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The main goal of this paper is to develop a new formula of the fractional derivatives of the shifted Chebyshev polynomials of the
third kind. This new formula expresses approximately the fractional derivatives of these polynomials in the Caputo sense in terms
of their original ones. The linking coefficients are given in terms of a certain 4F3ð1Þ terminating hypergeometric function. The
integer derivatives of the shifted third-kind Chebyshev polynomials can be calculated using this formula after performing some
reductions. To solve a nonlinear fractional pantograph differential equation with quadratic nonlinearity, the fractional
derivative formula is used in conjunction with the tau technique. The role of the tau method is to convert the pantograph
differential equation with its governing initial/boundary conditions into a nonlinear system of algebraic equations that can be
treated with the aid of Newton’s iterative scheme. To test the method’s convergence, certain estimations are included. The
proposed numerical method is demonstrated by numerical results to ensure its applicability and efficiency.

1. Introduction

In the last three decades, many searches highlighted descrip-
tions of a variety of phenomena by using fractional differen-
tial equations (FDEs) (see, for example, [1–3]). Accordingly,
a lot of research was directed to solving these equations.
Unfortunately, the exact solutions of many models of FDEs
are not always available. So, finding numerical solutions to
these equations was the only way to obtain results that are
enabling us to study these phenomena in a practical way.
In this regard, several numerical approaches for dealing with
FDEs have been presented. Among these methods, but not
limited to, we find wavelets methods [4, 5], operational
matrix methods [6–8], Adomian’s decomposition method
[9], tau method [10–12], pseudospectral method [13], finite
difference method [14], and other methods [15–18].

Throughout the history of numerical analysis research, it
has been clarified that orthogonal polynomials are credited
with developing these numerical methods. One of the most
important orthogonal polynomials that contributed to

developing these methods is the Jacobi polynomial. The
most famous special cases of Jacobi polynomials are Cheby-
shev polynomials of first, second, third, and fourth kinds.

Due to the importance of all kinds of Chebyshev polyno-
mials in different branches of mathematics, a great number
of authors investigated them from both theoretical and prac-
tical points of view. From a theoretical point of view, and for
example, regarding the Chebyshev functional, it has an old
history in the study (see, for example, [19]) and an extensive
repertoire of applications in many fields (see [20]). Further-
more, in the sequence of papers [21–23], the authors have
developed some type inequalities related to the Chebyshev
functional. From a numerical point of view, the authors in
[24] presented a Galerkin operational matrix method for
the numerical treatment of linear and nonlinear hyperbolic
telegraph type equations based on utilizing certain combina-
tions of Chebyshev polynomials of the first kind. In [25], the
fractional derivative formula of the first kind of Chebyshev
polynomials was established. In addition, a type of fractional
delay differential equations was treated using the spectral tau
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method. Chebyshev polynomials of the second kind were
used in [26] to find spectral solutions for the fractional
Riccati differential equations. Regrading the third- and
fourth-kinds of Chebyshev polynomials, they were utilized
in many applications. The authors in [27] introduced the
operational matrices of derivatives of third- and fourth-
kinds Chebyshev polynomials and employed them to numer-
ically solve the Lane-Emden type equations. The authors in
[28, 29] have employed such polynomials to treat other types
of differential and integral equations. Recently, other two
types of Chebyshev polynomials, namely, Chebyshev polyno-
mials of the fifth- and sixth-kinds, were employed in a variety
of applications. The author in [12] has established explicit
formulas for the derivatives of the sixth-kind Chebyshev
polynomials and utilized them to find spectral solution of
the nonlinear one-dimensional Burgers’ equation.

Spectral methods are among the most widely used
numerical techniques that have been developed and adapted
to solve various forms of DEs. The use of many properties of
orthogonal polynomials has contributed to developing these
methods, which enabled researchers to obtain explicit
expressions for a general-order derivative of an infinitely
differentiable function in terms of those of the function.
These expressions enabled them to develop many algorithms
to solve these equations (see, for example, [24]). Also, the
orthogonality property and the properties of the roots of
these polynomials had a clear effect in obtaining high-
precision numerical solutions using the different versions
of these methods, like the tau method [30, 31], collocation
method [32, 33], and Galerkin method [24]. The tau
approach offers the benefit of avoiding some problems that
the Galerkin method faces. This is because of the freedom
with which basis functions can be chosen and the underlying
conditions are set as constraints (see [25]).

Delay differential equations (DDEs) and fractional delay
differential equations (FDDEs) have vital roles as they arise
in several disciplines such as biology, economic, and auto-
matic control (see, [34]). The pantograph differential equa-
tions and the fractional pantograph differential equations
are important types of DDEs and many authors have inter-
ests in them. For example, Sedaghat et al. [35] suggested
an approximation to a pantograph equation with the aid of
Chebyshev polynomials. The authors in [36] have applied a
Taylor method for obtaining an approximate solution of
the generalized pantograph equations. The direct operational
tau method was employed to solve the pantograph-type
equation in [37]. Fractional pantograph differential equa-
tions were handled using the generalized fractional-order
Bernoulli wavelets in [38]. A wavelet matrix approach was
followed in [39] based on using Müntz-Legendre polyno-
mials to treat the fractional pantograph differential equa-
tions. For some other contributions regarding the different
types of pantograph equations, on can be referred to [40–44].

In this study, an explicit expression for the fractional
derivatives of the third-kind Chebyshev polynomials is
established. As far as we know, this expression is new, and
it generalizes the formula of the integer derivatives of Che-
byshev polynomials of the third kind that is previously
established. We demonstrate that this formula involves a

certain 4F3ð1Þ terminating hypergeometric term. Using the
new formula, the tau method is applied to solve the frac-
tional pantograph differential equations.

