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In this paper, we introduce a new extragradient algorithm by using generalized metric projection. We prove a strong convergence
theorem for finding a common element of the solution set of split feasibility problem and the set of fixed points of relatively
nonexpansive mapping and a finite family of resolvent operator and the set of solutions of an equilibrium problem.

1. Introduction

Let C be a nonempty closed convex subset of a real Banach
space X with norm ||.|| and X* be the dual of X. We consider
the following variational inequality problem (VI), which
consists in finding a point x € C such that

(x",y-x)>0 VyeC, Vx"e€Ax, (1)

where A : C — 2% is a mapping and (., .) denotes the dual-
ity pairing. The solution set of the variational inequality
problem is denoted by VI(C, A).

The operator A : X — 2% is called

(i) Monotone if

(x=p3,x"=y")20 Vx,yeX, Vx"eAx, y"eAy. (2)

(ii) a-inverse strongly monotone if there exists a con-
stant & > 0 such that

Vx,yeX, Vx"eAx, y'eAy.

(3)

(x=px" =) zallx" -y,

(ili) Demiclosed if for all {x,} cX with x, —x in X,
and y, € Ax, with y, —y in X", we have x € X
and y € Ax

A monotone mapping B is said to be maximal if its graph
G(B) = {(x, Bx): x € D(B)} is not properly contained in the
graph of any other monotone mapping. Obviously, the
monotone mapping B is maximal if and only if for (x, x*)
eXxX*, (x—y,x*—y*) >0 for all (y,y*) € G(B), then it
is implied that x* € Bx.

Assume that A : C — 2% is a nonlinear mapping and
f:CxC— R is a bifunction. The equilibrium problem
(EP) is as follows: find x € C such that

flxy)+{Ax,y—x)20, V yeC. (4)

The solution set of (4) is denoted by EP(f). The equilib-
rium problem is very general because it includes many well-
known problems such as variational inequality problems
and saddle point problems (see [1-4]). Several methods have
been proposed to solve the equilibrium problem in Hilbert
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space (see [5]), and some authors obtained weak and strong
convergence algorithms for finding a common element of
the set of solutions of an equilibrium problem and the
set of fixed points of a nonexpansive mapping in a Hilbert
space (see [6-9]). Then, the authors proved the strong
convergence of the algorithms in a uniformly convex and
uniformly smooth Banach space (see [10]).

Suppose that C and D are nonempty, closed, and convex
subsets of real Banach spaces X, and X,, respectively. The
split feasibility problem (SEP) is to find a point

x€C suchthat xeA™'D, (5)
which A : X; — X, is a bounded linear operator. The solu-
tion set of (5) is denoted by Q.

In 1994, the split feasibility problem was first studied by
Censor and Elfving [11] in finite dimensional Hilbert spaces.
In solving (SFP), Schopfer et al. [12] proposed the next algo-
rithm in p-uniformly convex real Banach spaces: x; € X; is
chosen arbitrarily and for n > 1,

KXo = Tk, (Jx, %, — 6,A" Ty, (Ax, = PpAx,)),  (6)

where ] is the duality mapping, Il denotes the Bregman
projection, A is a bounded linear operator, and A™ is the
adjoint of A. Also, they have proven the generated sequence
{x,} by algorithm (6) is weakly convergent under suitable
conditions. The split feasibility problems were studied exten-
sively by many authors [13, 14].

In this paper, motivated by Schopfer et al. [12], we pres-
ent a new hybrid algorithm using the inverse strongly mono-
tone operation and a finite family of resolvent operator.
Then, we show that our generated sequence is strongly con-
verges to a common point, the set of solution set of split fea-
sibility problem, and the fixed point of relatively
nonexpansive mapping and the fixed point of resolvent
operator.

2. Preliminaries

Let X be a real smooth Banach space with norm ||.|| and let
X* be the dual space of X. We denote the strong conver-
gence and the weak convergence {x,} to x in X by x, —
x and x, — x, respectively. A function ¢ : [0,2] — [0, 1] is
said to be the modulus of convexity of X as follows:

. X+y
S(s)sz{l——” 5 ||:|x||s1,||y||sl,||x—y|26},
(7)

for every ¢ € [0, 2]. A Banach space X is said to be uniformly
convex if and only if §(¢) > 0 for all € > 0. It is known that a
uniformly convex Banach space has the Kadec-Klee prop-
erty, that is, x, — u and ||x,|| — ||u|| imply that x, — u
(see [15]). Let p be a fixed real number with p > 2. A Banach
space X is called p-uniformly convex [16], if there exists a
constant ¢ > 0 such that § > ce” for all € €[0,2]. Let S(E) =
{x € X : ||x|| =1}. A Banach space X is said to be smooth if
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for all x € S(X), there exists a unique functional j, € X* such
that (x,j ) = ||x|| and ||j.|| =1 (see [17]).

