
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Example 7. Assume

(o))~ ((G)):

(127)

where

2q+3/g+2

q —_
i Zp:O gp‘
pard q+1

for every g € €(((29+3)/(q +2)),%,) and V(g) = g/4.
Since for all f}, f, € (€(((2g + 3)/(q +2))g

h(g) = (128)

0)),» one gets

vty -viy=h(G =) < - 029)

V64

So V is h-contraction. Assume V : I'— I' with V(g)
= g/4, where

- {fe <@<<2q‘1:23)i0>>h =1 =0}. (130)

Since V is h-contraction. So, it is h-nonexpansive. By
Corollary 59, V holds a fixed point 9 in I

6. Applications to Nonlinear
Summable Equations

Numerous authors, for example in [47], have examined non-
linear summable equations such as (132). This section is
dedicated to locating a solution to (132) in (€)),, where

the conditions (Tq)qG € NT with 7> 1 are satisfied and

— 7 1 /K
& Zq:of !
h(f) = qZ()( ’;J;”) ,

for every feC .
summable:

(131)

Take a look at the equations that are

g,=1,+ iA(a,m)f(m,g/\m), (132)

m=0

and assume W : (€, (), — (€,(,), defined by

(W(9))(z) = Z}(f + ZA (a,m m,g/\m)>z“. (133)

Theorem 67. The summable equations (132) have only one
solution in  (€,,), if A: N?—Cf : /'xC—C,
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7N —Ct: N —C, assume there is k€ C so that

sup|K|T "X € [0,1) and for every a€ N, we have
q
) —_ ~
Y Aam)(f(m g,) - f(m 1) )| < K|, - Eal-
m=0

(134)

Proof. Let the setups be verified. Consider the mapping
W:(€ ), — ((SZT('))h defined by (133). We have

o (@)a - (V/V?)a e
g+1
o (Y Yo Ala, m) [f(m ) —f(m, ?;)] 7, UK
] q;) q+1
< Tq v a: O‘gu
]

7,7 UK
al .
q 4=0

Mg

I
o

h(Wg - Wt) = {
q

(135)
|

According to Theorem 66, one obtains a unique solution
of equation (132) in (€,()),.
Example L Assume the function
(C(((3a+2)/(a+1))s2)), where

space

‘/-\‘ 3a+2/a+1

2b-0
T

forall feC(((3a+2)/(a+1)):2).

/\ -(2a+3i) | Z 1 ai+3m cos |g:‘ !
Ya sinh|§;|+sinma+1 ’

(137)

where g >0, #=-1and let W : (€(((3a+2)/(a+1)):2)),
— (C(((3a+2)/(a+1))52)), defined by

—~ q
— S\ (2a+3i) v m+3m cos |ga‘ a
(W(g)(e)= z( 8 (Smh| =12 mm) )

(138)
It is easy to see that
i (—1)‘” coS|§;| q((_1)3m_(_1)3m) <}|A_tA
= sinh |§;‘ +sin ma + 1 =319
(139)
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By Theorem 67, the summable equations (137) have one
solution in (€(((3a+2)/(a+1)):2))),,-

Example 2. Given the function

(C(((3a+2)/(a+1))s2)), where

—~|\ 2a+3/a+2
h(f)= i (221’1 ’) , (140)

space

for all feC(((2a+3)/(a+2)),2,)- Consider the summable
equations (137) with a >2 and let W :

{fe(6(((2a+3)/(a+2))), : fo = f1 =0}, defined by

E — 5, where £ =

—

. N . cos |f, ?
(W(f))(z) = Z 5-(2a+3i) | Z (71)ar+3m e ) "
- m=0 sinh | 7. | + sin ma + 1

(141)

Clearly, £ is a nonempty, h-convex, h-closed, and h
-bounded subset of (€(((2a +3)/(a+2)):2))), It is easy to
see that

0 — q
;) (_1)“" <sinh }?;TJ Zill ma + 1) ((_1)3"' - (_1)3’“)
(142)

By Theorem 67 and Corollary 59, the summable equa-
tions (137) with a > 2 have a solution in Z.

