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In this paper, we aim to develop formulas of spectral radius for an operator S in terms of generalized Aluthge transform, numerical
radius, iterated generalized Aluthge transform, and asymptotic behavior of powers of S. These formulas generalize some of the
formulas of spectral radius existing in literature. As an application, these formulas are used to obtain several characterizations

of normaloid operators.

1. Introduction

Generally, in mathematical analysis and particularly in func-
tional analysis, the spectral analysis of operators is an essential
research topic. It is useful to study the properties of operators,
including spectrum and the spectral radius of operators (see
[1]). The spectrum of an operator is connected with an invari-
ant subspace problem on a complex Hilbert space (see [2]),
and the important property of spectrum is the expression of
spectral radius in various formulas (see [3-5]). These formulas
help to obtain several characterizations of operators, including
normaloid and spectraloid operators (see [6]). Since the
advent of various transformations of bounded linear opera-
tors, including Aluthge transform and its generalizations, the
study of spectral properties of operators has become the center
point for many researchers (see [7-9]).

An operator can be decomposed into two Hermitian
operators being its real and imaginary parts, and this decom-
position is known as Cartesian decomposition. Clearly, Her-
mitian operators are self-adjoint and hence symmetric
operators. The symmetric operators involved in Cartesian
decomposition are helpful to develop the spectral radius for-

mulas and numerical radius inequalities involving Aluthge
transform [10-12].

This paper is aimed at studying the generalization of
spectral radius formulas involving generalized Aluthge
transform. Henceforward, we will give the notions to pro-
ceed with the results of this paper.

Let B(F) be the algebra of all bounded linear operators
on complex Hilbert space H. Let S = U|S| be the polar decom-
position of S € B(F'), where S| is the square root of an oper-
ator defined as |S| = v/S*S and U is a partial isometry.

In [13], Aluthge introduced a transform to study the
properties of hyponormal operators that were connected
with the invariant subspace problem in operator theory. This
transform is called Aluthge transform, which is defined as

ApS= |S|1/2U|S‘U2’ (1)

and its nth iterated Aluthge transform is defined as
An(S) = A(A?le (S))’
A1, (S)=A(S)VneN.
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Yamazaki, in [3], gave the formula of spectral radius for
bounded linear operator involving iterated Aluthge trans-
form, ie.,

r(S) =lim[|4;,(S)]- 3)

In [14], a generalization of Aluthge transform was intro-
duced that is called A-Aluthge transform which is defined as

A,8=S'UIS) T A e [0,1]. (4)

Tam [4] gave a formula of spectral radius involving iter-
ated A-Aluthge transform for invertible operators using uni-
tarily invariant norm, i.e.,

r($) =lim [ 43(S)]|, L € (0,1). (5)

Chabbabi and Mbekhta [12] gave various expressions for
spectral radius formulas involving A-Aluthge transform,
iterated A-Aluthge transform, asymptotic behavior of pow-
ers of an operator, and numerical radius. The expression of
spectral radius involving A-Aluthge transform is given by

S)=inf _[|[A(YSY)||= inf [|4(efSe )],
9=yt [0S = e e
invertible selfadjoint

(6)

and the expressions of spectral radius involving iterated
A-Aluthge transform and the asymptotic behavior of powers
of S are given by

S)= inf ||A}(YSYY)||=  inf AL (eSe M|,
= ISOST))=  mtagetse)
invertible self-adjoint
(7)
L X I/k_ . k 1/k
r(s) =lim|| 41 ()| =timl |4y (1) | @

for each n> 0.

The expressions of spectral radius involving iterated A-
Aluthge transform, numerical radius, and the asymptotic
behavior of powers of S are given by

S)= _ inf A (Ysy h))||=  inf Ay (e*se™)) ],
9=y nt ST )= e (s )
invertible self-adjoint

©)

1/k

>

) =t ()| < (s ()
(10)

for each n > 0. With the help of the above formulas, the
author [14] gave a characterization of normaloid operators.

In [15], Shebrawi and Bakherad introduced a new gener-
alization of Aluthge transform, called generalized Aluthge
transform. This transform is defined as
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ArS=£(ISU4(IS)), (11)

where f and g both are continuous functions such that
g(x)f(x) =x,x>0. The iterated generalized Aluthge trans-
form is defined as

AL (S) = A(A;j; (3)),\m eN. (12)

In this paper, we establish the formulas of spectral radius
for operator S by assuming that [|A; ,(S)|| < ||S||. These for-
mulas generalize the spectral radius formulas (6)-(10).