The norm of X is said to be Gateaux differentiable if for
all x, y € S(X), the limit

ety ]
t—0 t ’

(8)

exists. In this case, X is said to be smooth, and X is called
uniformly smooth if the limit (8) is attained uniformly for
all x, y € S(X) [18]. If a Banach space X is uniformly convex,
then X is reflexive and strictly convex, and X* is uniformly

smooth [17]. The duality mapping J% on X is defined by

Ty ={f €X": (. f) = |xIP UF1 = 1P ) 9)

for every x € X. If X is a p-uniformly convex and uniformly
smooth, then ]f( is single valued, one-to-one and satisfies
=) = (%), where J =J% is the duality mapping
of X (see [19]). If p=2, then Jy =], =] is the normalized
duality mapping. It is well known that if X is a reflexive,
strictly convex, and smooth Banach space and J% : X* —
2% is the duality mapping on X*, then J3' = J%. If X is a uni-
formly smooth and uniformly convex Banach space, then ]
is uniformly norm to norm continuous on bounded sets of X
,and ])}1 = J% is also uniformly norm to norm continuous on
bounded sets of X*. Let X be a smooth Banach space and let
Jx be the duality mapping on X. The function ¢ : X x X
—> R is defined by

(%, y) = |lx|* =205 ) + )% ¥wyeX.  (10)

Clearly, from (10), we can conclude that

(Il = 1) < (6 y) < (1] + [Iy11)*- (11)

If X is a reflexive, strictly convex, and smooth Banach
space, then for all x,y € X

$(xy)=0ex=y. (12)

Also, it is clear from the definition of the function ¢ that
the following condition holds for all x, y € X,

d(xy) = (x5 Ixx—Ixy) +(y—xJxy)
< x| Txx = Txyll + 1Ly = x| [¥]]-

Now, the function V:XxX* — R is defined as
follows:

* * %12
V(o x") = [|x]|* = 206 x7) + |27, (14)

for all x € X and x* € X*. Moreover, V(x,x*) = ¢(x, Jy'x*)
for all x e X and x* € X*. If X is a reflexive strictly convex
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and smooth Banach space with X* as its dual, then

Vixx")+2(Jx'x" —=x,y" ) S V(6 x" +y"), (15)
for all x € X and all x*, y* € X* [20].

An operator A : C — X" is hemicontinuous at x, € C, if
for any sequence {x,} converging to x, along a line implies
that the sequence {Ax,} is weakly convergent to Ax,, i.e.,
Ax, = A(xy +t,x) = Ax, as t, —> 0 for all x € C.

The generalized projection Il : X — C is a mapping
that assigns to an arbitrary point x € X, the minimum point
of the functional ¢(y, x); that is, IT-x = x,, where x, is the
solution of the minimization problem

$ (X0, X) = ming(y, x). (16)

The existence and uniqueness of the operator IT follows
from the properties of the functional ¢(x,y) and strict
monotonicity of the mapping J [21]. Suppose that C is a
nonempty closed convex subset of X and T is a self mapping
on C. We denote the set of fixed points of T by F(T), that is
F(T)={x€C:xe€Tx}. Apoint p € Cis called an asymptot-
ically fixed point of T if C contains a sequence {x, } which
converges weakly to p such that Tx, —x, — 0 [17]. The
set of asymptotical fixed points of T will be denoted by F(
T). A mapping T from C into itself is said to be relatively
nonexpansive if F(T) = F(T) and ¢(p, Tx) < ¢(p, x) for all
x € C and p € F(T). The asymptotic behavior of a relatively
nonexpansive mapping was studied in [22, 23].

We need the following lemmas for proving our main
results.

Lemma 1. (see [24]). Let X be a smooth and uniformly con-
vex Banach space and let {x,} and {y,} be two sequences of
X If §(x,,y,) — 0 and either {x,} or {y,} is bounded, then

xn_yn—)o'

Lemma 2. (see [21]). Let C be a nonempty closed convex sub-
set of a smooth, strictly convex, and reflexive Banach space X
and let y € X. Then,

¢(x, cy) + (Ilcy, y) S p(x.y), VxeC.  (17)
Lemma 3. (see [21]). Let C be a nonempty closed convex sub-
set of a smooth, strictly convex, and reflexive Banach space X,

let x € X, and let z € C. Then,
z=IIx o (y—z, Jxx—Jxz) <0, forallyeC.

(18)

Lemma 4. (see [25]). Let X be a 2-uniformly convex and
smooth Banach space. Then, for all x, y € X, we have that

(19)

2
=yl < S 1 xx =Tyl

where 1/c(0 < c < 1) is the 2-uniformly convex constant of X.

Lemma 5. (see [25]). Let X be a uniformly convex Banach
space and r>0. Then, there exists a continuous strictly
increasing convex function g : [0,2r] — [0,00) such that
g(0)=0 and

e+ (1= )y [1” < t]|x]|” + (1 = ) Iyll* = (1 = g (llx =y,
(20)

for all x,y€eB,(0)={zeX :||z||<r} and t €0, 1].

