
Research Article
Extragradient Methods for Solving Split Feasibility Problem and
General Equilibrium Problem and Resolvent Operators in
Banach Spaces

Mostafa Ghadampour

Department of Mathematics, Payame Noor University, P. O. Box 19395-4697, Tehran, Iran

Correspondence should be addressed to Mostafa Ghadampour; m.ghadampour@gmail.com

Received 2 May 2022; Revised 28 June 2022; Accepted 1 July 2022; Published 18 July 2022

Academic Editor: Giovanni Di Fratta

Copyright © 2022 Mostafa Ghadampour. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, we introduce a new extragradient algorithm by using generalized metric projection. We prove a strong convergence
theorem for finding a common element of the solution set of split feasibility problem and the set of fixed points of relatively
nonexpansive mapping and a finite family of resolvent operator and the set of solutions of an equilibrium problem.

1. Introduction

Let C be a nonempty closed convex subset of a real Banach
space X with norm k:k and X∗ be the dual of X. We consider
the following variational inequality problem (VI), which
consists in finding a point x ∈ C such that

x∗, y − xh i ≥ 0 ∀y ∈ C, ∀x∗ ∈ Ax, ð1Þ

where A : C⟶ 2X∗
is a mapping and h:, :i denotes the dual-

ity pairing. The solution set of the variational inequality
problem is denoted by VIðC, AÞ.

The operator A : X ⟶ 2X∗
is called

(i) Monotone if

x − y, x∗ − y∗h i ≥ 0 ∀x, y ∈ X, ∀x∗ ∈ Ax, y∗ ∈ Ay: ð2Þ

(ii) α-inverse strongly monotone if there exists a con-
stant α > 0 such that

x − y, x∗ − y∗h i ≥ α x∗ − y∗k k2, ∀x, y ∈ X, ∀x∗ ∈ Ax, y∗ ∈ Ay:

ð3Þ

(iii) Demiclosed if for all fxng ⊂ X with xn ⇀ x in X,
and yn ∈ Axn with yn ⟶ y in X∗, we have x ∈ X
and y ∈ Ax

A monotone mapping B is said to be maximal if its graph
GðBÞ = fðx, BxÞ: x ∈DðBÞg is not properly contained in the
graph of any other monotone mapping. Obviously, the
monotone mapping B is maximal if and only if for ðx, x∗Þ
∈ X × X∗, hx − y, x∗ − y∗i ≥ 0 for all ðy, y∗Þ ∈GðBÞ, then it
is implied that x∗ ∈ Bx.

Assume that A : C⟶ 2X∗
is a nonlinear mapping and

f : C × C⟶ℝ is a bifunction. The equilibrium problem
(EP) is as follows: find x ∈ C such that

f x, yð Þ + Ax, y − xh i ≥ 0, ∀ y ∈ C: ð4Þ

The solution set of (4) is denoted by EPð f Þ. The equilib-
rium problem is very general because it includes many well-
known problems such as variational inequality problems
and saddle point problems (see [1–4]). Several methods have
been proposed to solve the equilibrium problem in Hilbert
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space (see [5]), and some authors obtained weak and strong
convergence algorithms for finding a common element of
the set of solutions of an equilibrium problem and the
set of fixed points of a nonexpansive mapping in a Hilbert
space (see [6–9]). Then, the authors proved the strong
convergence of the algorithms in a uniformly convex and
uniformly smooth Banach space (see [10]).

Suppose that C and D are nonempty, closed, and convex
subsets of real Banach spaces X1 and X2, respectively. The
split feasibility problem (SFP) is to find a point

x ∈ C such that x ∈ A−1D, ð5Þ

which A : X1 ⟶ X2 is a bounded linear operator. The solu-
tion set of (5) is denoted by Ω.

In 1994, the split feasibility problem was first studied by
Censor and Elfving [11] in finite dimensional Hilbert spaces.
In solving (SFP), Schöpfer et al. [12] proposed the next algo-
rithm in p-uniformly convex real Banach spaces: x1 ∈ X1 is
chosen arbitrarily and for n ≥ 1,

xn+1 =ΠC J
∗
X1

JX1
xn − tnA

∗ JX2
Axn − PDAxnð Þ� �

, ð6Þ

where J is the duality mapping, ΠC denotes the Bregman
projection, A is a bounded linear operator, and A∗ is the
adjoint of A. Also, they have proven the generated sequence
fxng by algorithm (6) is weakly convergent under suitable
conditions. The split feasibility problems were studied exten-
sively by many authors [13, 14].

In this paper, motivated by Schöpfer et al. [12], we pres-
ent a new hybrid algorithm using the inverse strongly mono-
tone operation and a finite family of resolvent operator.
Then, we show that our generated sequence is strongly con-
verges to a common point, the set of solution set of split fea-
sibility problem, and the fixed point of relatively
nonexpansive mapping and the fixed point of resolvent
operator.

2. Preliminaries

Let X be a real smooth Banach space with norm k:k and let
X∗ be the dual space of X. We denote the strong conver-
gence and the weak convergence fxng to x in X by xn ⟶
x and xn ⇀ x, respectively. A function δ : ½0, 2�⟶ ½0, 1� is
said to be the modulus of convexity of X as follows:

δ εð Þ = inf 1 − x + yk k
2 : xk k ≤ 1, yk k ≤ 1, x − yk k ≥ ϵ

� �
,

ð7Þ

for every ε ∈ ½0, 2�. A Banach space X is said to be uniformly
convex if and only if δðεÞ > 0 for all ε > 0. It is known that a
uniformly convex Banach space has the Kadec-Klee prop-
erty, that is, xn ⇀ u and kxnk⟶ kuk imply that xn ⟶ u
(see [15]). Let p be a fixed real number with p ≥ 2. A Banach
space X is called p-uniformly convex [16], if there exists a
constant c > 0 such that δ ≥ cϵp for all ϵ ∈ ½0, 2�. Let SðEÞ =
fx ∈ X : kxk = 1g. A Banach space X is said to be smooth if

for all x ∈ SðXÞ, there exists a unique functional jx ∈ X∗ such
that hx, jxi = kxk and kjxk = 1 (see [17]).