The paper is organized as follows. In Section 2, we give
the properties of the generalized Aluthge transform. In Sec-
tion 3, spectral radius formulas involving generalized
Aluthge transform and asymptotic behavior of powers of
the bounded operator S are given. In Section 4, we develop
spectral radius formulas of bounded linear operators involv-
ing numerical radius of generalized Aluthge transform. Fur-
thermore, some characterizations of normaloid operators
are established.

2. Preliminaries and Some Auxiliary Results

We start this section with some basic definitions and
properties of generalized Aluthge transform which will be
useful in establishing the main results of this paper. An
operator T is similar to S if there exists an invertible oper-
ator Y such that S= Y !'TY (see [16]). If (S) =S|, then
the operator is said to be normaloid. An operator S is said
to be a contraction if ||S|| < 1. The spectral radius of an
operator S is defined as

r(S)=sup {|Al: Leo(S)}, (13)

where o(S) is the spectrum of the operator S.
To prove spectral radius formulas, we recall some prop-
erties of generalized Aluthge transform.

Proposition 1 [7]. Let S € B(H). Then, we have

(i) 0(S) =0 (41 4(5))
(ii) 7(S) = r(A54(S))

Proposition 2. Let T,S € B(F). If T is similar to S, then
(i) o(S) =o(T)
(ii) 0(A74(8)) =0(4s,(T))
(iii) 7(A74(8)) =7(As4(T))

Proof. The proofs of parts (i) and (iii) are trivial. The proof
of part (ii) follows from part (i) and Proposition 1 (i). [
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Proposition 3. Let S € B(#’) and f be any continuous func-
tion on o(S). Then,

fUISIUT) = Uf(IShu-, (14)
for any unitary U € B().
Proof. Since U*U|S| =S|, we have
(Uls|u™)" = ujs|"ur, (15)
for each n € IN, which implies
P(UISIU") = UP(IS|) U, (16)

for any polynomial P(¢). Since f is a continuous, so there
exist a sequence of polynomial {P,(t)} >, such that P,(0)
=0 for each n €N, and {P, ()}, converges uniformly to
f(t) on the interval [0,]||T|||]. Then, from Equation (16),
we have

f(UIS|U") = lim P, (UIS|U*)= lim (UP,(S)U")
= U lim P,(IS)U° = Uf(IS)U",
(17)
as required. O

Proposition 4. Let S,U € B(F) such that U is unitary.
Then, we have

A (USU*) = UA; ((S)U". (18)

Proof. Let S= V| S| be the polar decomposition of S. Then,
we have

|USU*| =U|S|U". (19)

Now by using Proposition 3, we have
F(USU* ) = UF(IS))U". (20)
The polar decomposition of operator USU* is as follows:

USU* = UV|S|U",

(21)
USU* = (UVU*)(U|S|U"),
where UVU™ is partial isometry. Therefore,
41 (USU") = (USU)UVUg(USU)

= Uf((S))Va((S))U" = UA;,(S)U".

The second equality holds by Proposition 3 and by the
fact that U"U =1. O

Proposition 5. Let S€ B(#).
{1147 ,(S)II}72, is nonincreasing.

Then, the sequence

Proof. The proof follows from the repeated application of the
inequality

1476 < IS]- (23)
O

3. Formulas of Spectral Radius Involving
Generalized Aluthge Transform

In this section, we give formulas of the spectral radius by
using Rota’s theorem [16] and the properties of generalized
Aluthge transform.

Theorem 6. Let S € B(H). Then, we have

S)= inf ||A;,(YSYT))|[=  inf As g (e*se™) ||
)= nt s ST= | e ag (s )|
invertible self-adjoint
(24)
Proof. From Propositions 1 and 2, we have
r(8)=r(Ap,(YSY™)). (25)

It follows that

r(S) = r(Af’g(YSY'l)) < HAf,g(YSY'l) H for invertible Y € B(%).