Lemma 6. (see [24]). Let X be a uniformly convex Banach
space and r>0. Then, there exists a continuous strictly
increasing convex function g : [0,2r] — [0,00) such that
g(0)=0 and

gllx =l < (7). (21)

for all x,y€B,(0)={zeX : |z|| <r}.

Lemma 7. (see [25]). Let x, y € X. If X is p-uniformly smooth,
then there is a ¢ > 0 so that
[l = y11P < [1x[1” = p(y, J (2)) +cllyl[F- (22)

Throughout this paper, we assume that f : Cx C — R
is a bifunction satisfying the following conditions

(A1) f(x,x)=0forall xeC

(A2) f is monotone, ie., f (x, ) + f(y,x) <0, forallx,y € C

(A3) lim, of (tz + (1 = t)x,y) < f(x, ), forall x, y,z€ C

(A4) For each x€C,y— f(x,y) is convex and lower
semicontinuous.

Lemma 8. (see [26]). Let C be a nonempty closed convex sub-
set of a smooth, strictly convex and reflexive Banach space X.
Let A : C— X be an a-inverse-strongly monotone operator
and f be a bifunction from C x C to R satisfying (A;) — (A,).
Then, for all r > 0 the following hold

(i) For x € X, there exists u € C such that

flu, %)+ (Au,y —u) + ;(y—u,]Xu—]Xx>20, VyeC,

(23)

(i) If X is additionally uniformly smooth and K, : X
— C is defined as

Kr(x):{uGC:f(u,y)+<Au,y—u>+;(y—u,]Xu—]Xx>

20, VyeC},
(24)

then, the following conditions hold:
K, is single-valued



K, is firmly nonexpansive, i.e., for all x,y € X,

<er_Kry’ ]Xer_]XKry> < <er_Kry’ ]Xx_ ]Xy>’
F(K,)=F(K,)=EP(f).
(25)

EP is a closed convex subset of C.

¢(p. Kx) + p(K,x, x) <§(p.x), ¥V peF(K,).  (26)
Definition 9.

Let X be a real smooth and uniformly convex Banach
space and let M : X — 2X" be a maximal monotone opera-
tor. For all 1> 0, define the operator Q¥ : X — X by QM

= (Jyx +tM) " Jyx for all x € X.

Lemma 10. (see [18]). Let X be a real smooth and uniformly
convex Banach space, and let M : X — 2% be a maximal

monotone operator. Then, M~ 0 is a closed and convex subset
of X, and the graph G(M) of M is demiclosed.

Lemma 11. Let X be a real reflexive, strictly convex, and let
smooth Banach space and M : X — 25" be a maximal
monotone operator with M~'0+ @. Then, for all x€ X,y €

M0 and 1> 0, then ¢(y, Q¥x) + $(QYx, x) < ¢(y, x).
3. Main Results

In this section, we introduce our new extragradient
algorithm.

Theorem 12. Let X, and X, are real 2-uniformly convex and
uniformly smooth Banach spaces. Suppose that C and D are
nonempty closed and convex subsets of X; and X,, respec-
tively. Suppose that g is a bifunction from C x C to R which
satisfies the conditions Al-A4, A : X, — X, is a bounded
linear operator and A* : X5 — X is the adjoint of A. Let
M;: X, — 2% be a maximal monotone operator with
M, 10+ foralli=1,2, - k. Assume that B: C — X* is
an a-inverse strongly monotone operator, and f is a relatively
nonexpansive mappings from C into itself and I = QN F(f)
NNk, F(Q"))NEP(g) + D. Let {x,} is a sequence gener-
ated by v, € C and

%, €C st g(xyy)+ (B y—x,) + %O =X Jx, Xy = T, V) 20
w, = TIcTx, (s, x, % + (1= 5,) I, QU Q" - Qex, ),
2, =y, (Jx,uy — 7A"Ix, (A, — PpAu,)),
= HC];(f (Jx,2, —TA*]x (Az, - PpAz,)),
w, =Ty (B Jx, Q1 Q" - QMz, + (1= B,)]x, QUQM -+ QM ),
Vet =TTy, [T, f (50) + 00Tty + @3], 0, )5
(27)
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where r, € [a,00) for some a>0, {s,} and {B,} are real
sequences in [a, b] € (0, 1), and T and {an’i}; satisfy the fol-
lowing conditions:

(1) {“n,i}?:l C (0’

and liminf

= 1, liminf >0,

)2131“

3>0

n—00 nloan

n—~oo ﬂ

(ii) T is real number such that 0< T < 2/c||A|]*, where ¢

depends on 2-uniformly smoothness of X}
Then, {x,} converges strongly to q= Hm(nLF(Q{w,))mEP(g)
°f(q)-