Example 3. Assume the function space
(6(((3a+2)/(a+1))2,))ys where
— 3a+2/a+1
3| X ZZ:O‘gb|
h(g) = === , 143
(9) J{;( o (143)

forall ge C(((3a+2)/(a+1))oy)-
Consider the non-linear difference equations,

R io: tan (2m + 1) cosh (3mi— a) cosp|g/ufz|

. _ . >
o sinh?| g, | +sin ma + 1

(144)

where  g,,9.,,p9>0, i#=-1 and let W:

(€(((3a+2)/(a+1))52)), — (C(((Ba+2)/(a+1))2)),
defined by

(W(g)(@)= ) e

a=0

( a3 i":tan (2m +1) cosh (3mi—a) cos’|g, -, 2{)

= sinh?| g, | +sin ma + 1

(145)

19

It is easy to see that

cosh (3mi—a) cosP|g/c:2}

Mg

(tan (2m+1) —tan (2m + 1))

3

= sinh?| g | +sin ma +1
1, ~

< §|ga —t,|-

(146)

By Theorem 67, the nonlinear difference equations (144)
have one solution in (€(((3a+2)/(a+1)).2)),-

Example 4. Given the function space
(€(((2a+3)/(a+2)).2)), where h(g) =
VRS al@ar ), for g

((2a+3)/(a+2));2,). Consider the non-linear difference
equations (144) with a>1 and let W : £ — &, where = =
{ge(C(((2a+3)/(a+2)):)), : o =0}, defined by

a=1

& & tan (2m + 1) cosh (3mi — a) cos?| g, |
(2a+3i) a2
(W Z(e ' mzo 51nhq|ga || +sinma+1

(147)

Clearly, £ is a nonempty, h-convex, h-closed, and h
-bounded subset of (€(((2a +3)/(a+2)).2)),- It is easy to
see that

cos"|ga2‘

w cosh (3mi —
Z (tan (2m+ 1) —tan (2m + 1))

sinh? |g 1‘+s1nma+1

1
<-19, —t’
5

(148)

By Theorem 67 and Corollary 59, the nonlinear differ-
ence equations (144) with a > 1 have a solution in ZE.

Example 5. The summable equations (132) have a solution in

(€ry), if

Q (Y07 - G+ T A m)f (m ) [\ ]
Z ( q+1

L E (Bl + EoA@ m)f (m, 33) )0+ )"
Yoo (Xholda|/(g+ 1))

(149)
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Evidently, we have
S (Tholfa =G, + Zavohlamy (m, g\ "™
WWg-g)=|) e
q=0

1 X2 ((Xho| 7 + XommoAla, m)f (m, é;)l)/(qﬂ))”
K o (Xi0lga /(g + 1))
~In (h(g))-

(150)

By Theorem 18, one gets a solution of equation (132)

n (61())}1

Example 6. The summable equations (132) have a solution
in (GT('))h’ lf

EEINE
2

Z ( o|” + Y moA(as

q+1
Clearly, we have

© (V1 NF — G + Y Aa, m)f (m g )\ e
h(Wg_g): |:Z (Za:O’ a gu+2m=0A( )f( gm)) :|

q=0 q+1

— T, K
<[5 (Elal) ]
- = q+1

& (S| I oAl m)f (m ) [\ ]
- §: q+1

=G0+ ZooA(as
q+1

m)f(m, g/\m) ‘>‘rq~| 1/K

)f(m, §;)|>‘rq~| 1/K.

(151)

(152)

By Theorem 18, one gets a solution of equation(132)
in ((s.[())h
Assume  is the set of all closed and bounded inter-

vals on the real line R. For t=[t,t,] and g=[g,,9,] in
), suppose
t<gifandonlyif t, <g,andt, <g,. (153)
Define a metric p on Q by
p(t: g) =max {|t; = g, [t = 9,[}- (154)

Matloka [48] showed that p is a metric on Q, and
(O, p) is a complete metric space.
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Definition 68. A fuzzy number g is a fuzzy subset of R, i.e., a
mapping g : R — [0, 1] which verifies the following four
settings:

(a) g is fuzzy convex, ie., for x,y€R and a€l0,1],
glax+ (1 -a)y) = min {g(x), g(y)}

(b) g is normal, i.e., there is y, € R such that g(y,) =1

(c) g is an upper semicontinuous, i.e., for all a >0, g’l

([0,x + a)) for all x € [0, 1] is open in the usual topol-
ogy of R

(d) The closure of g° = {y e R : g(y) >0} is compact

Recall that the S-level set of a fuzzy real number g, 0 <
B <1 indicated by g is defined as

g ={yeR:g(y) 2B} (155)

The set of every upper semicontinuous, normal, convex
fuzzy number, and is compact and is denoted by R(][0, 1]).
The set R can be embedded in R([0, 1]), if we define re R

([0,1]) by

t=r,

1, =
r(t) =
0, t+r.