The norm of X is said to be Gâteaux differentiable if for
all x, y ∈ SðXÞ, the limit

lim
t⟶0

x + tyk k − xk k
t

, ð8Þ

exists. In this case, X is said to be smooth, and X is called
uniformly smooth if the limit (8) is attained uniformly for
all x, y ∈ SðXÞ [18]. If a Banach space X is uniformly convex,
then X is reflexive and strictly convex, and X∗ is uniformly
smooth [17]. The duality mapping JpX on X is defined by

JpX xð Þ = f ∈ X∗ : x, fh i = xk kp, fk k = xk kp−1� �
, ð9Þ

for every x ∈ X. If X is a p-uniformly convex and uniformly
smooth, then JpX is single valued, one-to-one and satisfies

JpX = ðJ∗XÞ−1 = ðJqXÞ−1, where J∗X = JqX is the duality mapping
of X (see [19]). If p = 2, then JX = J2 = J is the normalized
duality mapping. It is well known that if X is a reflexive,
strictly convex, and smooth Banach space and J∗X : X∗ ⟶
2X is the duality mapping on X∗, then J−1X = J∗X . If X is a uni-
formly smooth and uniformly convex Banach space, then JX
is uniformly norm to norm continuous on bounded sets of X
, and J−1X = J∗X is also uniformly norm to norm continuous on
bounded sets of X∗. Let X be a smooth Banach space and let
JX be the duality mapping on X. The function ϕ : X × X
⟶ℝ is defined by

ϕ x, yð Þ = xk k2 − 2 x, JXyh i + yk k2, ∀x, y ∈ X: ð10Þ

Clearly, from (10), we can conclude that

xk k − yk kð Þ2 ≤ ϕ x, yð Þ ≤ xk k + yk kð Þ2: ð11Þ

If X is a reflexive, strictly convex, and smooth Banach
space, then for all x, y ∈ X

ϕ x, yð Þ = 0⇔ x = y: ð12Þ

Also, it is clear from the definition of the function ϕ that
the following condition holds for all x, y ∈ X,

ϕ x, yð Þ = x, JXx − JXyh i + y − x, JXyh i
≤ xk k JXx − JXyk k + y − xk k yk k: ð13Þ

Now, the function V : X × X∗ ⟶ℝ is defined as
follows:

V x, x∗ð Þ = xk k2 − 2 x, x∗h i + x∗k k2, ð14Þ

for all x ∈ X and x∗ ∈ X∗. Moreover, Vðx, x∗Þ = ϕðx, J−1X x∗Þ
for all x ∈ X and x∗ ∈ X∗. If X is a reflexive strictly convex
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and smooth Banach space with X∗ as its dual, then

V x, x∗ð Þ + 2 J−1X x∗ − x, y∗
� 	

≤V x, x∗ + y∗ð Þ, ð15Þ

for all x ∈ X and all x∗, y∗ ∈ X∗ [20].
An operator A : C⟶ X∗ is hemicontinuous at x0 ∈ C, if

for any sequence fxng converging to x0 along a line implies
that the sequence fAxng is weakly convergent to Ax0, i.e.,
Axn = Aðx0 + tnxÞ⇀ Ax0 as tn ⟶ 0 for all x ∈ C.

The generalized projection ΠC : X⟶ C is a mapping
that assigns to an arbitrary point x ∈ X, the minimum point
of the functional ϕðy, xÞ; that is, ΠCx = x0, where x0 is the
solution of the minimization problem

ϕ x0, xð Þ =min
y∈C

ϕ y, xð Þ: ð16Þ

The existence and uniqueness of the operatorΠC follows
from the properties of the functional ϕðx, yÞ and strict
monotonicity of the mapping J [21]. Suppose that C is a
nonempty closed convex subset of X and T is a self mapping
on C. We denote the set of fixed points of T by FðTÞ, that is
FðTÞ = fx ∈ C : x ∈ Txg. A point p ∈ C is called an asymptot-
ically fixed point of T if C contains a sequence fxng which
converges weakly to p such that Txn − xn ⟶ 0 [17]. The
set of asymptotical fixed points of T will be denoted by F̂ð
TÞ. A mapping T from C into itself is said to be relatively
nonexpansive if F̂ðTÞ = FðTÞ and ϕðp, TxÞ ≤ ϕðp, xÞ for all
x ∈ C and p ∈ FðTÞ. The asymptotic behavior of a relatively
nonexpansive mapping was studied in [22, 23].

We need the following lemmas for proving our main
results.

Lemma 1. (see [24]). Let X be a smooth and uniformly con-
vex Banach space and let fxng and fyng be two sequences of
X. If ϕðxn, ynÞ⟶ 0 and either fxng or fyng is bounded, then
xn − yn ⟶ 0.

Lemma 2. (see [21]). Let C be a nonempty closed convex sub-
set of a smooth, strictly convex, and reflexive Banach space X
and let y ∈ X. Then,

ϕ x,ΠCyð Þ + ϕ ΠCy, yð Þ ≤ ϕ x, yð Þ, ∀x ∈ C: ð17Þ

Lemma 3. (see [21]). Let C be a nonempty closed convex sub-
set of a smooth, strictly convex, and reflexive Banach space X,
let x ∈ X, and let z ∈ C. Then,

z =ΠCx⇔ y − z, JXx − JXzh i ≤ 0, for all y ∈ C: ð18Þ

Lemma 4. (see [25]). Let X be a 2-uniformly convex and
smooth Banach space. Then, for all x, y ∈ X, we have that

x − yk k ≤ 2
c2

JXx − JXyk k, ð19Þ

where 1/cð0 ≤ c ≤ 1Þ is the 2-uniformly convex constant of X.

Lemma 5. (see [25]). Let X be a uniformly convex Banach
space and r > 0. Then, there exists a continuous strictly
increasing convex function g : ½0, 2r�⟶ ½0,∞Þ such that
gð0Þ = 0 and

tx + 1 − tð Þyk k2 ≤ t xk k2 + 1 − tð Þ yk k2 − t 1 − tð Þg x − yk kð Þ,
ð20Þ

for all x, y ∈ Brð0Þ = fz ∈ X : kzk ≤ rg and t ∈ ½0, 1�.

Lemma 6. (see [24]). Let X be a uniformly convex Banach
space and r > 0. Then, there exists a continuous strictly
increasing convex function g : ½0, 2r�⟶ ½0,∞Þ such that
gð0Þ = 0 and

g x − yk kð Þ ≤ ϕ x, yð Þ, ð21Þ

for all x, y ∈ Brð0Þ = fz ∈ X : kzk ≤ rg.

