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In this paper, we aim to develop formulas of spectral radius for an operator S in terms of generalized Aluthge transform, numerical
radius, iterated generalized Aluthge transform, and asymptotic behavior of powers of S. These formulas generalize some of the
formulas of spectral radius existing in literature. As an application, these formulas are used to obtain several characterizations
of normaloid operators.

1. Introduction

Generally, in mathematical analysis and particularly in func-
tional analysis, the spectral analysis of operators is an essential
research topic. It is useful to study the properties of operators,
including spectrum and the spectral radius of operators (see
[1]). The spectrum of an operator is connected with an invari-
ant subspace problem on a complex Hilbert space (see [2]),
and the important property of spectrum is the expression of
spectral radius in various formulas (see [3–5]). These formulas
help to obtain several characterizations of operators, including
normaloid and spectraloid operators (see [6]). Since the
advent of various transformations of bounded linear opera-
tors, including Aluthge transform and its generalizations, the
study of spectral properties of operators has become the center
point for many researchers (see [7–9]).

An operator can be decomposed into two Hermitian
operators being its real and imaginary parts, and this decom-
position is known as Cartesian decomposition. Clearly, Her-
mitian operators are self-adjoint and hence symmetric
operators. The symmetric operators involved in Cartesian
decomposition are helpful to develop the spectral radius for-

mulas and numerical radius inequalities involving Aluthge
transform [10–12].

This paper is aimed at studying the generalization of
spectral radius formulas involving generalized Aluthge
transform. Henceforward, we will give the notions to pro-
ceed with the results of this paper.

Let BðHÞ be the algebra of all bounded linear operators
on complex Hilbert spaceH. Let S =U jSj be the polar decom-
position of S ∈BðHÞ, where jSj is the square root of an oper-
ator defined as jSj = ffiffiffiffiffiffiffi

S∗S
p

and U is a partial isometry.
In [13], Aluthge introduced a transform to study the

properties of hyponormal operators that were connected
with the invariant subspace problem in operator theory. This
transform is called Aluthge transform, which is defined as

Δ1/2S = Sj j1/2U Sj j1/2, ð1Þ

and its nth iterated Aluthge transform is defined as

Δn
1/2 Sð Þ = Δ Δn−1

1/2 Sð Þ� �
,

Δ1
1/2 Sð Þ = Δ Sð Þ,∀n ∈ℕ:

ð2Þ
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Yamazaki, in [3], gave the formula of spectral radius for
bounded linear operator involving iterated Aluthge trans-
form, i.e.,

r Sð Þ = lim
n

Δn
1/2 Sð Þk k: ð3Þ

In [14], a generalization of Aluthge transform was intro-
duced that is called λ-Aluthge transform which is defined as

ΔλS = Sj jλU Sj j1−λ, λ ∈ 0, 1½ �: ð4Þ

Tam [4] gave a formula of spectral radius involving iter-
ated λ-Aluthge transform for invertible operators using uni-
tarily invariant norm, i.e.,

r Sð Þ = lim
n

Δn
λ Sð Þk k, λ ∈ 0, 1ð Þ: ð5Þ

Chabbabi and Mbekhta [12] gave various expressions for
spectral radius formulas involving λ-Aluthge transform,
iterated λ-Aluthge transform, asymptotic behavior of pow-
ers of an operator, and numerical radius. The expression of
spectral radius involving λ-Aluthge transform is given by

r Sð Þ = inf
Y∈B Hð Þ
invertible

Δλ YSY−1� ��� �� = inf
A∈B Hð Þ
selfadjoint

Δλ eASe−A
� ��� ��,

ð6Þ

and the expressions of spectral radius involving iterated
λ-Aluthge transform and the asymptotic behavior of powers
of S are given by

r Sð Þ = inf
Y∈B Hð Þ
invertible

Δn
λ YSY−1� ��� �� = inf

A∈B Hð Þ
self ‐adjoint

Δn
λ eASe−A
� ��� ��,

ð7Þ

r Sð Þ = lim
k

Δn
λ Sk
� ���� ���1/k = lim

k
Δλ Sk

� ���� ���1/k, ð8Þ

for each n ≥ 0.
The expressions of spectral radius involving iterated λ-

Aluthge transform, numerical radius, and the asymptotic
behavior of powers of S are given by

r Sð Þ = inf
Y∈B Hð Þ
invertible

w Δn
λ YSY−1� �� ��� �� = inf

A∈B Hð Þ
self‐adjoint

w Δn
λ eASe−A
� �� ��� ��,

ð9Þ

r Sð Þ = lim
k

w Δn
λ Sk
� �� ���� ���1/k = lim

k
w Δλ Sk

� �� ���� ���1/k,
ð10Þ

for each n ≥ 0. With the help of the above formulas, the
author [14] gave a characterization of normaloid operators.