Proof. Let 7 € T. By (10), Lemma 2 and the convexity of ||.||%,
we have

9 1,) < ¢ I3 (s, %0 + (1 -
—||u|| —2<us]xx +(1-

)]X QMIQMZ . .wakxn)>
)]XleVI QMz Qlexn>

+ ||Sn]X1xn + (1 - SVI)]X,Q{VIIQfWZ fwkxn”z

< [[3)* = 25, (B Tx, 2 = 2(1 = 5,) (B T, QM QY - QM)
5,12+ (1=5,)]|QMQM: - QMix, || = 5,8 x,)
+(1=5,)9( Q" QM - Q).
(28)

O

Now, it follows from Lemma 11 and the above that

¢(a’ un) < 5n¢(a’ xn) + (1 - Sn)(p(a’ waz wakxn) (29)
< 5n¢(a’ xn) + (1 - Sn)(p(a’ QfVI3 wakxn)’

(30)

Ssn¢(a’ xn) + (1 - Sn)(/)(a’ xn) = (/)(ft, xn)' (31)

Let k, = Au,
we have that

- PpAu,. From (10) and Lemmas 2 and 7,

8(1.2,) < (B3 (Jx, 1, ~ A" I k) ) = 7]
28Ty, = TA T )+ T, AT
=) - 2(a, Jx, u,) + 27(%, A"y k,)
[Tyt = TA" T K| | < (1] = 208 T, )
+21(8, A" k) + ||]X1“n||2
_ 27<A*]X2kn’ ];‘(ljxlun> + CTZHA*]XanHZ
= ¢(1, u,) + 20(AR, ] k,) = 27(Jx k,, Au,)
+ c12||A||2H]x2an2 = ¢(du,)
+27(AL = Au,, Ty k,) + T | AP [IK,) |-
(32)
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Since (Jx, (x = Ppx),y — Ppx) <0 for each y € D and for
each x € X,, we have that

(Jx,k» Au, = All) = (Jx k,, PpAu, = Alt) + (Jx k,, Au, — PpAu,,)
= (Jx, k. PpAu, - Al) + | PpAu,, - Au,|*
> ||PpAu, —AunHzA
(33)

From (32), our assumptions, and the above, we conclude
that

B(i1,2,) < 9@, u,) - 27]|PpAu, - Au, > + 2 [ Ak, |
= §(@ 1) - 7(2- et A|]?) |Ppdu, - Au, |
< (it u,)

(34)
In a similar way as above, we obtain that

B(@3,) < $(B2,) ~ (2~ et A|) [PpAz, - Az, | < (8 2,).
(35)

It follows from (10), (29), (34), (35), Lemma 11, and the
convexity of ||.||* that

8(iw,) < (B )5 (B,Jx, Q1 Q" - Qe
+(1=B,))x, QIQM - QMiy,) = |
-2(m, B,Jx, Q1 QM" - QYez,
+ (1=, Q1 Q - QM)
+][BJx, QM Q" - QMg
(1= B,)]x, QUQY - QMy, | < |1
-2B,(1 Jx, Q" QM - Qiz,,)
~2(1-B,)(3 ], Q@ - Q)
+B,[lQM QY - QMz, |

B QN QY - QM |
=B,9(@ Q" Q" - QMiz,)

+(1-B,) ¢(m Q" Q" -+ Q"y,),

(36)
<B,¢( QQ" - Qz,) + (1-B,)9 (8 Q™ Q" - QMhy,),
(37)
(38)
<P, p(tz,) + (1= B,)§(%y,) < $(@ x,)- (39)

By (10), (29), (37), Lemmas 2, 8, the condition (i), the
convexity of ||.||%, and the relatively nonexpansiveness of f,

we have that

(U, x,1) = ‘/5( K, Vn+1) < P(H Vyyn)
< (/)(ﬁ, ]xl [‘xn,IJle(‘xn) 0o x Uy an,SIXlwn])
= ||@||* - 2<ﬁ, Wi Jx f (%) + @0 x 1, + ‘xn,3]X1wn>
+ ||(xn,1]X1f(xn) oo x Uy + 3]k wnHz
<|a|)? - 2%,1@» ]le(xn)> - 2“n,2<ﬁ’ Jx, u,)
- 2“n,3<ﬁ’ ]Xlwn> T ”f(xn)”Z + "‘n,z||”n||2
+ (xn,BHwnHZ =0, 1 9(8 f (x,)) + @, ,0(h )
+a, 300 w,) S &, (1, x,) + o, (1, u,)

+ “n,S‘p(a’ wn) < ¢(ﬁ, xn)’
(40)

Therefore, {¢(%, x,,)} is bounded, and lim, ¢(#, x,)
exists. Now, by (11), we conclude that {x,} is bounded. It
follows from (29), (34), (35), (37), (40), and relatively nonex-
pansiveness of f that the sequences {u,},{z,},{y,}, {w,}
{v,}> and {f(x,)} are bounded.