Lemma 7. (see [25]). Let x, y ∈ X. If X is p-uniformly smooth,
then there is a c > 0 so that

x − yk kp ≤ xk kp − p y, JpX xð Þ� 	
+ c yk kp: ð22Þ

Throughout this paper, we assume that f : C × C⟶ℝ
is a bifunction satisfying the following conditions

(A1) f ðx, xÞ = 0 for all x ∈ C
(A2) f is monotone, i.e., f ðx, yÞ + f ðy, xÞ ≤ 0, for all x, y ∈ C
(A3) limt↓0 f ðtz + ð1 − tÞx, yÞ ≤ f ðx, yÞ, for all x, y, z ∈ C
(A4) For each x ∈ C, y↦ f ðx, yÞ is convex and lower

semicontinuous.

Lemma 8. (see [26]). Let C be a nonempty closed convex sub-
set of a smooth, strictly convex and reflexive Banach space X.
Let A : C⟶ X∗ be an α-inverse-strongly monotone operator
and f be a bifunction from C × C to ℝ satisfying ðA1Þ − ðA4Þ.
Then, for all r > 0 the following hold

(i) For x ∈ X, there exists u ∈ C such that

f u, xð Þ + Au, y − uh i + 1
r
y − u, JXu − JXxh i ≥ 0, ∀y ∈ C,

ð23Þ

(ii) If X is additionally uniformly smooth and Kr : X
⟶ C is defined as

Kr xð Þ = u ∈ C : f u, yð Þ + Au, y − uh i + 1
r
y − u, JXu − JXxh i

�

≥ 0, ∀y ∈ Cg,
ð24Þ

then, the following conditions hold:
Kr is single-valued
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Kr is firmly nonexpansive, i.e., for all x, y ∈ X,

Krx − Kry, JXKrx − JXKryh i ≤ Krx − Kry, JXx − JXyh i,
F Krð Þ = F̂ Krð Þ = EP fð Þ:

ð25Þ

EP is a closed convex subset of C.

ϕ p, Krxð Þ + ϕ Krx, xð Þ ≤ ϕ p, xð Þ, ∀ p ∈ F Krð Þ: ð26Þ

Definition 9.
Let X be a real smooth and uniformly convex Banach

space and let M : X ⟶ 2X∗
be a maximal monotone opera-

tor. For all ι > 0, define the operator QM
ι : X ⟶ X by QM

ι

= ðJX + ιMÞ−1 JXx for all x ∈ X.

Lemma 10. (see [18]). Let X be a real smooth and uniformly
convex Banach space, and let M : X⟶ 2X

∗
be a maximal

monotone operator. Then,M−10 is a closed and convex subset
of X, and the graph GðMÞ of M is demiclosed.

Lemma 11. Let X be a real reflexive, strictly convex, and let
smooth Banach space and M : X⟶ 2X

∗
be a maximal

monotone operator with M−10 ≠∅. Then, for all x ∈ X, y ∈
M−10 and ι > 0, then ϕðy,QM

ι xÞ + ϕðQM
ι x, xÞ ≤ ϕðy, xÞ.

3. Main Results

In this section, we introduce our new extragradient
algorithm.

Theorem 12. Let X1 and X2 are real 2-uniformly convex and
uniformly smooth Banach spaces. Suppose that C and D are
nonempty closed and convex subsets of X1 and X2, respec-
tively. Suppose that g is a bifunction from C × C to ℝ which
satisfies the conditions A1-A4, A : X1 ⟶ X2 is a bounded
linear operator and A∗ : X∗

2 ⟶ X∗
1 is the adjoint of A. Let

Mi : X1 ⟶ 2X
∗
1 be a maximal monotone operator with

Mi
−10 ≠∅ for all i = 1, 2,⋯, k. Assume that B : C⟶ X∗ is

an α-inverse strongly monotone operator, and f is a relatively
nonexpansive mappings from C into itself and Γ =Ω ∩ Fð f Þ
∩ ð ∩ k

i=1FðQMi
ι ÞÞ ∩ EPðgÞ ≠∅. Let fxng is a sequence gener-

ated by v1 ∈ C and

xn ∈ C s:t g xn, yð Þ + Bxn, y − xnh i + 1
rn

y − xn, JX1
xn − JX1

vn
� 	

≥ 0,

un =ΠC J
−1
X1

snJX1
xn + 1 − snð ÞJX1

QM1
ι QM2

ι ⋯QMk
ι xn

� �
,

zn =ΠC J
−1
X1

JX1
un − τA∗ JX2

Aun − PDAunð Þ� �
,

yn =ΠC J
−1
X1

JX1
zn − τA∗ JX2

Azn − PDAznð Þ� �
,

wn =ΠC J
−1
X1

βnJX1
QM1

ι QM2
ι ⋯QMk

ι zn + 1 − βnð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι yn
� �

,

vn+1 =ΠC J
−1
X1

αn,1 JX1
f xnð Þ + αn,2 JX1

un + αn,3 JX1
wn


 �
,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð27Þ

where rn ∈ ½a,∞Þ for some a > 0, fsng and fβng are real
sequences in ½a, b� ⊂ ð0, 1Þ, and τ and fαn,ig3i=1 satisfy the fol-
lowing conditions:

(i) fαn,ig3i=1 ⊂ ð0, 1Þ,∑3
i=1αn,i = 1, liminfn⟶∞αn,1αn,2 > 0,

and liminfn⟶∞αn,3 > 0

(ii) τ is real number such that 0 < τ < 2/ckAk2, where c
depends on 2-uniformly smoothness of X∗

1

Then, fxng converges strongly to q =Π
Ω∩ð∩k

i=1 FðQ
Mi
ι ÞÞ∩EPðgÞ

∘ f ðqÞ.