The following is a breakdown of the current paper’s
structure. Section 2 is devoted to displaying some definitions
of the fractional calculus theory. Moreover, in this section,
we present some useful formulas concerned with the third-
kind Chebyshev polynomials and their shifted ones. The
definitions of the generalized hypergeometric functions and
the regularized hypergeometric functions are also presented
in this section. Section 3 is interested in deriving in detail a
new formula that expresses approximately the fractional
derivatives of the shifted third-kind Chebyshev polynomials.
Also, in this section, the well-known integer derivative
formula of the shifted third-kind Chebyshev polynomials is a
specific result of the fractional ones. In Section 4, we describe
the proposed numerical algorithm for solving a type of frac-
tional pantograph differential equation with quadratic nonlin-
earity using the spectral tau method. Some error estimates are
given in Section 5 to examine the proposed polynomial series
expansion’s convergence and error analysis. Some numerical
simulations are presented in Section 6 to validate the theoret-
ical results. Finally, Section 7 summarises the findings.

2. Some Essentials and Useful formulas

Some definitions of the fractional calculus theory are pre-
sented in this section. In addition, various properties and
important formulas for third-kind Chebyshev polynomials
and their shifted counterparts are presented. Also, the defini-
tions of the generalized hypergeometric functions and some
their basic properties are given.

2.1. Some Definitions of the Fractional Operators

Definition 1. Let Iμdenote the Riemann-Liouville fractional
integral operator of order μ on the usual Lebesgue space L1
½0, 1�. Then, Iμ is defined as

Iμg tð Þ =
1

Γ μð Þ
ðt
0
t − τð Þμ−1 g τð Þ dτ, μ > 0,

g tð Þ, μ = 0:

8><
>: ð1Þ

The properties below are valid.

(i) IμIβ = Iμ+β

(ii) IμIβ = IβIμ

(iii) Iμtγ = ðΓðγ + 1Þ/Γðγ + μ + 1ÞÞtγ+μ

where μ, β ≥ 0, and γ > −1:

Definition 2. The Caputo fractional-order derivatives of a
function u defined on the interval I = ½0, 1� are defined as:
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C
0D

γ
xu

� �
xð Þ = 1

Γ ℓ − γð Þ
ðx
0
x − τð Þℓ−γ−1u ℓð Þ τð Þdτ, γ > 0, t > 0,

ð2Þ

where ℓ − 1 ≤ γ < ℓ, ℓ ∈ℕ.
The following property is useful

C
0D

α
xt

β =
0, forβ ∈ℕ0 andβ < αd e,
Γ β + 1ð Þ

Γ β + 1 − αð Þ t
β−α, for β ∈ℕ0 andβ ≥ αd e,

8><
>:

ð3Þ

where dαe denotes the lowest integer more than or equal to α
and ℕ0 = f0, 1, 2,⋯g:
2.2. An Account on Third-Kind Chebyshev Polynomials and
Their Shifted Ones. The Chebyshev polynomials of the
third-kind VnðxÞ are polynomials in x that have the follow-
ing trigonometric definition (see [45])

Vn xð Þ = cos n + 1/2ð Þθ
cos θ/2ð Þ , ð4Þ

with x = cos θ.
The polynomials VnðxÞ are special ones of the Jacobi

polynomials. More definitely, we have

Vn xð Þ = 22n
2n
n

 ! P −1/2,1/2ð Þ
n xð Þ:

ð5Þ

With respect to the weight function wðxÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 + xÞ/ð1 − xÞp
, these polynomials are orthogonal on ð−1,

1Þ, in the sense that

ð1
−1

ffiffiffiffiffiffiffiffiffiffi
1 + x
1 − x

r
Vm xð ÞVn xð Þdx =

0, m ≠ n,
π, m = n,

(
ð6Þ

and they may be constructed by means of the following
recursive formula:

Vn xð Þ = 2x Vn−1 xð Þ −Vn−2 xð Þ,V0 xð Þ = 1,V1 xð Þ = 2x − 1, n = 2, 3,⋯:

ð7Þ

The shifted Chebyshev polynomials of the third kind on
½0, 1� are defined as

V∗
n xð Þ =Vn 2 x − 1ð Þ: ð8Þ

All properties of third-kind Chebyshev polynomials may
be readily converted to yield the properties of the analog of
their shifted polynomials.

The orthogonality relation of V∗
k ðxÞ on ½0, 1� with

respect to the weight function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x/ð1 − xÞp

is given by

ð1
0

ffiffiffiffiffiffiffiffiffiffi
x

1 − x

r
V∗

k xð ÞV∗
j xð Þdx =

π

2 , k = j,

0, k ≠ j:

8<
: ð9Þ

The power form representation of the third-kind Cheby-
shev polynomials and its inversion formula can be repre-
sented respectively as (see [46])

V∗
k xð Þ = 〠

k

i=0

22i −1ð Þk+i k + ið Þ!
2i + 1ð Þ! k − ið Þ! x

i, ð10Þ

and

xr = 2r + 1ð Þ!
22r 〠

r

ℓ=0

1
r − ℓð Þ! ℓ + r + 1ð Þ!V

∗
ℓ xð Þ: ð11Þ

2.3. An Account on Generalized Hypergeometric Function.
We display in this section the definition of the generalized
hypergeometric functions and the regularized hypergeometric
function which will be essential in the upcoming section.