In [15], Shebrawi and Bakherad introduced a new gener-
alization of Aluthge transform, called generalized Aluthge
transform. This transform is defined as

Δf ,gS = f Sj jð ÞUg Sj jð Þ, ð11Þ

where f and g both are continuous functions such that
gðxÞf ðxÞ = x, x ≥ 0. The iterated generalized Aluthge trans-
form is defined as

Δn
f ,g Sð Þ = Δ Δn−1

f ,g Sð Þ
� �

,∀n ∈ℕ: ð12Þ

In this paper, we establish the formulas of spectral radius
for operator S by assuming that kΔf ,gðSÞk ≤ kSk: These for-
mulas generalize the spectral radius formulas (6)–(10).

The paper is organized as follows. In Section 2, we give
the properties of the generalized Aluthge transform. In Sec-
tion 3, spectral radius formulas involving generalized
Aluthge transform and asymptotic behavior of powers of
the bounded operator S are given. In Section 4, we develop
spectral radius formulas of bounded linear operators involv-
ing numerical radius of generalized Aluthge transform. Fur-
thermore, some characterizations of normaloid operators
are established.

2. Preliminaries and Some Auxiliary Results

We start this section with some basic definitions and
properties of generalized Aluthge transform which will be
useful in establishing the main results of this paper. An
operator T is similar to S if there exists an invertible oper-
ator Y such that S = Y−1TY (see [16]). If rðSÞ = kSk, then
the operator is said to be normaloid. An operator S is said
to be a contraction if kSk ≤ 1. The spectral radius of an
operator S is defined as

r Sð Þ = sup λj j: λ ∈ σ Sð Þf g, ð13Þ

where σðSÞ is the spectrum of the operator S.
To prove spectral radius formulas, we recall some prop-

erties of generalized Aluthge transform.

Proposition 1 [7]. Let S ∈BðHÞ. Then, we have

(i) σðSÞ = σðΔf ,gðSÞÞ
(ii) rðSÞ = rðΔf ,gðSÞÞ

Proposition 2. Let T , S ∈BðHÞ. If T is similar to S, then

(i) σðSÞ = σðTÞ
(ii) σðΔf ,gðSÞÞ = σðΔf ,gðTÞÞ
(iii) rðΔf ,gðSÞÞ = rðΔf ,gðTÞÞ

Proof. The proofs of parts (i) and (iii) are trivial. The proof
of part (ii) follows from part (i) and Proposition 1 (i).
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Proposition 3. Let S ∈BðHÞ and f be any continuous func-
tion on σðSÞ. Then,

f U Sj jU∗ð Þ =Uf Sj jð ÞU∗, ð14Þ

for any unitary U ∈BðHÞ.

Proof. Since U∗U jSj = jSj, we have

U Sj jU∗ð Þn =U Sj jnU∗, ð15Þ

for each n ∈ℕ, which implies

P U Sj jU∗ð Þ =UP Sj jð ÞU∗, ð16Þ

for any polynomial PðtÞ. Since f is a continuous, so there
exist a sequence of polynomial fPnðtÞg∞n=1 such that Pnð0Þ
= 0 for each n ∈ℕ, and fPnðtÞg∞n=1 converges uniformly to
f ðtÞ on the interval ½0, kjTjk�. Then, from Equation (16),
we have

f U Sj jU∗ð Þ = lim
n⟶∞

Pn U Sj jU∗ð Þ = lim
n⟶∞

UPn Sj jð ÞU∗ð Þ
=U lim

n⟶∞
Pn Sj jð ÞU∗ =Uf Sj jð ÞU∗,

ð17Þ

as required.