Proof. Let û ∈ Γ. By (10), Lemma 2 and the convexity of k:k2,
we have

ϕ û, unð Þ ≤ ϕ û, J−1X1
sn JX1

xn + 1 − snð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι xn
� �� 

= ûk k2 − 2 û, snJX1
xn + 1 − snð ÞJX1

QM1
ι QM2

ι ⋯QMk
ι xn

� 	

+ snJX1
xn + 1 − snð ÞJX1

QM1
ι QM2

ι ⋯QMk
ι xn

�� ��2
≤ ûk k2 − 2sn û, JX1

xn
� 	

− 2 1 − snð Þ û, JX1
QM1

ι QM2
ι ⋯QMk

ι xn
� 	

+ sn xnk k2 + 1 − snð Þ QM1
ι QM2

ι ⋯QMk
ι xn

�� ��2 = snϕ û, xnð Þ
+ 1 − snð Þϕ û,QM1

ι QM2
ι ⋯QMk

ι xn
� �

:

ð28Þ

Now, it follows from Lemma 11 and the above that

ϕ û, unð Þ ≤ snϕ û, xnð Þ + 1 − snð Þϕ û,QM2
ι ⋯QMk

ι xn
� �

≤ snϕ û, xnð Þ + 1 − snð Þϕ û,QM3
ι ⋯QMk

ι xn
� �

,
ð29Þ

⋮ ð30Þ
≤snϕ û, xnð Þ + 1 − snð Þϕ û, xnð Þ = ϕ û, xnð Þ: ð31Þ

Let kn = Aun − PDAun. From (10) and Lemmas 2 and 7,
we have that

ϕ û, znð Þ ≤ ϕ û, J−1X1
JX1

un − τA∗ JX2
kn

� �� 
= ûk k2

− 2 û, JX1
un − τA∗ JX2

kn
� 	

+ JX1
un − τA∗ JX2

kn
�� ��2

= ûk k2 − 2 û, JX1
un

� 	
+ 2τ û,A∗ JX2

kn
� 	

+ JX1
un − τA∗ JX2

kn
�� ��2 ≤ ûk k2 − 2 û, JX1

un
� 	

+ 2τ û, A∗ JX2
kn

� 	
+ JX1

un
�� ��2

− 2τ A∗ JX2
kn, J∗X1

JX1
un

D E
+ cτ2 A∗ JX2

kn
�� ��2

= ϕ û, unð Þ + 2τ Aû, JX2
kn

� 	
− 2τ JX2

kn, Aun
� 	

+ cτ2 Ak k2 JX2
kn

�� ��2 = ϕ û, unð Þ
+ 2τ Aû − Aun, JX2

kn
� 	

+ cτ2 Ak k2 knÞk k2:
ð32Þ
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Since hJX2
ðx − PDxÞ, y − PDxi ≤ 0 for each y ∈D and for

each x ∈ X2, we have that

JX2
kn, Aun − Aû

� 	
= JX2

kn, PDAun − Aû
� 	

+ JX2
kn, Aun − PDAun

� 	

= JX2
kn, PDAun − Aû

� 	
+ PDAun − Aunk k2

≥ PDAun − Aunk k2:
ð33Þ

From (32), our assumptions, and the above, we conclude
that

ϕ û, znð Þ ≤ ϕ û, unð Þ − 2τ PDAun − Aunk k2 + cτ2 Ak k2 knk k2
= ϕ û, unð Þ − τ 2 − cτ Ak k2� �

PDAun − Aunk k2
≤ ϕ û, unð Þ:

ð34Þ

In a similar way as above, we obtain that

ϕ û, ynð Þ ≤ ϕ û, znð Þ − τ 2 − cτ Ak k2� �
PDAzn − Aznk k2 ≤ ϕ û, znð Þ:

ð35Þ

It follows from (10), (29), (34), (35), Lemma 11, and the
convexity of k:k2 that

ϕ û,wnð Þ ≤ ϕ û, J−1X1
βn JX1

QM1
ι QM2

ι ⋯QMk
ι zn

��

+ 1 − βnð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι yn
�
= ûk k2

− 2 û, βn JX1
QM1

ι QM2
ι ⋯QMk

ι zn
�

+ 1 − βnð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι yn
	

+ βnJX1
QM1

ι QM2
ι ⋯QMk

ι zn
��

+ 1 − βnð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι yn
��2 ≤ ûk k2

− 2βn û, JX1
QM1

ι QM2
ι ⋯QMk

ι zn
� 	

− 2 1 − βnð Þ û, JX1
QM1

ι QM2
ι ⋯QMk

ι yn
� 	

+ βn QM1
ι QM2

ι ⋯QMk
ι zn

�� ��2

+ 1 − βnð Þ QM1
ι QM2

ι ⋯QMk
ι yn

�� ��2
= βnϕ û,QM1

ι QM2
ι ⋯QMk

ι zn
� �

+ 1 − βnð Þϕ û,QM1
ι QM2

ι ⋯QMk
ι yn

� �
,

ð36Þ

≤βnϕ û,QM2
ι QM3

ι ⋯QMk
ι zn

� �
+ 1 − βnð Þϕ û,QM2

ι QM3
ι ⋯QMk

ι yn
� �

,
ð37Þ

⋮ ð38Þ

≤βnϕ û, znð Þ + 1 − βnð Þϕ û, ynð Þ ≤ ϕ û, xnð Þ: ð39Þ
By (10), (29), (37), Lemmas 2, 8, the condition (i), the

convexity of k:k2, and the relatively nonexpansiveness of f ,

we have that

ϕ û, xn+1ð Þ = ϕ û, Krn
vn+1

� �
≤ ϕ û, vn+1ð Þ

≤ ϕ û, J−1X1
αn,1 JX1

f xnð Þ + αn,2 JX1
un + αn,3 JX1

wn


 �� 

= ûk k2 − 2 û, αn,1 JX1
f xnð Þ + αn,2 JX1

un + αn,3 JX1
wn

� 	

+ αn,1 JX1
f xnð Þ + αn,2 JX1

un + αn,3 JX1
wn

�� ��2
≤ ûk k2 − 2αn,1 û, JX1

f xnð Þ� 	
− 2αn,2 û, JX1

un
� 	

− 2αn,3 û, JX1
wn

� 	
+ αn,1 f xnð Þk k2 + αn,2 unk k2

+ αn,3 wnk k2 = αn,1ϕ û, f xnð Þð Þ + αn,2ϕ û, unð Þ
+ αn,3ϕ û,wnð Þ ≤ αn,1ϕ û, xnð Þ + αn,2ϕ û, unð Þ
+ αn,3ϕ û,wnð Þ ≤ ϕ û, xnð Þ:

ð40Þ

Therefore, fϕðû, xnÞg is bounded, and limn⟶∞ϕðû, xnÞ
exists. Now, by (11), we conclude that fxng is bounded. It
follows from (29), (34), (35), (37), (40), and relatively nonex-
pansiveness of f that the sequences fung, fzng, fyng, fwng,
fvng, and f f ðxnÞg are bounded.