(26)
Hence,
S)<  inf Ay (YSY Y.
r ) Yeé}(%) || f,g( )H (27)
invertible

Let Y=U| Y| be the polar decomposition of Y. Since Y
is an invertible operator, then U is unitary and |Y | invert-
ible. Therefore, there exists 5> 0 such that o(|Y | ) € [5,00)
. Consequently, A=In (|]Y|) exists and self-adjoint; then,
we have

|Y|=e,
(28)
Y[ =
Therefore,
456 (YY) || = [| Ao (UIYS(UIY) )]
=||lu(a, |Y|S|YI"™\U*
H (f>g| H ‘ ) (29)

=[[U(4y4(e"se)U"
= [[47(e"se )]




The second equality holds by Proposition 4. Hence,

S)y< inf  ||A; (YSY )| inf As o (e*Se™)|.
RN S [E I S
invertible self-adjoint

(30)

To prove above inequality in other direction, for an arbi-
trary € > 0, we define an operator

(31)

For operator §,, we have

(S \__rS
(Se) = r(r(S) + s) S r(S)te <t (32)

From [16], Theorem 2, the spectrum of operator S, lies
in the unit disk; thus, the operator S, is similar to contrac-
tion for which there exists an invertible operator Y, € %(
) such that

Y, SY;!
r(S) +e

<1, (33)

and this implies that

[ (e"eSe™)

| <||YSY M| <r(S)+e.  (34)

For £ > 0, we obtain

< inf |4y, (YSY )]s inf As g (e*Se™
5 a5 = s
invertible self-adjoint

< inf A (e%Se)|| < inf
e 1474 (e Se) | v, o

) [y SY | <r(S) +e.
self-adjoint .

invertible

(35)

Since € > 0 is arbitrary, therefore

S)= _inf ||A;,(YSY)||=  inf As (e85
R AN P T I S
invertible self-adjoint
(36)
O

The next Corollary is the direct result of Theorem 6
involving iterated generalized Aluthge transform.

Corollary 7. Let S€ B(). Then, for each n € N, we have

/(S)= inf ‘A” Ysy! H: inf ‘A” eAse H
©) YeRB(#) ol ) ACB() ol )
invertible self-adjoint

(37)
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Proof. From Propositions 1 and 2, we can easily obtain
r(474(¥sY)) =r(S)¥ne. (38)
From above equality and by using Proposition 5, we have

A 4(YSY™) . (39)

r(S) < ]

<A (vsy)

for all invertible Y € (). Therefore,

. n —1 . n —A
r(s) < Yeé}f%)’Aﬁg(YSY )||< Aeé}g%) |47 5e*se) |
invertible self-adjoint
< inf A, (e*Se™) || =7(S).
aelily Iarale'se =0

self-adjoint
(40)

The third inequality holds by Proposition 5, and the last
equality holds by Theorem 6, which completes the proof. [

The next Corollary is the direct result of Corollary 7 that
is the characterization of normaloid operators.

Corollary 8. Let S€ B(H). Then, the following assertions
are equivalent

(i) S is normaloid

(ii) ||S|| < || YSY Y|, for invertible Y € B()

Proof. Assume that S is normaloid. Then,

I811=r(sY™) < g, (YY) < [[ysy, - (a)

for all invertible Y € (). The first equality holds by
Proposition 2. The first inequality holds because the spectral
radius is less than the operator norm, and the second
inequality holds by Proposition 5.

Assume that assertion (ii) holds. Then, we have

r(S) <[] < || YSY | <||YeSYe || <r(S) +e  (42)

for all invertible Y € B(#’). The last inequality holds by
inequality (33) in Theorem 6. Since € > 0 is arbitrary, hence S
is normaloid. O

Corollary 9. Let S € B(H). Then the following assertions are
equivalent.

(i) S is normaloid;
(ii) ||S|| < [|4Af,,(YSY™')]| for invertible Y € B(X) ;

(iii) ||S]| < ||A}"g(YSY_1)H for invertible Y € B(H) and
every n € IN.
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Proof. (1)=(iii)=(ii). Since S is normaloid, therefore

ISl =r(a7,vs7") < ‘

A},g(YSY—l)

| <A (vsy™)

>

(43)

for all invertible Y € B(). The first inequality holds
because the spectral radius is less than the operator norm,
and the second inequality holds by Proposition 5. Hence,

18] < | Af,4 (YSY™") || for invertible Y € B(F),
(44)

NE ’ An(vsy) H for invertible Y € %(%).
(i)=()
Since spectral radius is less than operator norm and by
assertion (ii), we have

r(S) < [IS|| < ||Arg (YSY )| < |44 (YSY) || < [|YeSYL | <7(S) +&
(45)
for all invertible Y € B(#). The third inequality holds

by inequality (34) of Theorem 6. Since € >0 is arbitrary,
therefore S is normaloid. O

Now, we will give a formula of spectral radius involving
iterated generalized Aluthge transform and asymptotic

behavior of powers of S.