We recall here the definition of the generalized hyper-
geometric function given by (see, for example, [46])

pFq

A1, A2,⋯, Ap

B1, B2,⋯, Bq

∣ x

 !
= 〠

∞

k=0

A1ð Þk A2ð Þk ⋯ Ap

� �
k

B1ð Þk B2ð Þk ⋯ Bq

� �
k

xk

k!
,

ð12Þ

and the regularized hypergeometric function are defined as

p
~Fq

A1, A2,⋯, Ap

B1, B2,⋯, Bq

∣ x

 !
= 〠

∞

k=0

A1ð Þk A2ð Þk ⋯ Ap

� �
k

Γ B1 + kð ÞΓ B2 + kð Þ⋯ Γ Bq + k
� � xk

k!
,

ð13Þ

where p and q are nonnegative integers. In addition, the con-
stants Bj, 1 ≤ j ≤ q are all neither zeros nor negative integers.

Note 1. In (12), if one of Ai is a negative integer ð−nÞ, the
generalized hypergeometric function reduces to a polyno-
mial of degree n.

3. Derivation of the Fractional Derivatives of
Chebyshev Polynomials of Third-Kind

This section is confined to deriving in detail the formula that
expresses the fractional derivatives of the third-kind Cheby-
shev polynomials. In addition, the well-known integer deriv-
ative formula will be deduced as a special case. For our
derivation, the following two lemmas are needed.
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Lemma 3. For every nonnegative integers k, ℓ, r, the following
reduction formula is valid

3F2

−ℓ, 2k − ℓ + 1, k − ℓ − r + 3
2

k − ℓ + 3
2
, 2k − 2ℓ − 2r + 2

∣ 1

0
BB@

1
CCA = 2ffiffiffi

π
p

2k + 1ð Þ

×

Γ ℓ + 1ð Þ/2ð Þ rð Þℓ/2
k − ℓ + 3/2ð Þℓ/2−1 k − ℓ − r + 1ð Þℓ/2

, ℓ even,

−Γ ℓ/2 + 1ð Þ rð Þ ℓ+1ð Þ/2
k − ℓ + 3/2ð Þ ℓ−1ð Þ/2 k − ℓ − r + 1ð Þ ℓ+1ð Þ/2

, ℓ odd:

8>>>><
>>>>:

ð14Þ

Proof. First, set

Yℓ,k,r = 3F2

−ℓ, 2k − ℓ + 1, k − ℓ − r + 3
2

k − ℓ + 3
2 , 2k − 2ℓ − 2r + 2

∣ 1

0
BB@

1
CCA: ð15Þ

The following recurrence relation of order two can be
generated using Zeilberger’s approach (see [47]).

ℓ + 1ð Þ 2k − ℓð Þ ℓ + 2rð Þ −k + ℓ + r + 1ð Þ −2k + ℓ + 2r − 1ð ÞYℓ,k,r
− 2 2k − 2ℓ + 1ð Þ k − ℓ − rð Þ 2k ℓ + r + 1ð Þ − 2 ℓ r − ℓ ℓ + 1ð Þ − 2r2

� �
Yℓ+1,k,r

− 4 2k − 2ℓ − 1ð Þ 2k − 2ℓ + 1ð Þ k − ℓ − r − 1ð Þ k − ℓ − rð Þ2Y ℓ+2,k,r = 0,
ð16Þ

with the initial values

Y0,k,r = 1, Y1,k,r =
−r

2k + 1ð Þ k − rð Þ : ð17Þ

The recurrence relation (16) can be exactly solved to give

Yℓ,k,r =
2ffiffiffi

π
p 2k + 1ð Þ

Γ ℓ + 1ð Þ/2ð Þ rð Þℓ/2
k − ℓ + 3/2ð Þℓ/2−1 k − ℓ − r + 1ð Þℓ/2

, ℓ even,

−Γ ℓ/2 + 1ð Þ rð Þ ℓ+1ð Þ/2
k − ℓ + 3/2ð Þ ℓ−1ð Þ/2 k − ℓ − r + 1ð Þ ℓ+1ð Þ/2

, ℓ odd:

8>>>><
>>>>:

ð18Þ

This completes the proof of Lemma 3.

Lemma 4. Let k, r be any two nonnegative integers with k ≥ r.
The following transformation formula is valid:

4~F3

− k − rð Þ, 1, k + r + 1, 3
2

r + 3
2
, 1 − p, p + 2

∣ 1

0
BB@

1
CCA =

3/2ð Þp r − kð Þp k + r + 1ð Þp
2p + 1ð Þ!Γ p + r + 3/2ð Þ

× 3F2

− k − p − rð Þ, p + 3
2
, k + p + r + 1

2p + 2, p + r + 3
2

∣ 1

0
BB@

1
CCA:

ð19Þ

Proof. In the left-hand side of (19), the terminating hyper-
geometric series can be expressed as

4~F3

r − k, 1, k + r + 1, 32

r + 3
2 , 1 − p, p + 2

∣ 1

0
BB@

1
CCA = 〠

k−r

s=p

3/2ð Þs r − kð Þs k + r + 1ð Þs
s − pð Þ! s + p + 1ð Þ!Γ s + r + 3/2ð Þ ,

ð20Þ

which can also be written as

4~F3

r − k, 1, k + r + 1, 32

r + 3
2 , 1 − p, p + 2

∣ 1

0
BB@

1
CCA = 〠

k−p−r

ℓ=0

3/2ð Þp+ℓ r − kð Þp+ℓ k + r + 1ð Þp+ℓ
ℓ! 2p + ℓ + 1ð Þ!Γ p + r + ℓ + 3/2ð Þ :

ð21Þ

In virtue of the identity:

Að Þp+ℓ = Að Þp A + pð Þℓ, ð22Þ

relation (21) can be written alternatively as

4~F3

r − k, 1, k + r + 1, 32

r + 3
2 , 1 − p, p + 2

∣ 1

0
BB@

1
CCA

=
3/2ð Þp r − kð Þp k + r + 1ð Þp
2p + 1ð Þ!Γ p + r + 3/2ð Þ 〠

k−p−r

ℓ=0

p + 3/2ð Þℓ −k + p + rð Þℓ k + p + r + 1ð Þℓ
2p + 2ð Þℓ p + r + 3/2ð Þℓ ℓ!