Next, by (28), (37), (40), and Lemma 11, we conclude
that

ϕ û, xn+1ð Þ ≤ αn,1ϕ û, xnð Þ + αn,2ϕ û, unð Þ + αn,3ϕ û,wnð Þ
≤ 1 − αn,2ð Þϕ û, xnð Þ + αn,2ϕ û, unð Þ
≤ 1 − αn,2ð Þϕ û, xnð Þ + αn,2 snϕ û, xnð Þð

+ 1 − snð Þϕ û,QM1
ι QM2

ι ⋯QMk
ι xn

� ��

≤ 1 − αn,2ð Þϕ û, xnð Þ + αn,2 snϕ û, xnð Þð
+ 1 − snð Þ ϕ û,QM2

ι ⋯QMk
ι xn

� �


− ϕ QM1
ι QM2

ι ⋯QMk
ι xn,QM2

ι ⋯QMk
ι xn

� ��Þ
≤ 1 − αn,2ð Þϕ û, xnð Þ + αn,2 snϕ û, xnð Þð

+ 1 − snð Þ ϕ û,QM3
ι ⋯QMk

ι xn
� �


− ϕ QM2
ι ⋯QMk

ι xn,QM3
ι ⋯QMk

ι xn
� �

− ϕ QM1
ι QM2

ι ⋯QMk
ι xn,QM2

ι ⋯QMk
ι xn

� ��Þ,
ð41Þ

⋮ ð42Þ

≤ 1 − αn,2ð Þϕ û, xnð Þ + αn,2 snϕ û, xnð Þ + 1 − snð Þ ϕ û, xnð Þ½ð
− ϕ QMk

ι xn, xn
� �

−⋯−ϕ QM1
ι QM2

ι ⋯QMk
ι xn,QM2

ι ⋯QMk
ι xn

� ��Þ
= ϕ û, xnð Þ − αn,2 1 − snð Þ ϕ QMk

ι xn, xn
� �


−⋯−ϕ QM1
ι QM2

ι ⋯QMk
ι xn,QM2

ι ⋯QMk
ι xn

� ��
:

ð43Þ

Now, from (11) and (41), we have the following
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inequalities:

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,2 1 − snð Þϕ QMk
ι xn, xn

� �
,

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,2 1 − snð Þϕ QMk−1
ι QMk

ι xn,QMk
ι xn

� �
,

⋮

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,2 1 − snð Þϕ QM1
ι QM2

ι ⋯QMk
ι xn,QM2

ι ⋯QMk
ι xn

� �
:

ð44Þ

Now, since fϕðû, xnÞg is convergent, it follows from (44),
the conditions (i), and our assumptions that

lim
n⟶∞

ϕ QMk
ι xn, xn

� �
= 0,

lim
n⟶∞

ϕ QMk−1
ι QMk

ι xn,QMk
ι xn

� �
= 0,

⋮

lim
n⟶∞

ϕ QM1
ι QM2

ι ⋯QMk
ι xn,QM2

ι ⋯QMk
ι xn

� �
= 0:

ð45Þ

Therefore, from Lemma 1, we have that

lim
n⟶∞

QMk
ι xn − xn

�� �� = 0,

lim
n⟶∞

QMk−1
ι QMk

ι xn −QMk
ι xn

�� �� = 0,

⋮

lim
n⟶∞

QM1
ι QM2

ι ⋯QMk
ι xn −QM2

ι ⋯QMk
ι xn

�� �� = 0:

ð46Þ

Then,

lim
n⟶∞

QM1
ι QM2

ι ⋯QMk
ι xn − xn

�� �� = 0: ð47Þ

From (13), (47), the boundedness of the sequences fxng,
fQM1

ι QM2
ι ⋯QMk

ι xng, and using uniformly norm-to-norm
continuity of J on bounded sets, it is clear that

lim
n⟶∞

ϕ xn,QM1
ι QM2

ι ⋯QMk
ι xn

� �
= 0: ð48Þ

By (29), (34), (35), (36), (40), and Lemma 11, we
conclude that

ϕ û, xn+1ð Þ ≤ αn,1ϕ û, xnð Þ + αn,2ϕ û, unð Þ + αn,3ϕ û,wnð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3ϕ û,wnð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3 βnϕ û,QM1

ι QM2
ι ⋯QMk

ι zn
� ��

+ 1 − βnð Þϕ û,QM1
ι QM2

ι ⋯QMk
ι yn

� ��

≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3 βn ϕ û,QM2
ι ⋯QMk

ι zn
� �
�

− ϕ QM1
ι QM2

ι ⋯QMk
ι zn,QM2

ι ⋯QMk
ι zn

� ��

+ 1 − βnð Þ ϕ û,QM2
ι ⋯QMk

ι yn
� �


− ϕ QM1
ι QM2

ι ⋯QMk
ι yn,QM2

ι ⋯QMk
ι yn

� ��Þ,
⋮

≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3 βn ϕ û, znð Þ − ϕ QMk
ι zn, zn

� �
�

−⋯−ϕ QM1
ι QM2

ι ⋯QMk
ι zn,QM2

ι ⋯QMk
ι zn

� ��

+ 1 − βnð Þ ϕ û, ynð Þ − ϕ QMk
ι yn, yn

� �


−⋯−ϕ QM1
ι QM2

ι ⋯QMk
ι yn,QM2

ι ⋯QMk
ι yn

� ��Þ
≤ ϕ û, xnð Þ − αn,3βn ϕ QMk

ι zn, zn
� �


+⋯+ϕ QM1
ι QM2

ι ⋯QMk
ι zn,QM2

ι ⋯QMk
ι zn

� ��

− αn,3 1 − βnð Þ ϕ QMk
ι yn, yn

� �


+⋯+ϕ QM1
ι QM2

ι ⋯QMk
ι yn,QM2

ι ⋯QMk
ι yn

� ��
:

ð49Þ

Hence, from (11), the above, and our assumptions, we
obtain the following results