Consider the summable equations of fuzzy reals (132)
and assume W : (€,()), — (€, )), defined by

(156)

M8

(W(9))(2) =

a=0 m=0

(e8]
p(r + Y A(a,m)f(m, §;),0>z“,

(157)

where p: R[0,1] x R[0, 1] — RT U {0} is defined by p(,

g) = sup p(t#, gf). For more details about the fuzzy num-
0<p<1

bers and their properties, see Zadeh [49].

Theorem 69. The summable equations (132) have an unique
solution in (€), if AN — R,
f N xR0, 1] — R0, 1),7, : /' — R[0, 1],

: N —> R0, 1], assume there is x € C so that sup|x|"®

[0 1) and for every a € N, we have q
Y Aam)(f(m g,) ~f(m ) )| < I, - &
(158)
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Proof. Let the setups be verified. Consider the mapping
W:(C,)), — (€), defined by (157). We have

1/K

—_— -

(W), - (W ))

h(Wg—-Wt) = o

; qg+1

o

q+1

(zz-o(pm ST m (. 5,).0) (5 + S my (m 5).0) \) ’

Z:o‘Zf:oA(a) m) [f(m» In) *f<m, t:;)] ) A < sup ["+X

21
1/K
1K 7 UK
© [ Yio|P(9250) — (1 0) ]\
s
(159)
O  Acknowledgments

According to Theorem 66, one obtains a unique solution
of equation (132) in (€,)), .

7. Conclusion

We discuss in this paper some topological and geometric
structure of (€,)),, the existence of Caristi’s fixed point in

it, of the class e, ), and of the class (%(@TO)A)A' Moreover,

some geometric properties related to the fixed point theory
in ((ST('))h are introduced. Finally, we investigate several

solutions applications to summable equations and illustrate
our findings with some instances. This article has several
advantages for researchers, such as studying the fixed points
of any contraction mapping on this prequasispace, which is
a generalization of the quasinormed spaces, a new general
space of solutions for many difference equations, examining
the eigenvalue problem in these new settings, and noting that
the closed mappings’ ideals are certain to play an important
function in the principle of Banach lattices, hence since many
fixed point theorems in a particular space work by either
expanding the self-mapping acting on it or expanding the

space itself, as future work, we can enlarge the space (€ ) N

by g-analogue or generalize the self-mapping acting on it.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.

This work was funded by the University of Jeddah, Saudi
Arabia, under grant No. UJ-21-DR-76. The authors, there-
fore, acknowledge with thanks the university technical and
financial support.

References

[1] S. Banach, “Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales,” Fundamenta Math-
ematicae, vol. 3, pp. 133-181, 1922.

[2] L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue
and Sobolev Spaces with Variable Exponents, Springer, Berlin,
2011.

[3] K. Rajagopal and M. Ruzicka, “On the modeling of electro-
rheological materials,” Mechanics Research Communications,
vol. 23, no. 4, pp. 401-407, 1996.

[4] M. Ruzicka, “Electrorheological fluids. modeling and mathe-
matical theory,” in Lecture Notes in Mathematics, p. 1748,
Springer, Berlin, Germany, 2000.

[5] L. Guo and Q. Zhu, “Stability analysis for stochastic Volterra
Levin equations with Poisson jumps: fixed point approach,”
Journal of Mathematical Physics, vol. 52, no. 4, article
042702, 2011.

[6] W. Mao, Q. Zhu, and X. Mao, “Existence, uniqueness and
almost surely asymptotic estimations of the solutions to neu-
tral stochastic functional differential equations driven by pure
jumps,” Applied Mathematics and Computation, vol. 254,
Pp. 252-265, 2015.