,

ð23Þ

which implies the validity of transformation (19).
The key theorem in this section is now stated and

proved.

Theorem 5. The following formula can be used to approxi-
mate the fractional derivatives of the polynomials V∗

k ðxÞ as:
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DγV∗
k xð Þ ≃ −1ð Þk+n 2k + 1ð Þ k + nð Þ!Γ n − γ + 3/2ð Þ

Γ n + 3/2ð Þ k − nð Þ!

× 〠
N

p=0

1
Γ n − p − γ + 1ð ÞΓ n + p − γ + 2ð Þ

× 4F3

1, n − k, k + n + 1, n − γ + 3
2

n + 3
2
, n − γ − p + 1, n − γ + p + 2

∣ 1

0
BB@

1
CCAV∗

p xð Þ,

ð24Þ

where n = dγe is the well-known ceiling notation and N is a
sufficiently large positive integer.

Proof. The power form representation of V∗
k ðxÞ in (10),

along with relation (2.1) yields

DγV∗
k xð Þ = ffiffiffi

π
p

k + 1
2

� �
〠
k

s=n

−1ð Þk+s k + sð Þ!
Γ s + 3/2ð Þ k − sð Þ!Γ s − γ + 1ð Þ x

s−γ:

ð25Þ

The inversion formula of V∗
p ðxÞ in (11) can be used to

approximate DγV∗
k ðxÞ as

xs−γ ≃
Γ 2s − 2 γ + 2ð Þ

22 s−2 γ 〠
N

ℓ=0

1
Γ s − γ − ℓ + 1ð ÞΓ s − γ + ℓ + 2ð ÞV

∗
ℓ xð Þ,

ð26Þ

where N is a sufficiently large positive integer.
The following approximation for DγV∗

k ðxÞ is obtained by
inserting (26) into (25)

DγV∗
k xð Þ ≃ 2k + 1ð Þ〠

k

s=n

−1ð Þk+s k + sð Þ!Γ s − γ + 3/2ð Þ
Γ s + 3/2ð Þ k − sð Þ!

× 〠
N

ℓ=0

1
Γ s − γ − ℓ + 1ð ÞΓ s − γ + ℓ + 2ð ÞV

∗
ℓ xð Þ:

ð27Þ

If the right-hand side of relation (27) is expanded and
rearranged, then we get

DγV∗
k xð Þ ≃ 2k + 1ð Þ〠

N

p=0
〠
k−n

ℓ=0

−1ð Þk+n+ℓ k + n + ℓð Þ!
Γ ℓ + n + 3/2ð Þ k − n − ℓð Þ!

× Γ ℓ + n − γ + 3/2ð Þ
Γ ℓ + n − p − γ + 1ð ÞΓ ℓ + n + p − γ + 2ð ÞV

∗
p xð Þ:

ð28Þ

In hypergeometric form, the last relation can be written
as follows:

DγV∗
k xð Þ ≃ −1ð Þk+n 2k + 1ð Þ k + nð Þ!Γ n − γ + 3/2ð Þ

Γ n + 3/2ð Þ k − nð Þ!

× 〠
N

p=0

1
Γ n − p − γ + 1ð ÞΓ n + p − γ + 2ð Þ

× 4F3

1, n − k, k + n + 1, n − γ + 3
2

n + 3
2 , n − γ − p + 1, n − γ + p + 2

1j

0
BB@

1
CCAV∗

p xð Þ:

ð29Þ

This ends the proof of Theorem 5.

Remark 6. The integer derivatives formula of the polyno-
mials V∗

k ðxÞ may be extracted from Theorem 5 as a special
case. The following corollary exhibits this formula.

Corollary 7. Let r be a positive integer. Then, for all k ≥ r,
one has:

DrV∗
k xð Þ = 22r

r − 1ð Þ! 〠
k−rð Þ/2b c

ℓ=0

k − ℓð Þ! ℓ + r − 1ð Þ!
ℓ! k − ℓ − rð Þ! V∗

k−2 ℓ−r xð Þ

+ 22r

r − 1ð Þ! 〠
k−r−1ð Þ/2b c

ℓ=0

k − ℓ − 1ð Þ! ℓ + rð Þ!
ℓ! k − ℓ − rð Þ! V∗

k−2 ℓ−r−1 xð Þ:

ð30Þ

Proof. Setting γ = r, r is a positive integer. In this case γ
= n = r, and therefore, formula (24) can be converted into

DrV∗
k xð Þ = −1ð Þk+r ffiffiffi

π
p

k + 1/2ð Þ k + rð Þ!
k − rð Þ!

× 〠
k−r

p=0
4~F3

r − k, 1, k + r + 1, 32

r + 3
2 , 1 − p, p + 2

1j

0
BB@

1
CCAV∗

p xð Þ:

ð31Þ

With the aid of Lemma 4, the last formula reduces to
the following one:

DrV∗
k xð Þ = −1ð Þk+r ffiffiffi

π
p

k + 1/2ð Þ k + rð Þ!
k − rð Þ!