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,3βnϕ QMk
ι zn, zn

� �
,

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,3βnϕ QMk−1
ι QMk

ι zn,QMk
ι zn

� �
,

⋮

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,3βnϕ QM1
ι QM2

ι ⋯QMk
ι zn,QM2

ι ⋯QMk
ι zn

� �
,

ð50Þ

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,3 1 − βnð Þϕ QMk
ι yn, yn

� �
,

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,3 1 − βnð Þϕ QMk−1
ι QMk

ι yn,QMk
ι yn

� �
,

⋮

ϕ û, xn+1ð Þ ≤ ϕ û, xnð Þ − αn,3 1 − βnð Þϕ QM1
ι QM2

ι ⋯QMk
ι yn,QM2

ι ⋯QMk
ι yn

� �
:

ð51Þ

Since fϕðû, xnÞg is convergent, we conclude from (i),
(50), (51), and our assumptions that

lim
n⟶∞

ϕ QMk
ι zn, zn

� �
= 0,

lim
n⟶∞

ϕ QMk−1
ι QMk

ι zn,QMk
ι zn

� �
= 0,

⋮

lim
n⟶∞

ϕ QM1
ι QM2

ι ⋯QMk
ι zn,QM2

ι ⋯QMk
ι zn

� �
= 0:

ð52Þ

lim
n⟶∞

ϕ QMk
ι yn, yn

� �
= 0,

lim
n⟶∞

ϕ QMk−1
ι QMk

ι yn,QMk
ι yn

� �
= 0,

⋮

lim
n⟶∞

ϕ QM1
ι QM2

ι ⋯QMk
ι yn,QM2

ι ⋯QMk
ι yn

� �
= 0:

ð53Þ
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Now, from (29), (34), (35), (37), and (40), we have

ϕ û, xn+1ð Þ ≤ αn,1ϕ û, xnð Þ + αn,2ϕ û, unð Þ + αn,3ϕ û,wnð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3ϕ û,wnð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3 βnϕ û, znð Þ + 1 − βð Þϕ û, ynð Þð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3ϕ û, znð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3 ϕ û, unð Þð

− τ 2 − cτ Ak k2� �
PDAun − Aunk k2�

≤ ϕ û, xnð Þ − αn,3τ 2 − cτ Ak k2� �
PDAun − Aunk k2:

ð54Þ

Hence, it follows from (54) that

αn,3τ 2 − cτ Ak k2� �
PDAun − Aunk k2 ≤ ϕ û, xnð Þ − ϕ û, xn+1ð Þ:

ð55Þ

Then, it follows from (i) and our assumptions that

lim
n⟶∞

PDAun − Aunk k2 = 0: ð56Þ

From (29), (34), (35), (37), and (40), we have

ϕ û, xn+1ð Þ ≤ αn,1ϕ û, xnð Þ + αn,2ϕ û, unð Þ + αn,3ϕ û,wnð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3ϕ û,wnð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3 βnϕ û, znð Þ + 1 − βnð Þϕ û, ynð Þð Þ
≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3 βnϕ û, znð Þ + 1 − βnð Þ ϕ û, znð Þ½ð

− τ 2 − cτ Ak k2� �
PDAzn − Aznk k2�Þ

≤ 1 − αn,3ð Þϕ û, xnð Þ + αn,3ϕ û, znð Þ
− αn,3 1 − βnð Þτ 2 − cτ Ak k2� �

PDAzn − Aznk k2
≤ ϕ û, xnð Þ − αn,3 1 − βnð Þτ 2 − cτ Ak k2� �

PDAzn − Aznk k2:
ð57Þ

So,

αn,3 1 − βnð Þτ 2 − cτ Ak k2� �
PDAzn − Aznk k2 ≤ ϕ û, xnð Þ − ϕ û, xn+1ð Þ:

ð58Þ

Therefore, it follows from (i) and our assumptions that

lim
n⟶∞

PDAzn − Aznk k2 = 0: ð59Þ

Suppose that r1 = supnfk f ðxnÞk, kunkg. Therefore, from
Lemma 5, there exists a continuous strictly increasing con-
vex function g1 : ½0, 2r1�⟶ ½0,∞Þ such that g1ð0Þ = 0 and
using (29), (37), Lemmas 2 and 8, the convexity of k:k2,
and the condition relatively nonexpansiveness of f , we have

that

ϕ û, xn+1ð Þ = ϕ û, Krn
vn+1

� �
≤ ϕ û, vn+1ð Þ

≤ ϕ û, J−1X1
αn,1 JX1

f xnð Þ + αn,2 JX1
un + αn,3 JX1

wn


 �� 

= ûk k2 − 2 û, αn,1 JX1
f xnð Þ + αn,2 JX1

un + αn,3 JX1
wn

� 	

+ αn,1 JX1
f xnð Þ + αn,2 JX1

un + αn,3 JX1
wn

�� ��2
≤ ûk k2 − 2αn,1 û, JX1

f xnð Þ� 	
− 2αn,2 û, JX1

un
� 	

− 2αn,3 û, JX1
wn

� 	
+ αn,1 f xnð Þk k2 + αn,2 unk k2

+ αn,3 wnk k2 − αn,1αn,2g1 JX1
f xnð Þ − JX1

un
�� ��� �

≤ αn,1ϕ û, f xnð Þð Þ + αn,2ϕ û, unð Þ + αn,3ϕ û,wnð Þ
− αn,1αn,2g1 JX1

f xnð Þ − JX1
un

�� ��� �
≤ αn,1ϕ û, xnð Þ

+ αn,2ϕ û, unð Þ + αn,3ϕ û,wnð Þ
− αn,1αn,2g1 JX1

f xnð Þ − JX1
un

�� ��� �
≤ ϕ û, xnð Þ

− αn,1αn,2g1 JX1
f xnð Þ − JX1

un
�� ��� �

:

ð60Þ

So,

αn,1αn,2g1 JX1
f xnð Þ − JX1

un
�� ��� �

≤ ϕ û, xnð Þ − ϕ û, xn+1ð Þ:
ð61Þ

Since limn⟶∞ϕðû, xnÞ exists. Therefore, it follows from
the condition (i) that

lim
n⟶∞

g1 JX1
f xnð Þ − JX1

un
�� ��� �

= 0: ð62Þ

Because g1 is continues function, we conclude that

g1 lim
n⟶∞

JX1
f xnð Þ − JX1

un
�� ��� 

= lim
n⟶∞

g1 JX1
f xnð Þ − JX1

un
�� ��� �

= 0 = g1 0ð Þ:
ð63Þ

Therefore,

lim
n⟶∞

JX1
f xnð Þ − JX1

un
�� �� = 0: ð64Þ

Since J−1X1
is uniformly norm-to-norm continuous on

bounded sets, it imply that

lim
n⟶∞

f xnð Þ − unk k = 0: ð65Þ

Using (13), (65), the uniformly norm-to-norm continu-
ity of JX1

on bounded sets, and the boundedness of the
sequences f f ðxnÞg and fung, we conclude that

lim
n⟶∞

ϕ un, f xnð Þð Þ = 0: ð66Þ
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By (48) and using our assumptions, we obtain that