Proposition 4. Let S,U ∈BðHÞ such that U is unitary.
Then, we have

Δf ,g USU∗ð Þ =UΔf ,g Sð ÞU∗: ð18Þ

Proof. Let S =V ∣ S ∣ be the polar decomposition of S: Then,
we have

USU∗j j =U Sj jU∗: ð19Þ

Now by using Proposition 3, we have

f USU∗j jð Þ =Uf Sj jð ÞU∗: ð20Þ

The polar decomposition of operator USU∗ is as follows:

USU∗ =UV Sj jU∗,
USU∗ = UVU∗ð Þ U Sj jU∗ð Þ,

ð21Þ

where UVU∗ is partial isometry. Therefore,

Δf ,g USU∗ð Þ = f USU∗ð Þð ÞUVU∗g USU∗ð Þð Þ
=Uf Sð Þð ÞVg Sð Þð ÞU∗ =UΔf ,g Sð ÞU∗:

ð22Þ

The second equality holds by Proposition 3 and by the
fact that U∗U = I.

Proposition 5. Let S ∈BðHÞ. Then, the sequence
fkΔn

f ,gðSÞkg∞n=1 is nonincreasing.

Proof. The proof follows from the repeated application of the
inequality

Δf ,g Sð Þ�� �� ≤ Sk k: ð23Þ

3. Formulas of Spectral Radius Involving
Generalized Aluthge Transform

In this section, we give formulas of the spectral radius by
using Rota’s theorem [16] and the properties of generalized
Aluthge transform.

Theorem 6. Let S ∈BðHÞ. Then, we have

r Sð Þ = inf
Y∈B Hð Þ
invertible

Δf ,g YSY−1� ��� �� = inf
A∈B Hð Þ
self ‐adjoint

Δf ,g eASe−A
� ��� ��:

ð24Þ

Proof. From Propositions 1 and 2, we have

r Sð Þ = r Δf ,g YSY−1� �� �
: ð25Þ

It follows that

r Sð Þ = r Δf ,g YSY−1� �� �
≤ Δf ,g YSY−1� ��� �� for invertibleY ∈B Hð Þ:

ð26Þ

Hence,

r Sð Þ ≤ inf
Y∈B Hð Þ
invertible

Δf ,g YSY−1� ��� ��:
ð27Þ

Let Y =U ∣ Y ∣ be the polar decomposition of Y : Since Y
is an invertible operator, then U is unitary and ∣Y ∣ invert-
ible. Therefore, there exists β > 0 such that σð∣Y ∣ Þ ⊆ ½β,∞Þ
. Consequently, A = ln ð∣Y ∣ Þ exists and self-adjoint; then,
we have

Yj j = eA,
Yj j−1 = e−A:

ð28Þ

Therefore,

Δf ,g YSY−1� ��� �� = Δf ,g U Yj jð ÞS U Yj jð Þ−1��� ��
= U Δf ,g Yj jS Yj j−1� �

U∗�� ��
= U Δf ,g eASe−A

� �
U∗��� ��

= Δf ,g eASe−A
� ��� ��:

ð29Þ
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The second equality holds by Proposition 4. Hence,

r Sð Þ ≤ inf
Y∈B Hð Þ
invertible

Δf ,g YSY−1� ��� �� ≤ inf
A∈B Hð Þ
self‐adjoint

Δf ,g eASe−A
� ��� ��:

ð30Þ

To prove above inequality in other direction, for an arbi-
trary ε > 0, we define an operator

Sε =
S

r Sð Þ + ε
: ð31Þ

For operator Sε, we have

r Sεð Þ = r
S

r Sð Þ + ε

� 	
= r Sð Þ
r Sð Þ + ε

< 1: ð32Þ

From [16], Theorem 2, the spectrum of operator Sε lies
in the unit disk; thus, the operator Sε is similar to contrac-
tion for which there exists an invertible operator Yε ∈Bð
HÞ such that