X. Yang and Q. Zhu, “Existence, uniqueness, and stability of
stochastic neutral functional differential equations of Sobo-
lev-type,” Journal of Mathematical Physics, vol. 56, no. 12, arti-
cle 122701, 2015.

[8] A. Pietsch, “Einigie neu Klassen von Kompakten linearen
Abbildungen,” REVUE ROUMAINE DE MATHEMATIQUES
PURES ET APPLIQUEES, vol. 8, pp. 427-447, 1963.

A. Pietsch, “S-numbers of operators in Banach spaces,” Studia
Mathematica, vol. 51, no. 3, pp. 201-223, 1974.

[10] A. Pietsch, Operator Ideals, North-Holland Publishing Com-
pany, Amsterdam-New York-Oxford, 1980.

[7

—

[9



22

(11]
(12]

(13]

(14]
(15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

A. Pietsch, “Small ideals of operators,” Studia Mathematica,
vol. 51, no. 3, pp. 265-267, 1974.

G. Constantin, “Operators of ces—p type,” Rend. Acc. Naz. Lin-
cei., vol. 52, no. 8, pp- 875-878, 1972.

B. M. Makarov and N. Faried, “Some properties of operator
ideals constructed by s numbers,” in Theory of Operators in
Functional Spaces, pp. 206-211, Academy of Science. Siberian
section, Novosibirsk, Russia, 1977.

N. Tita, “On Stolz mappings,” MATHEMATICA JAPONICA,
vol. 26, no. 4, pp- 495-496, 1981.

N. Tita, Ideale de operatori generate de s numere, Univ. Tranil-
vania. Brasov, 1998.

A. Maji and P. D. Srivastava, “Some results of operator ideals
on s-type |A, p| operators,” Tamkang Journal of Mathematics,
vol. 45, no. 2, pp- 119-136, 2014.

E. E. Kara and M. ilkhan, “On a new class of s-type operators,”
Konuralp Journal of Mathematics (KJM), vol. 3, no. 1, pp. 1-
11, 2015.

T. Yaying, B. Hazarika, and M. Mursaleen, “On sequence space
derived by the domain of q-Cesaro matrix in ¢, space and the
associated operator ideal,” Journal of Mathematical Analysis
and Applications, vol. 493, article 124453, 2021.

R. Kannan, “Some results on fixed points—IL,” The American
Mathematical Monthly, vol. 76, no. 4, pp. 405-408, 1969.

S. J. H. Ghoncheh, “Some fixed point theorems for Kannan
mapping in the modular spaces,” Ciéncia e Natura, vol. 37,
pp. 462-466, 2015.

A. A. Bakery and O. S. K. Mohamed, “Kannan prequasi con-
traction maps on Nakano sequence spaces,” Journal of Func-
tion Spaces, vol. 2020, Article ID 8871563, 10 pages, 2020.

A. A. Bakery and O. S. K. Mohamed, “Kannan nonexpansive
maps on generalized Cesaro backward difference sequence
space of non-absolute type with applications to summable
equations,” Journal of Inequalities and Applications,
vol. 2021, no. 1, 2021.

B. Altay and F. Basar, “Generalization of the sequence space
£, derived by weighted means,” Journal of Mathematical
Analysis and Applications, vol. 330, no. 1, pp. 147-185, 2007.

A. L. Shields, “Weighted shift operators and analytic function
theory,” in Topics of Operator Theory, vol. 13 of Math. Surveys
Monographs, Amer. Math., Providence, RI, 1974.

K. Hedayatian, “On cyclicity in the space HP(f3),” Taiwanese
Journal of Mathematics, vol. 8, no. 3, pp. 429-442, 2004.

H. Emamirad and G. S. Heshmati, “Chaotic weighted shifts in
Bargmann space,” Journal of Mathematical Analysis and
Applications, vol. 308, no. 1, pp. 36-46, 2005.

N. Faried, A. Morsy, and Z. A. Hassanain, “S-numbers of shift
operators of formal entire functions,” Journal of Approxima-
tion Theory, vol. 176, pp. 15-22, 2013.

H. Nakano, “Modulared sequence spaces,” Proceedings of the
Japan Academy, vol. 27, pp. 508-512, 1951.

A. A. Bakery and M. H. El Dewaik, “A generalization of Caris-
ti’s fixed point theorem in the variable exponent weighted for-
mal power series space,” Journal of Function Spaces, vol. 2021,
Article ID 9919420, 18 pages, 2021.