ϕ xn, unð Þ ≤ ϕ xn, J−1X1
sn JX1

xn + 1 − snð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι xn
� �� 

= xnk k2 − 2 xn, sn JX1
xn + 1 − snð ÞJX1

QM1
ι QM2

ι ⋯QMk
ι xn

� 	

+ snJX1
xn + 1 − snð ÞJX1

QM1
ι QM2

ι ⋯QMk
ι xn

�� ��2
≤ xnk k2 − 2sn xn, JX1

xn
� 	

− 2 1 − snð Þ xn, JX1
QM1

ι QM2
ι ⋯QMk

ι xn
� 	

+ sn xnk k2 + 1 − snð Þ QM1
ι QM2

ι ⋯QMk
ι xn

�� ��2
= snϕ xn, xnð Þ + 1 − snð Þϕ xn,QM1

ι QM2
ι ⋯QMk

ι xn
� �

= 1 − snð Þϕ xn,QM1
ι QM2

ι ⋯QMk
ι xn

� �
⟶ 0 as n⟶∞:

ð67Þ

Then, it follows from Lemma 1 that

lim
n⟶∞

xn − unk k = 0: ð68Þ

Now, by (15), (56), and Lemmas 2 and 4, we conclude
that

ϕ un, znð Þ ≤ ϕ un, J−1X1
JX1

un − τA∗ JX2
kn

� ��
= V un, JX1

un − τA∗ JX2
kn

� �

≤ V un, JX1
un

� �
− 2 J−1X1

JX1
un − τA∗ JX2

kn
� �

− un, τA∗ JX2
kn

D E

= ϕ un, unð Þ − 2 J−1X1
JX1

un − τA∗ JX2
kn

� �
− J−1X1

JX1
un

� �
, τA∗ JX2

kn
D E

≤ 2 J−1X1
JX1

un − τA∗ JX2
kn

� �
− J−1X1

JX1
un

� ����
��� τA∗ JX2

kn
�� ��

≤
4τ2
c2

A∗ JX2
kn

�� ��2 ≤ 4τ2
c2

Ak k2 Aun − PDAunk k2

⟶ 0 as n⟶∞:

ð69Þ

Then, using Lemma 1, we obtain

lim
n⟶∞

un − znk k = 0: ð70Þ

Also, from (15), (59), and Lemma 2, and the same way
used for proving (70), we can conclude that

ϕ zn, ynð Þ ≤ ϕ zn, J−1X1
JX1

zn − τA∗ JX2
Azn − PDAznð Þ�� 

≤
4τ2
c2

Ak k2 Azn − PDAznk k2 ⟶ 0 as n⟶∞:

ð71Þ

Then, using Lemma 1, we get

lim
n⟶∞

zn − ynk k = 0: ð72Þ

Now, it follows from (13), (52), and Lemma 1 that

zn −QM1
ι QM2

ι ⋯QMk
ι zn

�� �� ≤ zn −QMk
ι zn

�� �� + QMk
ι zn −QMk−1

ι QMk
ι zn

�� ��
+⋯+ QM2

ι ⋯QMk
ι zn −QM1

ι QM2
ι ⋯QMk

ι zn
�� ��

⟶ 0 as n⟶∞:

ð73Þ

Similarly, from (13), (53), and Lemma 1, we have

lim
n⟶∞

yn −QM1
ι QM2

ι ⋯QMk
ι yn

�� ��⟶ 0, ð74Þ

then, by (72), we obtain that

lim
n⟶∞

zn −QM1
ι QM2

ι ⋯QMk
ι yn

�� �� = 0: ð75Þ

Now, by (13), (73), (75), and using uniformly norm-to-
norm continuity of JX1

on bounded sets, it is implied that

lim
n⟶∞

ϕ zn,QM1
ι QM2

ι ⋯QMk
ι zn

� �
= 0,  lim

n⟶∞
ϕ zn,QM1

ι QM2
ι ⋯QMk

ι yn
� �

= 0:

ð76Þ

It follows from (10), (76), Lemma 2, and the convexity of
k:k2 that

ϕ zn,wnð Þ ≤ ϕ zn, J−1X1
βnJX1

QM1
ι QM2

ι ⋯QMk
ι zn

��

+ 1 − βnð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι yn
�Þ

= znk k2 − 2 zn, βnJX1
QM1

ι QM2
ι ⋯QMk

ι zn
�

+ 1 − βnð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι yn
	

+ βnJX1
QM1

ι QM2
ι ⋯QMk

ι zn
��

+ 1 − βnð ÞJX1
QM1

ι QM2
ι ⋯QMk

ι yn
�k2

≤ znk k2 − 2βn zn, JX1
QM1

ι QM2
ι ⋯QMk

ι zn
� 	

− 2 1 − βnð Þ zn, JX1
QM1

ι QM2
ι ⋯QMk

ι yn
�� 	

+ βn QM1
ι QM2

ι ⋯QMk
ι zn

�� ��2

+ 1 − βnð Þ QM1
ι QM2

ι ⋯QMk
ι yn

��� ��2
= βnϕ zn,QM1

ι QM2
ι ⋯QMk

ι zn
� �

+ 1 − βnð Þϕ zn,QM1
ι QM2

ι ⋯QMk
ι yn

� �

⟶ 0 as n⟶∞:

ð77Þ

Now, by Lemma 1, we have limn⟶∞kzn −wnk = 0.
Therefore, we obtain from (70) that limn⟶∞kun −wnk = 0,
then by (13), we conclude that

lim
n⟶∞

ϕ un,wnð Þ = 0: ð78Þ

From (66), (78), Lemma 2, and our assumptions, it
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implied that