Next, by (28), (37), (40), and Lemma 11, we conclude
that

¢(a’ xn+1) = an,1¢(a> xn) + an,2¢(a’ un) + ‘xn,3¢(a’ wn)
< (1 - (Xn,z) (ﬁ’ xn) * (Xn,z(ﬁ(ﬁ, un)
£ (1 - 0‘n,2)¢<a xn) + an,2(5n¢(a’ xn)

+ <1 —sn>¢(a, Q@™ -+ QMx,))
)+0£n2(5n¢(ﬁ, xn)

Qka )
QM X, QMz ... Q:kan”)

<(1- ) (8, x,) + 00,5 (5,9 (8> x,.)

+(1-s,) [ (ua QM3 v wakxn)

- ¢(Q" -+ QMhx,, QM - Qi )

- (@M Q" - QM Q- Qix,)]),
(41)
(42)

S(l - “n,2)¢(a> xn) + “n,2(5n¢(a’ xn) + (1 - Sn)[([)(ﬁ, xn)

_ ¢(Q1kan,xn)_..._¢(QfV’1QfV[z wakxw Q;Mz wakxn>])
= ¢(a’xn) - “n,z(l - sn) [gb(Q‘thxn)xn)
_..._¢(Qf\41 Qf‘/[z Q{"Ikxn) Qf‘/lz Qlexn)]
(43)

Now, from (11) and (41), we have the following



inequalities:

- an,Z(l - Sn)(p(Qfkan’ xn)’
Sn)gb(Q{V[kileV["xn’ Q{V[kxn)’

O, %,,1) < O(Th, x,)
Pt x,.1) < (1 x,) = o5 (1=

- )¢(Qf‘41Qsz Qf‘/kaw QfV[z Qf\/kan)‘
(44)

(B %,01) < G0 %,) - (1

Now, since {¢(%, x,,) } is convergent, it follows from (44),
the conditions (i), and our assumptions that

lim ¢(Q"x,,x,)=0,

n—a~oo

lim gb(QfV["’l Qf\/kan, Qf\’lkxn) =0,
n—co (45)
lim (p(QfVIleVIZ wakxn, waz wakxn) =0.
Therefore, from Lemma 1, we have that
lim HQ kX, — X H =
n—~o~o
lim [|Q"QMx, - QMex, || =0,
lim Q1 Q" -+ Qfx, = QM QM || =0,
Then,
lim Q0¥ QM0 (@)

From (13), (47), the boundedness of the sequences {x,,},
{QMQM ... QMex,}, and using uniformly norm-to-norm
continuity of J on bounded sets, it is clear that

lim ¢(x,, QMQ" - Qx,) =0. (48)

By (29), (34), (35), (36), (40), and Lemma 11, we
conclude that

(U, x,4) < n1¢(” X)) + 0, @( ) + 0, 39(0 w,,)

<(1-a,3)¢ (ax)+an3¢(uw>

<(1-a,3)¢ (ax>+an3(ﬁ ¢(@, QM QM - QMiz,)
+(1- B, (5 QM QM - QM)

< (1= a,3)9(B x,) + a5 (B, [¢ (3 Q" - QMz,)
- ¢>(QM' Q" Mz, QM- QMiz,)]
+(1-B,)[¢(® Q" - Q"My,)
-¢(QMQM - QMy,, Q- QM) )
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S(l - ‘xn,3)¢(ﬁ’ xn) + X3 (ﬁn [‘p(a’ zn) - ¢(va1kzn’ Zn)

_..._¢(Qf\41QfV[z Qf‘/szn’Q{V[z Q{szn):l

+ (1 - ﬁn) [‘p(a’yn) - ¢(va[kyn’yn)
_..._qs(QfVIleVIz .. Qf\/lkyn) QfVIz Qle);n)])
s gb(ﬁ, xn) - ‘xn,Sﬁn [(P(va[kzn’ Zn)
+...+¢(waleVIz .. Q,MkZWQfWZ .. Q{szn)]

_(xn,3(1 _ﬁn) [gb(Qfkan’yn)
+...+¢<Q{‘41Qf‘/[2 Q{V[kyn’ Qf‘/lz wak)/n):l.

(49)

Hence, from (11), the above, and our assumptions, we
obtain the following results

(p(ﬁ, xn+l) < ‘/)(a’ xn) - (xn,3ﬁn¢(Qf\4an’ zn)’
(/)(i:l, xn+1) < (p(a’ xn) - “n,Sﬁn(p(QfWkil wakzn’ wakzn)’

M M.
kZYl’QL 2 ...