× 〠
k−r

p=0

3/2ð Þp r − kð Þp k + r + 1ð Þp
2p + 1ð Þ!Γ p + r + 3/2ð Þ 3F2

�
− k − p − rð Þ, p + 3

2 , k + p + r + 1

2p + 2, p + r + 3
2

1j

0
BB@

1
CCAV∗

p xð Þ:

ð32Þ

It is clear that the last relation can be written in the
following alternative relation:
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DrV∗
k xð Þ = −1ð Þk+r ffiffiffi

π
p

k + 1/2ð Þ k + rð Þ!
k − rð Þ!

� 〠
k−r

ℓ=0

3/2ð Þk−ℓ−r r − kð Þk−ℓ−r k + r + 1ð Þk−ℓ−r
Γ k − ℓ + 3/2ð Þ 2k − 2ℓ − 2r + 1ð Þ!

× 3F2

−ℓ, 2k − ℓ + 1, k − ℓ − r + 3
2

k − ℓ + 3
2 , 2k − 2ℓ − 2r + 2

1j

0
BB@

1
CCAV∗

k−r−ℓ xð Þ:

ð33Þ

In virtue of Lemma 3, the 3F2ð1Þ that appears in (32) can
be summed in a closed form, and then, after performing some
manipulation, the following formula can be obtained

DrV∗
k xð Þ = 22r

r − 1ð Þ! 〠
k−rð Þ/2b c

ℓ=0

k − ℓð Þ! ℓ + r − 1ð Þ!
ℓ! k − ℓ − rð Þ! V∗

k−2 ℓ−r xð Þ

+ 22r
r − 1ð Þ! 〠

k−r−1ð Þ/2b c

ℓ=0

k − ℓ − 1ð Þ! ℓ + rð Þ!
ℓ! k − ℓ − rð Þ! V∗

k−2 ℓ−r−1 xð Þ:

ð34Þ

This proves formula (30).

Remark 8. The result in (30) matches that obtained in [28].

4. Tau Stratagem for Handling a Type of
Pantograph Differential Equations with
Quadratic Nonlinearity

In this section, we are interested in employing a new expres-
sion of the fractional derivatives of the third-kind Chebyshev
polynomials along with the application of the spectral tau
method to treat the following fractional pantograph differen-
tial equation with quadratic nonlinearity ([38, 45, 48]).

Dγv tð Þ + ξ1 v′ tð Þ + ξ2 v tð Þ + ξ3 v
t
τ

� �
+ ξ4 v

2 tð Þ = g tð Þ, t ∈ 0, 1ð Þ,

ð35Þ

governed by the boundary conditions:

v 0ð Þ = ϱ0, v 1ð Þ = ϱ1, ð36Þ

or the initial conditions

v 0ð Þ = ~ϱ0, v′ 0ð Þ = ~ϱ1, ð37Þ

where 1 < γ ≤ 2, τ > 1,ξ1, ξ2, ξ3, ξ4, ϱ0, ϱ1, ~ϱ0, and ~ϱ1 are real
constants, and gðtÞ is a known continuous source function.

Before moving further with the implementation of our
proposed method, the following two lemmas are needed.
The first lemma presents the duplication formula of the
shifted Chebyshev polynomials of the third kind, whereas
the second lemma exhibits the linearization formula of the
shifted third-kind Chebyshev polynomials.

Lemma 9. Let i be any positive integer, and A is a nonzero
real number. We have the following formula:

V∗
i A xð Þ = Ai 2i + 1ð Þ!〠

i

p=0

1
p! 2i − p + 1ð Þ! 2F1

�
−p,−2i + p − 1

−2i

1
A

����
 !

V∗
i−p xð Þ:

ð38Þ

Proof. Formula (37) can be easily obtained by making use of
(10) along with (11).

Lemma 10. For all nonnegative integers i and j, the following
linearization formula is valid ([49])

V∗
i xð ÞV∗

j xð Þ = 〠
2 min i,jð Þ

p=0
−1ð Þp V∗

i+j−p xð Þ: ð39Þ

The key idea behind solving (35)–(36) is to use the spec-
tral tau approach. We represent the inner product in L2ð0, 1Þ,
namely, ð·, · Þ

ϕ tð Þ, ψ tð Þð Þw =
ð1
0
w tð Þ ϕ tð Þψ tð Þ dt: ð40Þ

If we suppose that the right-hand side of (35) may be
written as

g tð Þ = 〠
∞

i=0
gi V

∗
i tð Þ, ð41Þ

the following approximation of gðtÞ can therefore be
considered:

g tð Þ = 〠
N

i=0
gi V

∗
i tð Þ ; gi =

2
π

g, V∗
i tð Þð Þw: ð42Þ

We also take into account the approximate solution
of (35) as:

v tð Þ ≈ vn tð Þ = 〠
n

i=0
ui V

∗
i tð Þ =U:Φ, ð43Þ

where

U = u0, u1,⋯, unð Þ,Φ =

V∗
0 tð Þ

V∗
1 tð Þ
:

:

:

V∗
n tð Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð44Þ
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Now, we are going to employ the tau method for
solving (35). First, the residual of (35) is given by

Rn tð Þ =Dγvn tð Þ + ξ1 Dvn tð Þ + ξ2 vn tð Þ + ξ3 vn
t
τ

� �
+ ξ4 v

2
n tð Þ − g tð Þ:

ð45Þ

We approximate each term on the right-hand side of
(45) in terms of the shifted third-kind Chebyshev poly-
nomials. First, to approximate the term DγV∗

i ðtÞ, we
make use of Theorem 5, to get

DγV∗
i tð Þ ≈ 〠

N

p=0
dp,i,γ V

∗
p tð Þ, ð46Þ

with

dp,i,γ =
2i + 1ð ÞΓ −γ + γd e + 3/2ð Þ −1ð Þ γd e+i γd e + ið Þ!