YεSY
−1
ε

r Sð Þ + ε

����
���� < 1, ð33Þ

and this implies that

Δf ,g eAεSe−Aε
� ��� �� ≤ YεSY

−1
ε

�� �� < r Sð Þ + ε: ð34Þ

For ε > 0, we obtain

r Sð Þ ≤ inf
Y∈B Hð Þ
invertible

Δf ,g YSY−1� ��� �� ≤ inf
A∈B Hð Þ
self‐adjoint

Δf ,g eASe−A
� ��� ��

≤ inf
Aε∈B Hð Þ
self ‐adjoint

Δf ,g eAεSe−Aε
� ��� �� ≤ inf

Yε∈B Hð Þ
invertible

YεSY
−1
ε

�� �� ≤ r Sð Þ + ε:

ð35Þ

Since ε > 0 is arbitrary, therefore

r Sð Þ = inf
Y∈B Hð Þ
invertible

Δf ,g YSY−1� ��� �� = inf
A∈B Hð Þ
self ‐adjoint

Δf ,g eASe−A
� ��� ��:

ð36Þ

The next Corollary is the direct result of Theorem 6
involving iterated generalized Aluthge transform.

Corollary 7. Let S ∈BðHÞ. Then, for each n ∈ℕ, we have

r Sð Þ = inf
Y∈B Hð Þ
invertible

Δn
f ,g YSY−1� ���� ��� = inf

A∈B Hð Þ
self ‐adjoint

Δn
f ,g eASe−A
� ���� ���:

ð37Þ

Proof. From Propositions 1 and 2, we can easily obtain

r Δn
f ,g YSY−1� �� �

= r Sð Þ,∀n ∈ℕ: ð38Þ

From above equality and by using Proposition 5, we have

r Sð Þ ≤ Δn
f ,g YSY−1� ���� ��� ≤ Δf ,g YSY−1� ��� ��, ð39Þ

for all invertible Y ∈BðHÞ: Therefore,

r Sð Þ ≤ inf
Y∈B Hð Þ
invertible

Δn
f ,g YSY−1� ���� ��� ≤ inf

A∈B Hð Þ
self‐adjoint

Δn
f ,g eASe−A
� ���� ���

≤ inf
A∈B Hð Þ
self ‐adjoint

Δf ,g eASe−A
� ��� �� = r Sð Þ:

ð40Þ

The third inequality holds by Proposition 5, and the last
equality holds by Theorem 6, which completes the proof.

The next Corollary is the direct result of Corollary 7 that
is the characterization of normaloid operators.

Corollary 8. Let S ∈BðHÞ. Then, the following assertions
are equivalent

(i) S is normaloid

(ii) kSk ≤ kYSY−1k, for invertible Y ∈BðHÞ

Proof. Assume that S is normaloid. Then,

Sk k = r YSY−1� �
≤ Δf ,g YSY−1� ��� �� ≤ YSY−1�� ��, ð41Þ

for all invertible Y ∈BðHÞ: The first equality holds by
Proposition 2. The first inequality holds because the spectral
radius is less than the operator norm, and the second
inequality holds by Proposition 5.

Assume that assertion (ii) holds. Then, we have

r Sð Þ ≤ Sk k ≤ YSY−1�� �� ≤ YεSYε−1
�� �� ≤ r Sð Þ + ε, ð42Þ

for all invertible Y ∈BðHÞ: The last inequality holds by
inequality (33) in Theorem 6. Since ε > 0 is arbitrary, hence S
is normaloid.

Corollary 9. Let S ∈BðHÞ. Then the following assertions are
equivalent.

(i) S is normaloid;

(ii) kSk ≤ kΔf ,gðYSY−1Þk for invertible Y ∈BðHÞ ;
(iii) kSk ≤ kΔn

f ,gðYSY−1Þk for invertible Y ∈BðHÞ and
every n ∈ℕ:
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Proof. (i)⇒(iii)⇒(ii). Since S is normaloid, therefore

Sk k = r Δn
f ,gYSY

−1
� �

≤ Δn
f ,g YSY−1� ���� ��� ≤ Δf ,g YSY−1� ��� ��,

ð43Þ

for all invertible Y ∈BðHÞ: The first inequality holds
because the spectral radius is less than the operator norm,
and the second inequality holds by Proposition 5. Hence,

Sk k ≤ Δf ,g YSY−1� ��� �� for invertibleY ∈B Hð Þ,

Sk k ≤ Δn
f ,g YSY−1� ���� ��� for invertibleY ∈B Hð Þ:

ð44Þ

(ii)⇒(i)
Since spectral radius is less than operator norm and by

assertion (ii), we have

r Sð Þ ≤ Sk k ≤ Δf ,g YSY−1� ��� �� ≤ Δf ,g YεSY
−1
ε

� ��� �� ≤ YεSY
−1
ε

�� �� ≤ r Sð Þ + ε,

ð45Þ

for all invertible Y ∈BðHÞ: The third inequality holds
by inequality (34) of Theorem 6. Since ε > 0 is arbitrary,
therefore S is normaloid.