O X,01) S B(B x,) — 4,58, ¢(QM1 QM ... Qz,),

(50)

¢(a’ er—l) < ¢(ﬂ, xn) - an,S(l - /‘))n)(p(wakyn’yn)’
¢(ﬁ, xn+1) < ¢(ﬁ’xn) - (xn,S(l - ﬁn)gb(QfWk?lewkyn’ wakyn)’
¢(ﬁ xn+1) < ¢(a’ xn) - an,S(l wakyn’ Q1M2

_/';n)gb(QlMlQlMl wakyn)

(51)

Since {¢(@, x,)} is convergent, we conclude from (i),
(50), (51), and our assumptions that

lim ¢(QYz, z,) =0,

n—~oo

lim ¢(Q"Q"z,, Q"z,) =

(52)
lim ¢(Q"Q" -+ QMez,, Q" - QMiz,) = 0.
lim ¢(Q"y,.y,) =0,
lim ¢(QMQMy,, QMy,) =0,
o (53)

nlg)noo(p(wale\/Iz Q‘le)/n, Q{Vlz QIIVIkyH) =0.
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Now, from (29), (34), (35), (37), and (40), we have

D, X,p11) < & (B X,) + 6, (0 1) + 00, 300 W, )
S (1= a,3)9(8 x,) + @, 30(0 w,,)
< (1-a,3)(i x,) + o, 3(B,0(82,) + (1= B)p(iy,,))
< (1-ay3)¢(t x,) + ,36(1, 2,)
S (1= 0,5)p(0 x,) + 1,5 (P(0 )
- ( —CT||AH2)HP Au, — Au,|*)
<9(@x,) = ,57(2 = 7| A|1*) || PpAu, — Au,[|*.

(54)
Hence, it follows from (54) that

0,57(2 = ct|A|]*) [PpAu, = Aw, ||* < ¢ x,) = $(T X,1)-

(55)
Then, it follows from (i) and our assumptions that
lim [|PpAu, - Au, | =0. (56)
From (29), (34), (35), (37), and (40), we have
¢(a’ xn+l) < an, ¢(a’ xn) + ‘xn 2¢’(a’ un) + “n,3¢(a’ wn)
< (1 - (an)(/)(ﬁ, xn) + ‘xn,3¢(a’ wn)
< (1= ay3)¢(0 x,) + a5 (B,0( 2,) + (1= B,) (% y,))
< (1 an,3)¢(ﬁ’x ) + “n3(:3 ¢(u z ) + (1 _ﬁn)[(P(a’ Zn)
~7(2~ctl|A|]*) | PpAz, — Az,[*])
< (1= a,3)p(0 x,) + o, 3(8 2,)
—,3(1-B,)T(2 - ctl|A|*) | PpAz, - Az, |?
< (@, x,) — a,5(1 - B,)7(2 - cr||A||*) || PpAz, - Az,|*.
(57)
So,

o,3(1=B,)T(2 - ct||A|]*) |PpAz, — Az, ||* < $(@ x,,) = ¢(T X,11)-
(58)

Therefore, it follows from (i) and our assumptions that

llm ||PDAz - Az (59)

oll* =

Suppose that r, =sup, {||f(x,)|, |4, }- Therefore, from
Lemma 5, there exists a continuous strictly increasing con-
vex function g, : [0, 2r,] — [0,00) such that g,(0) =0 and
using (29), (37), Lemmas 2 and 8, the convexity of |.||%,
and the condition relatively nonexpansiveness of f, we have

that

O, X,41) = ‘/’(” K, V1) S B V1)
< ¢(ﬁr ]Xl [an,l]le(xn) oo x Uy + “n,3]X1wn])
= [[a)|* - 2<ﬁ, W xS (%) + o) 1y + “n,SIXlwn>
+ H“n,Jle(xn) a0 x 5Ty wnHZ
= ||ﬁ||2 - 2“n,l<ﬁ’ ]le(xn)> - 2%,2@’ Ix, “n>
= 20,5 (@ T, ) + oty || (50 [+ ]|
+ “n,3”wn”2 — %1%, (H]XIf(xn) —Jx, unH)
<, O(0 f (%)) + 0,2 ¢(8s 1) + 0, 30(8 w,,)
%09, (folf(xn) -Jx, ”nH) <o, (i x,)
+ 0, ,0(0 u,) + 0, 30(0 w,)
- “n,l“n,291(”]X1f(xn) -Jx, ”n”) < ¢(u, x,)
T &%, (H]le('xn) - ]X, ”n”)
(60)

So,

“Ixmll) <9

(ﬁ’ xn+1)'

(61)

%n1%291 (H]le

Since lim,__,_ ¢(%,
the condition (i) that

x,,) exists. Therefore, it follows from

hm 91 ||]X = Jx, ty H = (62)

Because g, is continues function, we conclude that

gy ( lim |17, f ) = T ]| ) = Tim_gy (17, f(5) = T, )
=0=g,(0).
(63)
Therefore,
ng‘?@”& )_]XlunH:O' (64)

Since ];& is uniformly norm-to-norm continuous on
bounded sets, it imply that

i (x,) ~ ]| =0. (65)