Γ γd e + 3/2ð Þ i − γd eð Þ!Γ −p − γ + γd e + 1ð ÞΓ p − γ + γd e + 2ð Þ

× 4F3

1, γd e − i, γd e + i + 1,−γ + γd e + 3
2

γd e + 3
2 ,−γ + γd e − p + 1,−γ + γd e + p + 2

1j

0
BB@

1
CCA,

ð47Þ

and accordingly, we have

Dγvn tð Þ = 〠
n

i=0
〠
N

p=0
ui dp,i,γ V

∗
p tð Þ: ð48Þ

Also, Lemma 9 enables one to approximate V∗
i ðt/τÞ

for any positive integer τ > 1 as

V∗
i

t
τ

� �
= 〠

i

p=0
Δi,p V

∗
i−p, ð49Þ

with

Δi,p =
2i + 1ð Þ!

τi p! 2i − p + 1ð Þ! 2F1
−p,−2i + p − 1

−2i
τj

 !
: ð50Þ

In addition, the linearization formula of the third-
kind Chebyshev polynomials leads to the following
expression for v2nðtÞ:

v2n tð Þ = 〠
n

i=0
〠
n

j=0
〠

2 min i,jð Þ

p=0
−1ð Þp ui ujV

∗
i+j−p tð Þ: ð51Þ

Now, in virtue of the three formulas (48), (49), and
(51), the residual of (35) can be discretized as

Rn tð Þ = 〠
n

i=0
〠
N

p=0
ui dp,i,γ V

∗
p tð Þ + ξ1 〠

n

i=0
〠
i−1

p=0
ui dp,i,1 V

∗
p tð Þ

+ ξ2 〠
n

i=0
ui ϕi + ξ3 〠

n

i=0
〠
i

p=0
ui Δi,p, V∗

i−p tð Þ

+ ξ4 〠
n

i=0
〠
n

j=0
〠

2 min i,jð Þ

p=0
−1ð Þp ui uj V

∗
i+j−p tð Þ − 〠

n

i=0
gi V

∗
i tð Þ:

ð52Þ

The standard tau technique ([26]) is used in this
case to yield

Rn tð Þ, V∗
j tð Þ

� 	
w
= 0 ; 0 ≤ j ≤ n − 2, ð53Þ

which consequently out-turn

〠
n

i=0
〠
N

p=0
ui dp,i,γ V∗

p , V∗
j

� 	
w
+ ξ1 〠

n

i=0
〠
i−1

p=0
ui dp,i,1 V∗

p ,V∗
j

� 	
w

+ ξ2 〠
n

i=0
ui V∗

i , V∗
j

� 	
w
+ ξ3 〠

n

i=0
〠
i

p=0
ui Δi,p V∗

i−p,V∗
j

� 	
w

+ ξ4 〠
n

i=0
〠
n

j=0
〠

2 min i,jð Þ

p=0
−1ð Þp ui uj V∗

i+j−p, V∗
j

� 	
w
− 〠

n

i=0
gi V∗

i , V∗
j

� 	
w
= 0:

ð54Þ

The benefit of the orthogonality relation leads to the
following equations

〠
n

i=0
〠
N

p=0
ui dp,i,γ δp,j + ξ1 〠

n

i=0
〠
i−1

p=0
ui dp,i,1 δp,j + ξ2 〠

n

i=0
ui δi,j + ξ3 〠

n

i=0
〠
i

p=0
ui Δi,p δi−p,j

+ ξ4 〠
n

i=0
〠
n

k=0
〠

2 min i,kð Þ

p=0
−1ð Þp ui ukδi+k−p,j − 〠

n

i=0
gi δi,j = 0,

ð55Þ

or equivalently

〠
n

i=0
〠
N

p=0
ui dp,i,γ δp,j + ξ1 〠

n

i=0
〠
i−1

p=0
ui dp,i,1 δp,j + ξ2 uj + ξ3 〠

n

i=0
〠
i

p=0
ui Δi,p δi−p,j

+ ξ4 〠
n

i=0
〠
n

k=0
〠

2 min i,kð Þ

p=0
−1ð Þp ui ukδi+k−p,j − gj

= 0 ; j ∈ 0, 1,⋯,n − 2f g:
ð56Þ

The boundary conditions return

〠
n

i=0
−1ð Þi 2i + 1ð Þui = ϱ0, 〠

n

i=0
ui = ϱ1, ð57Þ

while the initial conditions return
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〠
n

i=0
−1ð Þi 2i + 1ð Þui = ~ϱ0, 〠

N

i=1
−1ð Þi−12 −1ð Þi−1 ið Þ2 2i + 1ð Þ ui = 3 ~ϱ1:

ð58Þ

Equations (56)–(57) or (56)–(58) generate a set of
algebraic equations with dimension ðn + 1Þ in the
unknown expansion coefficients uj that may be solved
via Newton’s iterative scheme.

5. Error Estimate

This section examines the proposed polynomial series
expansion’s convergence and error analysis in depth. As a
result, several necessary lemmas are employed in this
research. Three theorems will also be stated and proved.

In what follows, by writing An≼Bn, this implies the exis-
tence of a generic constant C, such that An ≤ C Bn.

Lemma 11. Lat γ ∈ ½1, 2Þ. One has:

∣di,p,γ∣≼4
6 1+γ−ið Þi4 1+γð Þ: ð59Þ

Proof. In virtue of: Γðr + βÞ ≈ r!rβ−1 (see, [50]), and after
some algebraic computations, we get the result.

Lemma 12. We have:

∣Δi,p∣≼
2i + 1ð Þ!

τi 2i + 1 − pð Þ!p! : ð60Þ

Proof. Similar to the proof of Lemma 11.