Now, we will give a formula of spectral radius involving
iterated generalized Aluthge transform and asymptotic
behavior of powers of S.

Theorem 10. Let S ∈BðHÞ. Then, we have

r Sð Þ = lim
k

Δn
f ,g Sk
� ���� ���1/k,∀n ∈ℕ = lim

k
Δf ,g Sk

� ���� ���1/k: ð46Þ

Proof.

r Sð Þ = r Δn
f ,g Sð Þ

� �
≤ Δn

f ,g Sð Þ
��� ��� ≤ Δf ,g Sð Þ�� �� ≤ Sk k,∀n ∈ℕ:

ð47Þ

The first equality holds by Proposition 1, second
inequality holds by rðSÞ ≤ kSk, and third inequality holds
by Proposition 5. Thus, for kth power of an operator, we
have

r Sð Þk = r Sk
� �

= r Δn
f ,g Sk
� �� �

≤ Δn
f ,g Sk
� ���� ���

≤ Δf ,g Sk
� ���� ��� ≤ Sk

��� ���,∀n, k ∈ℕ,

r Sð Þ ≤ Δn
f ,g Sk
� ���� ���1/k ≤ Δf ,g Sk

� ���� ���1/k ≤ Sk
��� ���1/k,∀n, k ∈ℕ,

r Sð Þ ≤ lim
k

Δn
f ,g Sk
� ���� ���1/k ≤ lim

k
Δf ,g Sk

� ���� ���1/k ≤ lim
k

Sk
��� ���1/k,∀n ∈ℕ:

ð48Þ

Since

r Sð Þ = lim
k

Sk
��� ���1/k: ð49Þ

Thus,

r Sð Þ ≤ lim
k

Δn
f ,g Sk
� ���� ���1/k ≤ lim

k
Δf ,g Sk

� ���� ���1/k

≤ lim
k

Sk
��� ���1/k = r Sð Þ,∀n ∈ℕ,

ð50Þ

which completes the proof.

The next Corollary is obtain in the consequence of The-
orem 10.

Corollary 11. Let S ∈BðHÞ. Then, the following assertions
are equivalent.

(i) S is normaloid

(ii) kSkk = kΔf ,gðSkÞk, ∀k ∈ℕ

(iii) kSkk = kΔn
f ,gðSkÞk, ∀n, k ∈ℕ

Proof. (i)⇒(ii).

Sk k = lim
k

Δf ,g Sð Þk
��� ���1/k,

Sk kk = lim
k

Δf ,g Sð Þk
��� ���1/k

� 	k

,

Sk kk = Δf ,g Sð Þk
��� ���,∀k ∈ℕ:

ð51Þ

The first equality holds by assertion (i) and Theorem 10.
(i)⇒(iii)

Sk k = lim
k

Δn
f ,g Sð Þk

��� ���1/k,∀n ∈ℕ,

Sk kk = Δn
f ,g Sð Þk

��� ���,∀n, k ∈ℕ:

ð52Þ

The first equality holds by assertion (i) and Theorem 10.
(ii)⇒(i)

Sk kk = Δf ,g Sð Þk
��� ���,∀k ∈ℕ,

Sk kk
� �1/k

= Δf ,g Sð Þk
��� ���1/k,∀k ∈ℕ,

lim
k

Sk k = lim
k

Δf ,g Sð Þk
��� ���1/k,

r Sð Þ = Sk k:

ð53Þ

The last equality holds by Theorem 10.
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(iii)⇒(i)

Sk kk = Δn
f ,g Sð Þk

��� ���,∀n, k ∈ℕ,

lim
k

Sk k = lim
k

Δn
f ,g Sð Þk

��� ���1/k,∀n ∈ℕ,

Sk k = r Sð Þ:

ð54Þ

The last equality holds by Theorem 10. Hence, S is nor-
maloid.