Using (13), (65), the uniformly norm-to-norm continu-
ity of Jy on bounded sets, and the boundedness of the

sequences {f(x,)} and {u,}, we conclude that

lim ¢(u,

n—00

»f(%,)) =0 (66)



By (48) and using our assumptions, we obtain that

b(xp 1, )<¢<xn,lx (saTx, 2% + (1= 5,) ], QM QM2 - Qfﬂkxn))
= [|x,]|* = 2%, 5T, X + (1= 5,) T, Q1 QM2 - QMex, )
FlsaTx ot (1=5,)T5, QM Q" - Qi |

S”xn” _25n< n’]X, n>_2(1 n)< n’]X‘QfV[lewz'“Qfkan>
P+ (1= 5,)| Q1 QY - Qe |

= sn¢(xn’xn) + (1 - Sn)¢(xn’ wal Q;MZ Qf\/lkxn)
=(1 —sn)(p(xn, waleV[Z wakxn) —0 as n— o0o.
(67)
Then, it follows from Lemma 1 that
lim ||x, —u,| =0. (68)
n—~ao

Now, by (15), (56), and Lemmas 2 and 4, we conclude
that

(p(un’z ) < (p( n> ]X ( X, U, = TA*]szn) = V(un’]X, u, _TA*]Xan)
< V(. Jx, 1) ‘2<]>?11 (Tt~ TA" Ty k) - u,,,TA*]Xan>

= ¢(un’ un) - 2<])_(} (]X, Uy = TA*]szn) - ])_(1 (]X, un)’ TA*]szn>

< 5 U = 54" Tky) = 5 (O, )74 T |
472 472
< S A T kP < S5 AR Aw, — Pon 2
—0 as n— oo.
(69)
Then, using Lemma 1, we obtain
lim [ju, —z,[| = (70)

n—~oo

Also, from (15), (59), and Lemma 2, and the same way
used for proving (70), we can conclude that

¢(zn’yn) < (/5(2”, ];(1 (]Xlzn - TA*]XZ (Azn - PDAZH>>

n—— 0A0.

(71)

4t 5
SC_2||A|| ”Azn_PDAZn” —0 as

Then, using Lemma 1, we get

lim ||z, = y,| = (72)

n—oo

Now, it follows from (13), (52), and Lemma 1 that

||Zn - Qf\’lesz Qlean = ||Zn - Qf\/[kan + HQfVIan - va[kilQAMan”
+“.+||va[2 Qf\/[kzn — QlMleVIz wakan
—0 as n—o00.
(73)
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Similarly, from (13), (53), and Lemma 1, we have

lim ||y, -

n—aoo

QMQY - QMy, || —0, (74)

then, by (72), we obtain that

lim ||Z _QMIQMZ

n—aoo

Q| =o0. (75)

Now, by (13), (73), (75), and using uniformly norm-to-
norm continuity of /y on bounded sets, it is implied that

» Q‘IVILQfVIZ ...Q{wkzn) =0, Qx]\/lkyn) =0.

(76)

lim ¢>(Z lim ¢(ZYI’Qf\/Il QIA/IZ

It follows from (10), (76), Lemma 2, and the convexity of
||.]]* that

b(2,> W, ( ]Xi(ﬂn]Xl QM QM - QMiz,

+(1=B,))x, QIQY - QMiy,))
=[|2,]1” = 2(z,0 B, Q1 Q" - QMg
+ (1= B, Q1 QM - QMey,)
+[|B,Jx, Q1 Q" - QMg
(1= BT QIQM - QM) |
<|zll? = 2B, (20 T, QN QY - QMiz,)  (77)
~2(1-B) (2 Ty, QU QY - QM)
+B,]| QN QM - QMg |)°

- B[ Q1 Q- Q)|
= ﬁn¢(zn, Qf\/ll QIMz Qf‘/lkzn)
F (1= B )95 Q1QN

—>0 as

Q")

n—— 0.

Now, by Lemma 1, we have lim
Therefore, we obtain from (70) that lim
then by (13), we conclude that

n—>oo||Zn - wn” =0.
w,||=0

n%oo”un_

nl'inoogb(un, w,)=0. (78)

From (66), (78), Lemma 2, and our assumptions, it
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implied that

D1t V1) 0 (s T3, (00 (50) + @,y + s, 0,))
= Jluall* - 2t 01 T, f (%) + Qo p T 1y + 3T W)
o+ [| ot T f (%) + @ e 1 + “n,3]X1wnH2
< Joa* = 20ty {1ty T, £ (30)) = 20,5t T )
- 2“n,3<un’]X1wn> + an,l”f(xn)Hz + ‘Xn,zﬂun”Z

+ an,SHwnHz = “n,1¢(un’f(xn)) + “n,z¢(”n> un)

+a,3¢(u, w,) —0 as n— oo.
(79)
Therefore, by Lemma 1, we have
nlim Vi1 — || = 0. (80)
—00