Theorem 10. Let S € B(H'). Then, we have

r(s) =1lim| |47, (") H”k,‘v’n eN=lima;,(s") H”k. (46)

Proof.
() =r(474(9)) = |[474(9)]| < [|474(S)]| < S| ¥m e .
(47)
The first equality holds by Proposition 1, second

inequality holds by r(S) <||S||, and third inequality holds
by Proposition 5. Thus, for kth power of an operator, we

have
()" =r(5") =r(45,(5%) <[5 (")
<||azy (81)]| < || ke .
r(s) < ‘ 274(") " HAM () H“k < Hs"Hl/k,\m, keN,

) 0 (R [VE A NYE okl VE
r(S)Sh}{nHAf,g<S)H Sh}{nHAf,g(S>H Sh}{nHS H ¥neN.

(48)

5
Since
LI 17K
r(S) = lillngS H . (49)
Thus,
] NI NIL
r(S) Sh]r(n) Af, (S )H ShllanAf’g (S )
Uk (50)
< li]r(nHSkH =r(S),VneN,
which completes the proof. O

The next Corollary is obtain in the consequence of The-
orem 10.

Corollary 11. Let S€ B(I). Then, the following assertions
are equivalent.

(i) S is normaloid
(ii) [IS]| = [| A7, ($)]], Vk € N

(iii) ||S|* = 1|4} ,(S)|, Vn, k € N

Proof. (1)=(ii).

1/k

>

1/k>k, (51)

’,Vk eNN.

. k
IS/ =1im 47,4 (5)

1514 = (v (5

k k
ISI = [ 4r(5)

The first equality holds by assertion (i) and Theorem 10.
()= (iii)

1/k
I]| = likm’ A;’g(S)kH vneN,

(52)

||S||k=‘ i keN.

A’;)g(S)k

The first equality holds by assertion (i) and Theorem 10.
(i)=(i)

k k
81 = [ 4rq(S)

’,Vk €N,
() oo e,

lim ]| = lim||2, (5]
im|| ]| = lim] |4, ()

r(S)=|SII-

The last equality holds by Theorem 10.
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(ii))=(i)
S|/ = ‘ s)k ’,\m, keN,
S)"H”k,\m €N, (54)
1511 =7(5)-
The last equality holds by Theorem 10. Hence, S is nor-
maloid. O

4. Formulas of Spectral Radius Involving
Generalized Aluthge Transform and
Numerical Radius

This section gives spectral radius formulas for the bounded
linear operator in terms of numerical radius and iterated

generalized Aluthge transform. The numerical radius is
defined as

w(S) = sup {|A: A e W(S)}, (55)

where W(S) is the numerical range.

Theorem 12. Let S € B(H). Then, for all n € N, we have

_ . n —1 _ . n Ag —A
r(S) = Yegg}g%)w<Af’g(YSY )) = Aelgrglf%) w<Af’g(e Se ))
invertible self-adjoint
(56)
Proof. As we know that
r(8) <w(S) < ||S]|- (57)

Thus, for every invertible operator Y € (%), we have

r(8)=r(4,(¥sY)) sw(ag,(vsy™))

<|a,(rsy)]

Let Y be any bounded linear invertible operator with
polar decomposition Y=U|Y|. Since Y is an invertible
operator, then U is unitary and |Y | is also invertible and
positive. Thus, there exists 5> 0 such that o(|Y'|) € [5,00).
So, A=In (|Y|) exists and self-adjoint. Thus, we have

(58)

Y]=

(59)
Y1 =

Journal of Function Spaces

Therefore,
W(Af (YS! ) A" (YSY >

(UIYNSUIY ) )nx)

1.9
A%

(4
(%
(4
(4

19

(
((

4, (UIYDSIY 17U ) x)
(

= (A, (1Y ISIY 1)U %, U'x >
Ux  U*

= (sety o, >-<UU*x,x>.
\U x| U]