4. Formulas of Spectral Radius Involving
Generalized Aluthge Transform and
Numerical Radius

This section gives spectral radius formulas for the bounded
linear operator in terms of numerical radius and iterated
generalized Aluthge transform. The numerical radius is
defined as

w Sð Þ = sup λj j: λ ∈W Sð Þf g, ð55Þ

where WðSÞ is the numerical range.

Theorem 12. Let S ∈BðHÞ: Then, for all n ∈ℕ, we have

r Sð Þ = inf
Y∈B Hð Þ
invertible

w Δn
f ,g YSY−1� �� �

= inf
A∈B Hð Þ
self ‐adjoint

w Δn
f ,g eASe−A
� �� �

:

ð56Þ

Proof. As we know that

r Sð Þ ≤w Sð Þ ≤ Sk k: ð57Þ

Thus, for every invertible operator Y ∈BðHÞ, we have

r Sð Þ = r Δn
f ,g YSY−1� �� �

≤w Δn
f ,g YSY−1� �� �

≤ Δn
f ,g YSY−1� ���� ���,∀n ∈ℕ:

ð58Þ

Let Y be any bounded linear invertible operator with
polar decomposition Y =U ∣ Y ∣ . Since Y is an invertible
operator, then U is unitary and ∣Y ∣ is also invertible and
positive. Thus, there exists β > 0 such that σð∣Y ∣ Þ ⊆ ½β,∞Þ.
So, A = ln ð∣Y ∣ Þ exists and self-adjoint. Thus, we have

Yj j = eA,
Yj j−1 = e−A:

ð59Þ

Therefore,

W Δn
f ,g YSY−1� �� �

= Δn
f ,g YSY−1� �

x, x
D E

= Δn
f ,g U ∣ Y ∣ð ÞS U ∣ Y ∣ð Þ−1� �

x, x
D E

= Δn
f ,g U ∣ Y ∣ð ÞS∣Y ∣ −1U∗� �

x, x
D E

= Δn
f ,g ∣Y ∣ S∣Y ∣ −1
� �

U∗x,U∗x
D E

= Δn
f ,g eASe−A
� � U∗x

U∗xk k ,
U∗x
U∗xk k


 �
· UU∗x, xh i:

ð60Þ

The second equality holds by Y =U jY j, third equality
holds because U is unitary, and fourth equality holds by
Proposition 4. Thus,

W Δn
f ,g YSY−1� �� �

⊆W Δn
f ,g eASe−A
� �� �

W UU∗ð Þ: ð61Þ

In the above equation, U is unitary. This implies that

w Δn
f ,g YSY−1� �� �

≤w Δn
f ,g eASe−A
� �� �

: ð62Þ

It follows that

r Sð Þ = r Δn
f ,gYSY

−1
� �

≤w Δn
f ,g YSY−1� �� �

, for invertibleY ∈B Hð Þ
≤w Δn

f ,g eASe−A
� �� �

, for self ‐adjointA ∈B Hð Þ
≤ Δn

f ,g eASe−A
� ���� ���, for self‐adjointA ∈B Hð Þ:

ð63Þ

For every invertible Y ∈BðHÞ, all above inequalities are
satisfied; thus, we have

r Sð Þ ≤ inf
Y∈B Hð Þ
invertible

w Δn
f ,g YSY−1� �� �

≤ inf
A∈B Hð Þ
self ‐adjoint

w Δn
f ,g eASe−A
� �� �

≤ inf
A∈B Hð Þ
self ‐adjoint

Δn
f ,g eASe−A
� ���� ��� = r Sð Þ:

ð64Þ

The last equality holds by Corollary 7, which completes
the proof.

Let A be any bounded linear operator with cartesian
decomposition

A = A + A∗

2 + A − A∗

2i : ð65Þ

In this decomposition 1/2ðA + A∗Þ is the real part and
1/2iðA − A∗Þ is the imaginary part.
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In [17], the spectrum of a bounded linear operator is
contained in the closure of the numerical range.