ϕ un, vn+1ð Þ ≤ ϕ un, J−1X1
αn,1 JX1

f xnð Þ + αn,2 JX1
un + αn,3 JX1

wn

� �� 

= unk k2 − 2 un, αn,1 JX1
f xnð Þ + αn,2 JX1

un + αn,3 JX1
wn

� 	

+ αn,1 JX1
f xnð Þ + αn,2 JX1

un + αn,3 JX1
wn

�� ��2
≤ unk k2 − 2αn,1 un, JX1

f xnð Þ� 	
− 2αn,2 un, JX1

un
� 	

− 2αn,3 un, JX1
wn

� 	
+ αn,1 f xnð Þk k2 + αn,2 unk k2

+ αn,3 wnk k2 = αn,1ϕ un, f xnð Þð Þ + αn,2ϕ un, unð Þ
+ αn,3ϕ un,wnð Þ⟶ 0 as n⟶∞:

ð79Þ

Therefore, by Lemma 1, we have

lim
n⟶∞

vn+1 − unk k = 0: ð80Þ

Let r2 = supnfkvnk, kxnkg. Therefore, by Lemma 6, there
exists a continuous, convex, and strictly increasing function
g2 : ½0, 2r2�⟶ ½0,∞Þ such that g2ð0Þ = 0 and

g2 xn − vnk kð Þ ≤ ϕ xn, vnð Þ: ð81Þ

It follows from (40), (81), Lemma 8, and the fact that
xn = Krn

vn, we conclude that

g2 xn − vnk kð Þ ≤ ϕ xn, vnð Þ ≤ ϕ û, vnð Þ − ϕ û, xnð Þ ≤ ϕ û, xn−1ð Þ
− ϕ û, xnð Þ⟶ 0 as n⟶∞:

ð82Þ

Therefore,

lim
n⟶∞

xn − vnk k = 0, ð83Þ

because g2 is a continuous strictly increasing convex func-
tion. Now, by (80) and (83), we have

lim
n⟶∞

un − xn+1k k = 0: ð84Þ

From (68) and (84), we obtain that

lim
n⟶∞

xn+1 − xnk k = 0: ð85Þ

This shows that fxng is a Cauchy sequence, so fxng
converges strongly to a point q ∈ C. Therefore, by (68),
(70), and (72), we imply that fung, fyng, and fzng converge
strongly to q.

Next, we prove that q ∈ ∩ k
i=1FðQMi

ι Þ. It follows from (46)
and uniformly continuity of JX1

on bounded subset of X1
that JX1

QM1
ι QM2

ι ⋯QMk
ι xn − JX1

QM2
ι ⋯QMk

ι xn ⟶ 0 as n
⟶∞. Get ηn =QM1

ι QM2
ι ⋯QMk

ι xn; hence, by Definition
9, we have JX1

ηn + ιM1ηn = JX1
QM2

ι QM3
ι ⋯QMk

ι xn. Therefore,

there exists hn ∈M1ηn such that

hn =
JX1

QM2
ι QM3

ι ⋯QMk
ι xn − JX1

ηn
ι

: ð86Þ

So, by the above observation, hn ⟶ 0 as n⟶∞. On the
other hand, since xn ⇀ q, we can conclude from (47) that ηn
⇀ q. Then, from Lemma 10, 0 ∈M1q, i.e., q ∈M−1

1 0 = FðQM1
ι

Þ. Similar to the above, by using (46), we can also prove that q
∈M−1

i 0 = FðQMi
ι Þ for all i = 2, 3,⋯k. Hence, q ∈ ∩ k

i=1FðQMi
ι Þ.

Next, we show that q ∈ Fð f Þ. From (65), (68), and the
triangle inequality, we conclude that

lim
n⟶∞

f xnð Þ − xnk k = 0: ð87Þ

Hence, q is an asymptotic fixed point of f . Then, F̂ð f Þ
= Fð f Þ because f is a relatively nonexpansive mapping.
Hence, q ∈ Fð f Þ.

Now, we prove that q ∈ EPðgÞ. Since JX1
is uniformly

norm-to-norm continuous on bounded sets, it follows from
(83) that

lim
n⟶∞

JX1
xn − JX1

vn
�� �� = 0: ð88Þ

By xn = Krn
vn, we conclude that gðxn, yÞ + hBxn, y − xni

+ ð1/rnÞhy − xn, JX1
xn − JX1

vni ≥ 0 for all y ∈ C. Moreover,
by the condition A2, gðy, xnÞ ≤ −gðxn, yÞ for all y ∈ C.
Therefore,

g y, xnð Þ ≤ Bxn, y − xnh i + 1
rn

y − xn, JX1
xn − JX1

vn
� 	

, ð89Þ

for all y ∈ C. Using (88), the condition A4, and letting n
⟶∞, we have that

g y, qð Þ ≤ Bq, y − qh i, ð90Þ

for all y ∈ C. Let yλ = λy + ð1 − λÞq for all y ∈ C and λ ∈
ð0, 1Þ. It follows from (90), the conditions A1, A4, and the
monotonicity of B that

0 = g yλ, yλð Þ + Byλ, yλ − yλh i ≤ λg yλ, yð Þ + 1 − λð Þg yλ, qð Þ
+ Byλ, λy + 1 − λð Þq − yλh i = λg yλ, yð Þ + 1 − λð Þg yλ, qð Þ
+ λ Byλ, y − yλh i + 1 − λð Þ Byλ, q − yλh i = λg yλ, yð Þ
+ 1 − λð Þg yλ, qð Þ + λ Byλ, y − yλh i
+ 1 − λð Þ Byλ − Bq, q − yλh i + 1 − λð Þ Bq, q − yλh i

≤ λg yλ, yð Þ + λ Byλ, y − yλh i,
ð91Þ

for all y ∈ C. Therefore, 0 ≤ gðyλ, yÞ + hByλ, y − yλi. Using
the condition A3 and letting λ⟶ 0, we obtain that 0 ≤ gð
q, yÞ + hBq, y − qi for all y ∈ C. Then, q ∈ EPðgÞ.
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Finally, we prove that q ∈Ω. From (56), we have that k
PDAq − Aqk = limn⟶∞kPDAun − Aunk = 0. Therefore, Aq
∈D, i.e., q ∈Ω. Hence, q =Π

Ω∩ð∩k
i=1FðQ

Mi
ι ÞÞ∩EPðgÞ ∘ f ðqÞ, and

this completed the proof.
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