Lemma 13. For all i > 0, we have:

V∗
i tð Þj j ≤ 2i + 1: ð61Þ

Theorem 14. For k > 3, assume that vðtÞ is Ck − function,
and let vðtÞ can be approximated as:

v tð Þ ≈ vn tð Þ = 〠
n

i=0
ui V

∗
i tð Þ, ð62Þ

then, the following estimate can be obtained

∣ui∣≼i
−k: ð63Þ

Proof. We can get the required result by employing steps
similar to those used in [25].

If vðtÞ obeys the assumptions of Theorem 14, we have
the following two theorems.

Theorem 15. The following truncation error estimate is valid

v − vnj j≼n2−k: ð64Þ

Proof. By the result of Theorem 14and the help of Lemma
13, we get the result.

Theorem 16. If we define

En = Dγvn tð Þ + ξ1 v′n tð Þ + ξ2 vn tð Þ + ξ3 vn
t
τ

� �
+ ξ4 v

2
n tð Þ − g tð Þ

����
����,

ð65Þ

then, for 1 < τ < 4, we have the following global error estimate:

∣En∣≼max n3−k, m
2 n4+4γ−k

212n
, n

1/2−k τn

4n


 �
: ð66Þ

Proof. We have

Dγvn tð Þ + ξ1 v′n tð Þ + ξ2 vn tð Þ + ξ3 vn
t
τ

� �
+ ξ4 v

2
n tð Þ ≈ gn tð Þ,

Dγv tð Þ + ξ1 v′ tð Þ + ξ2 v tð Þ + ξ3 v
t
τ

� �
+ ξ4 v

2 tð Þ = g tð Þ:

ð67Þ

Substitution by (24) into (23), we get

Enj j ≤ Dγ v − vnð Þj j + ξ1 v − vnð Þ′�� �� + ξ2 v − vnð Þj j
+ ξ3 v − vnð Þ t

τ

� �����
���� + ξ4 v2 − v2n

� ��� ��: ð68Þ

By the boundedness of v and with the help of Theorem 15,
we have

Enj j≼ Dγ v − vnð Þj j + ξ1 v − vnð Þ′�� �� + ξ3 v − vnð Þ t
τ

� �����
���� + n2−k:

ð69Þ

Now, we have:

D v − vnð Þ = 〠
∞

i=n+1
ui DV

∗
i ,

Dγ v − vnð Þ = 〠
∞

i=n+1
〠
N

p=0
ui dp,i,γ V

∗
p ,

v − vnð Þ t
τ

� �
= 〠

∞

i=n+1
〠
i

p=0
ui Δi,p V

∗
i−p:

ð70Þ

By the application of Theorem 14, Lemmas 11, 12, and 13,
respectively, and after some algebraic manipulation, we get

v − vnð Þ′≼n3−k,

Dγ v − vnð Þ≼m
2 n4+4γ−k

212n ,

v − vnð Þ t
τ

� �
≼
n1/2−k τn

4n ,

ð71Þ

which ends the proof of the theorem.
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6. Numerical Simulations

This section is confined to presenting four test problems to
clarify the accuracy and applicability of the Chebyshev
third-kind tau method (C3TM) that derived in Section 4.

Problem 1. Consider the linear fractional pantograph differ-
ential equation ([38]):

Dγv tð Þ − 3
4 v tð Þ − v

1
2 t
� �

= 2 − t2, t ∈ 0, 1ð Þ ; 1 < γ ≤ 2,

v 0ð Þ = v′ 0ð Þ = 0:
ð72Þ

In case γ = 2, the exact solution is: vðtÞ = t2.
First, we discuss the case corresponding to γ = 2. In this

case, after applying our algorithm, with n = 2, the following
system of equations can be obtained:

256 u2 + 12 u1 − 14 u0 = 11,
5 u2 − 3 u1 + u0 = 0,

5 u2 − u1 = 0,
ð73Þ

which yields

u0 =
5
8 , u1 =

5
16 , u2 =

1
16 , ð74Þ

and consequently,

v tð Þ = 5
8 1ð Þ + 5

16 −3 + 4tð Þ + 1
16 5 − 20t + 16t2
� �

= t2, ð75Þ

which is the exact solution.
Second, when 1 < γ < 2. Since the exact solution is not

available, we define the following error norm

En =max
0≤t≤1

Dγvn tð Þ − 3
4 vn tð Þ − vn

1
2 t
� �

− 2 + t2
����

����: ð76Þ

We apply our algorithm with n = 2,N = 3. The values of
E, for various values of γ, are listed in Table 1.

Note 2.We would like to report here that the authors in [38]
obtained an error of order 10−17, when γ = 2, while, we
obtained the exact solution.

Problem 2. Consider the following fractional pantograph
differential equation: ([38]):

Dγv tð Þ + 5
6 v tð Þ − 4 v 1

2 t
� �

− 9 v 1
3 t
� �

= t2 − 1, t ∈ 0, 1ð Þ ; 0 < γ ≤ 1,

v 0ð Þ = 1:
ð77Þ

In case γ = 1, the exact solution is: vðtÞ = 12157/1296 t3
+ 1675/72 t2 + 67/6 t + 1.