A. A. Bakery, E. A. E. Mohamed, and E. A. E. Mohamed,
“Some applications of new complex function space con-
structed by different weights and exponents,” Journal of
Mathematics, vol. 2021, Article ID 7570145, 18 pages,
2021.

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]
[40]
(41]

(42]

(43]

[44]

[45]

[46]

(47]

(48]

(49]

Journal of Function Spaces

C. Farkas, “A generalized form of Ekeland's variational princi-
ple,” Analele Universitatii” Ovidius" Constanta-Seria Matema-
tica, vol. 20, no. 1, pp. 101-112, 2012.

B. E. Rhoades, “Operators of A-p type,” Atti della Accademia
Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni.,
vol. 59, no. 3-4, pp. 238-241, 1975.

A. Pietsch, Eigenvalues and S-Numbers, Cambridge University
Press, New York. NY, USA, 1986.

N. Faried and A. A. Bakery, “Small operator ideals formed by s
numbers on generalized Cesaro and Orlicz sequence spaces,”
Journal of Inequalities and Applications, vol. 2018, no. 1, 2018.

A. A. Bakery, E. A. E. Mohamed, and O. S. K. Mohamed, “On
the domain of Cesaro matrix defined by weighted means in
£)- , and its pre-quasi ideal with some applications,” Journal
of Mathematics and Computer Science, vol. 26, no. 1, pp. 41-
66, 2021.

A. Pietsch, Operator Ideals, VEB Deutscher Verlag der
Wissenschaften, Berlin, 1978.

«

D. Kutzarova, “_k_ - _f_ and _k_ -nearly uniformly convex
Banach spaces,” Journal of Mathematical Analysis and Appli-
cations, vol. 162, no. 2, pp- 322-338, 1991.

Y. Cui and H. Hudzik, “On the uniform Opial property in
some modular sequence spaces,” Uniwersytet im, vol. 26,
pp. 93-102, 1998.

S. Prus, “Banach spaces with the uniform opial property,”
Nonlinear Analysis, vol. 18, no. 8, pp. 697-704, 1992.

K. Kuratowski, “Sur les espaces complets,” Fundamenta Math-
ematicae, vol. 15, pp. 301-309, 1930.

R. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory,
Cambridge University Press, 1990.

W. A. Kirk, “A fixed point theorem for mappings which do not
increase distances,” The American Mathematical Monthly,
vol. 72, no. 9, pp- 1004-1006, 1965.

J. M. Ayerbe Toledano, T. Dominguez Benavides, and
G. Lopez Acedo, Measures of Noncompactness in Metric Fixed
Point Theory, vol. 99 of Operator Theory: Advances and
Applications, Birkhéduser Verlag, Basel, 1997.

G. Zhang, “Weakly convergent sequence coefficient of product
space,” Proceedings of the American Mathematical Society,
vol. 117, no. 3, pp. 637-643, 1993.

W. Bynum, “Normal structure coefficients for Banach spaces,”
Pacific Journal of Mathematics, vol. 86, no. 2, pp. 427-436,
1980.

J. M. Ayerbe Toledano and T. Dominguez Benavides, “Con-
nections between some Banach space coefficients concerning
normal structure,” Journal of Mathematical Analysis and
Applications, vol. 172, no. 1, pp. 53-61, 1993.

P. Salimi, A. Latif, and N. Hussain, “Modified a-y-contractive
mappings with applications,” Fixed Point Theory and Applica-
tions, vol. 2013, no. 1, 2013.

M. Matloka, “Sequences of fuzzy numbers,” Fuzzy Sets and
Systems, vol. 28, pp. 28-37, 1986.

L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338-353, 1965.



	Fixed Point Property of Variable Exponent Cesàro Complex Function Space of Formal Power Series under Premodular
	1. Introduction
	2. Some Properties of Cτ·
	3. Caristi’s Fixed Point Theorem in Cτ·h
	4. Structure of Mappings’�Ideal
	5. Nonexpansive Mappings on Cτ.h
	6. Applications to Nonlinear Summable Equations
	7. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