(60)
The second equality holds by Y = U|Y], third equality

holds because U is unitary, and fourth equality holds by
Proposition 4. Thus,

n -1 n —A *
W(a;,(YSY)) cw(ap,('se ) ) w(uu).  (61)
In the above equation, U is unitary. This implies that

n -1 n Ag —A
w(a,(YsY ")) <w(ap,(e'se?)).  (62)
It follows that

r(S) = r(A})gYSY*) <w (A;g (Ysy-1)>, for invertible Y € B(%)
< w(AJ’Z,g (eASe’A)> ,for self-adjoint A € B()

<||A"_(etSe™) ||, for self-adjoint A € B(F).
, (%)

(63)

For every invertible Y € %(
satisfied; thus, we have

), all above inequalities are

r(S) < inf
YeRB(H)

invertible
inf w(A? (erSe
AcB(H) (4.('57)
self-adjoint
inf ‘
AeRB(H)
self-adjoint

w(4y,(vsy™))

IN

(64)

IN

7 (eASe’A) H =r(S).

The last equality holds by Corollary 7, which completes
the proof. O

Let A be any bounded linear operator with cartesian
decomposition

A+A" A-A"

A= + -
2 2i

(65)

In this decomposition 1/2(A + A*) is the real part and
1/2i(A — A*) is the imaginary part.
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In [17], the spectrum of a bounded linear operator is
contained in the closure of the numerical range.

Theorem 13. Let S € B(H). Then, for all n € N and 0 € R,
we have

_ . i0 n —1
r(S) = Yeggﬁ%)w<Re (¢ (47(vs7))))
invertible (66)
= inf
YeRB(H)
invertible

HRe (eie (A;,g(YSY’I)»H.

Proof. Let r(S) € 0(S). Then,

r(S) €Re (0(S)) =Re <0 (A;)gYSY’l > ) , for invertible operator Y € B (7).

(67)

Thus,

r(S) € Re (047, (¥SY™))) cRe (W(4f,(vsY™)))

= (Re (47, (vsY™))),

(68)
which implies
r(8) <w(Re (47,(vsY™))) <|Re (47, (vsy™))|| < ar, (vsy)|.
(69)
for all invertible Y € B(%’). Thus, we have
)= %}?%) w(Re (47,(vsY™)))
invertible
< Yegg}f%) |Re (a7,(¥sy))| )
invertible
< YG%}{%) 475 (s | =7(9).
invertible

The last equality holds by Corollary 7. For r(S) € o(S),
we have proved

)= Ye%}f%)

invertible

YG%}?%) [Re (a74(¥sy)) -

invertible

w(Re (47,(vs77)))
(1)

If S is an arbitrary operator, then there exists z € o(S)
such that |z | = r(S). Put 6 = —arg (z). Then, (S) = ze? € o(
¢?S). Hence, by the first part of the proof, we conclude that

r(8)=r(e"s) < v %}{%) w(Re (47, (e°(vs17))))

invertible

Ye%}{%) HRe (A?’g (ei9 (YSY_I)D H

invertible

< inf ’
YeRB(H)
invertible

IN

A

23 ((vsr))|| = ().

(72)

The last inequality holds by Corollary 7, which com-
pletes the proof. O

The next Corollary is the characterization of normaloid
operators.

Corollary 14. Let S € B(H). Then, for each n € N, the fol-
lowing assertions are equivalent:

(i) S is normaloid

(ii) There exists 0 € R such that for any invertible Y €
B(X)

NE w(Re (A?,g (el@ysrl))) (73)

(iii) There exists 0 € R such that for any invertible Y €
RB(X)

IS < HRe (A;’g (e""YSY-I)) H (74)

Theorem 15. Let S € B(H). Then, we have
s) =timw (a7 ()" wneN 75
r( )—1kmw( f)g( )) VneN. (75)

Proof. Since r(S) <w(S) < ||S]|, therefore

() =r(s) =r(a1, () <w(ag,(s9))

< ‘ 23 (8) | W ke.

" K 1/k
A (s )H v, keN. (76)

s (o(a(s)" <




By Theorem 10, we obtain

r(s) <lim (w(47,(5"))) " tim|[a7, (3" ") wneN,

(77)

which completes the proof. O
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