First, we discuss the case corresponding to γ = 1. In this
case, after applying our algorithm, with n = 3, we get the
following system of equations:

−292 u0 + 672 u1 − 144 u2 − 4 u3 + 9 = 0,
−200 u1 + 1104 u2 − 648 u3 − 15 = 0,

−56 u2 + 968 u3 − 3 = 0,
u0 − 3 u1 + 5 u2 − 7 u3 = 1,

ð78Þ

which yields

u0 =
2409095
82944 , u1 =

363283
27648 , u2 =

205699
82944 , u3 =

12157
82944 ,

ð79Þ

and consequently

v3 tð Þ = 2409095
82944 + 363283

27648 4t − 3ð Þ + 205699
82944 16t2 − 20t + 5

� �
+ 12157
82944 64t3 − 112t2 + 56t − 7

� �
,

ð80Þ

and therefore, we get

v3 tð Þ = 12157t3
1296 + 1675t2

72 + 67t
6 + 1, ð81Þ

which is the exact solution.
Second, when 0 < γ < 1. Since, the exact solution is not

available, we define the following error norm

En = max
0≤t≤1

Dγvn tð Þ + 5
6 vn tð Þ − 4 vn

1
2 t
� �

− 9 vn
1
3 t
� �

− t2 + 1
����

����:
ð82Þ

We apply our algorithm with n = 3,N = 4. The values of
E, for various values of γ are listed in Table 2.

Problem 3. Consider the fractional-delay BVP [25]:

v γð Þ tð Þ + v′ tð Þ + v
t
τ

� �
+ v tð Þ = r tð Þ ; t ∈ 0, 1ð Þ, ð83Þ

governed by

v 0ð Þ = 1, v 1ð Þ = 1
e
, ð84Þ
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and rðtÞ is selected so that vðtÞ = exp ð−tÞ is the exact solu-
tion. The C3TM is applied for various choices of τ and n.
Table 3 lists the maximum point-wise error E that is com-
puted by the following formula:

E = max
t∈ 0,1½ �

Exact tð Þ −Approximate tð Þj j, ð85Þ

for γ = 5/4, 3/2, 7/4 and τ = 4/3, 2, 4. In Figure 1, the log
errors are presented in case of τ = 2.

Problem 4. Consider the fractional-delay initial value
problem [48]:

v γð Þ tð Þ + η v tð Þ + μ v
t
τ

� �
= η − 1ð Þ sin t + μ sin t

τ

� �
; t ∈ 0, 1½ �, 1 < γ ≤ 2,

ð86Þ

governed by the initial conditions:

v 0ð Þ = v′ 0ð Þ − 1 = 0, ð87Þ

and the exact solution is: vðtÞ = sin t for γ = 2, and η
and μ are any real constants. Table 4 presents the errors
if C3TM is applied for n = 15. We list the maximum
absolute residual error defined by:

En =max
0≤t≤1

v γð Þ
n tð Þ + η vn tð Þ + μ vn

t
τ

� �
− η − 1ð Þ sin t − μ sin t

τ

� �����
����,

ð88Þ

for the case that corresponds to η = 1, μ = 1/2, γ = 2,
7/4, 3/2, 5/4, and τ = 2, and τ = 4. Figure 2 illustrates
the absolute errors for the case γ = 2, n = 15.

Table 1: Residual error of example 1.

γ 3/2 1.6 1.7 1.8 1.9

E 2:22 × 10−16 2:22 × 10−16 2:22 × 10−16 2:22 × 10−17 2:22 × 10−18

Table 2: Residual error of example 2.

γ 0.5 0.6 0.7 0.8 0.9

E 3:56 × 10−13 4:24 × 10−14 3:58 × 10−15 3:94 × 10−15 2:22 × 10−16

Table 3: Maximum point-wise error of example 3.

γ τ N 4 6 8 10 12 14

4/3 3:42 × 10−5 4:76 × 10−7 5:38 × 10−9 2:27 × 10−11 4:68 × 10−14 2:22 × 10−16

5/4 2 E 4:51 × 10−5 5:27 × 10−7 6:39 × 10−9 7:95 × 10−11 6:23 × 10−14 2:22 × 10−16

4 5:37 × 10−5 8:26 × 10−7 2:39 × 10−9 5:95 × 10−11 7:21 × 10−14 2:22 × 10−16

4/3 3/27 × 10−5 2:25 × 10−7 5:92 × 10−9 5:61 × 10−11 6:34 × 10−14 2:22 × 10−16

3/2 2 E 5:13 × 10−5 7:25 × 10−7 6:38 × 10−9 9:34 × 10−11 2:15 × 10−14 2:22 × 10−16

4 2:87 × 10−5 2:68 × 10−7 2:36 × 10−9 5:27 × 10−11 2:27 × 10−14 2:22 × 10−16

4/3 4:37 × 10−5 7:85 × 10−7 2:96 × 10−9 3:65 × 10−11 2:65 × 10−14 2:22 × 10−16

7/4 2 E 2:33 × 10−5 6:64 × 10−7 2:37 × 10−9 5:92 × 10−11 2:84 × 10−14 2:22 × 10−16

4 2:68 × 10−5 5:61 × 10−7 3:98 × 10−9 9:34 × 10−11 2:38 × 10−14 2:22 × 10−16
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–10

Lo
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6 8 10
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τ = 2
τ = 4
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4
3τ =

Figure 1: Log errors of example 3.
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7. Conclusion

Herein, we have established a new formula that gives an
approximation of the fractional derivatives of the nonsym-
metric polynomials, namely, shifted third-kind Chebyshev
polynomials in the Caputo sense. We demonstrated that this
formula contains a terminating hypergeometric function of
type 4F3ð1Þ, which can be simplified in the integer case to
match the well-known derivative formula of the Chebyshev
polynomials of the third kind. A certain nonlinear fractional
pantograph differential equation was treated via the applica-
tion of the spectral tau method depending on the developed
fractional derivatives formula. The convergence analysis of
the method was investigated. The algorithm was tested
through four examples that show the high accuracy and
the efficiency of the presented algorithm. We believe that
the theoretical results in this paper can be utilized to treat
other types of fractional differential equations.
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