Theorem 13. Let S ∈BðHÞ. Then, for all n ∈ℕ and θ ∈ℝ,
we have

r Sð Þ = inf
Y∈B Hð Þ
invertible

w Re eiθ Δn
f ,g YSY−1� �� �� �� �

= inf
Y∈B Hð Þ
invertible

Re eiθ Δn
f ,g YSY−1� �� �� ���� ���: ð66Þ

Proof. Let rðSÞ ∈ σðSÞ. Then,

r Sð Þ ∈ Re σ Sð Þð Þ = Re σ Δn
f ,gYSY

−1
� �� �

, for invertible operatorY ∈B Hð Þ:

ð67Þ

Thus,

r Sð Þ ∈ Re σ Δn
f ,g YSY−1� �� �� �

⊆ Re �W Δn
f ,g YSY−1� �� �� �

= �W Re Δn
f ,g YSY−1� �� �� �

,

ð68Þ

which implies

r Sð Þ ≤w Re Δn
f ,g YSY−1� �� �� �

≤ Re Δn
f ,g YSY−1� �� ���� ��� ≤ Δn

f ,g YSY−1� ���� ���,
ð69Þ

for all invertible Y ∈BðHÞ. Thus, we have

r Sð Þ ≤ inf
Y∈B Hð Þ
invertible

w Re Δn
f ,g YSY−1� �� �� �

≤ inf
Y∈B Hð Þ
invertible

Re Δn
f ,g YSY−1� �� ���� ���

≤ inf
Y∈B Hð Þ
invertible

Δn
f ,g YSY−1� ���� ��� = r Sð Þ:

ð70Þ

The last equality holds by Corollary 7. For rðSÞ ∈ σðSÞ,
we have proved

r Sð Þ = inf
Y∈B Hð Þ
invertible

w Re Δn
f ,g YSY−1� �� �� �

= inf
Y∈B Hð Þ
invertible

Re Δn
f ,g YSY−1� �� ���� ���: ð71Þ

If S is an arbitrary operator, then there exists z ∈ σðSÞ
such that ∣z ∣ = rðSÞ. Put θ = −arg ðzÞ. Then, rðSÞ = zeiθ ∈ σð
eiθSÞ. Hence, by the first part of the proof, we conclude that

r Sð Þ = r eiθS
� �

≤ inf
Y∈B Hð Þ
invertible

w Re Δn
f ,g eiθ YSY−1� �� �� �� �

≤ inf
Y∈B Hð Þ
invertible

Re Δn
f ,g eiθ YSY−1� �� �� ���� ���

≤ inf
Y∈B Hð Þ
invertible

Δn
f ,g eiθ YSY−1� �� ���� ��� = r eiθS

� �
:

ð72Þ

The last inequality holds by Corollary 7, which com-
pletes the proof.

The next Corollary is the characterization of normaloid
operators.

Corollary 14. Let S ∈BðHÞ. Then, for each n ∈ℕ, the fol-
lowing assertions are equivalent:

(i) S is normaloid

(ii) There exists θ ∈ℝ such that for any invertible Y ∈
BðHÞ

Sk k ≤w Re Δn
f ,g eiθYSY−1
� �� �� �

ð73Þ

(iii) There exists θ ∈ℝ such that for any invertible Y ∈
BðHÞ

Sk k ≤ Re Δn
f ,g eiθYSY−1
� �� ���� ��� ð74Þ

Theorem 15. Let S ∈BðHÞ. Then, we have

r Sð Þ = lim
k
w Δn

f ,g Sk
� �� �1/k

,∀n ∈ℕ: ð75Þ

Proof. Since rðSÞ ≤wðSÞ ≤ kSk, therefore

r Sð Þk = r Sk
� �

= r Δn
f ,g Sk
� �� �

≤w Δn
f ,g Sk
� �� �

≤ Δn
f ,g Sk
� ���� ���,∀n, k ∈ℕ:

r Sð Þ ≤ w Δn
f ,g Sk
� �� �� �1/k

≤ Δn
f ,g Sk
� ���� ���1/k,∀n, k ∈ℕ: ð76Þ

7Journal of Function Spaces



By Theorem 10, we obtain

r Sð Þ ≤ lim
k

w Δn
f ,g Sk
� �� �� �1/k

≤ lim
k

Δn
f ,g Sk
� ���� ���1/k = r Sð Þ,∀n ∈ℕ,

ð77Þ

which completes the proof.
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