Let r, = sup,{||v,|l, ||, || }. Therefore, by Lemma 6, there
exists a continuous, convex, and strictly increasing function
g, : [0,2r,] — [0,00) such that g,(0) =0 and

9o (1% = Vull) < (x> ¥in)- (81)

It follows from (40), (81), Lemma 8, and the fact that
x, =K, v,, we conclude that

gZ(Hxn - Vn”) < ¢(xn Vn) < (/)(ﬁ, Vn) - ¢(ﬁ’ xn) < (/)(ﬁ, xn—l)

-¢(i,x,) — 0 as n-— oo.
(82)
Therefore,
lim ||x, -v,|| =0, (83)

because g, is a continuous strictly increasing convex func-
tion. Now, by (80) and (83), we have

lim |ju, -
n—omo

n+1|| =0. (84)

From (68) and (84), we obtain that

limOOHan —an =0. (85)

n—

This shows that {x,} is a Cauchy sequence, so {x,}
converges strongly to a point q € C. Therefore, by (68),
(70), and (72), we imply that {u, }, {y,}, and {z,} converge
strongly to q.

Next, we prove that g € n% F(QM). It follows from (46)
and uniformly continuity of /i on bounded subset of X,

that ]Xle‘/Il Qf% Qf‘/kan _]Xlewz
— 00. Get 5, = QIM1 waz Qlexn; hence, by Definition
9, we have Jy n, + 1M1, =Jx, QY2 QMs ... QMrx, . Therefore,

QMex, — 0 as n

there exists h,, € M,#, such that

M, WM M,
IXth ZQI 3 ... QI kx

[}

h o= n_]Xlrln.

n

(86)

So, by the above observation, i, — 0 as n — 00. On the
other hand, since x,, — g, we can conclude from (47) that 7,
— g. Then, from Lemma 10, 0 € Mg, i.e, g € M;'0=F(Q™
). Similar to the above, by using (46), we can also prove that g
e M;'0=F(QM) foralli=2,3,--k. Hence, g € Nk F(QM).

Next, we show that g € F(f). From (65), (68), and the
triangle inequality, we conclude that

lim |£(x,) =, =0. (87)

n—-00

Hence, g is an asymptotic fixed point of f. Then, F(f)
= F(f) because f is a relatively nonexpansive mapping.
Hence, q € F(f).

Now, we prove that g € EP(g). Since Jy, is uniformly

norm-to-norm continuous on bounded sets, it follows from
(83) that

lim ||Jx %, = Jx,v,|| =0. (88)
n—=aoo

By x, =K, v,, we conclude that g(x,,y) + (Bx,,y = x,)
+(Ur,)(y = x,, Jx, %, = Jx,V,) 20 for all y € C. Moreover,

by the condition A2, g(y,x,)<-g(x,y) for all yeC.
Therefore,

1
9()”xn)5<an’)’_xn>+ r_<y_xn’]X1xn_]len>’ (89)

for all y € C. Using (88), the condition A4, and letting n
— 00, we have that

90 q) < (Bg,y - q), (90)

forallyeC.Let y,=Ay+ (1-A)qforallye Cand A e
(0, 1). It follows from (90), the conditions A1, A4, and the
monotonicity of B that

Ag(m y)+(1=-Ng(yq)
+ By, Ay + (1-2)g=y,) =Ag(np.9) + (1 =A)g (72, 9)
+AByLy =)+ (1=A)(Byi.ga=y)) =Ag(y.y)
+(1=A)gra) + MByp,y =)
+(1=A)(By, =Bg,q—y,) + (1= A)(Bqg,q - y))
SAGY) + AByY = ya)s

0=g(yy2) + (Bypyr—ya) <

(o1)

for all y e C. Therefore, 0< g(y,,y) + (By,»y —,). Using
the condition A3 and letting A — 0, we obtain that 0 < g(
¢ y) + (Bq,y —q) for all y € C. Then, g € EP(g).
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Finally, we prove that g € Q. From (56), we have that ||
PpAq - Aq|| =lim

|PpAu, — Au,|| =0. Therefore, Agq

n—=~oo |

€D, ie, g€ . Hence, g= HQn(ﬂf.‘le(Q:wi))ﬂEP(g) °f(q), and

this completed the proof.

Data Availability

No data were used to support the study.

Conflicts of Interest

This work does not have any conflicts of interest.

References

(1]

(5]

(7]

(8]

(10]

(11]

(12]

M.]J.Bin and Z. H. Liu, “Relaxation in nonconvex optimal con-
trol for nonlinear evolution hemivariational inequalities,”
Nonlinear Analysis: Real World Applications, vol. 50,
pp. 613-632, 2019.

M. Ghadampour, E. Soori, R. P. Agarwal, and D. O'Regan,
“Two generalized strong convergence algorithms for varia-
tional inequality problems in Banach spaces,” http://arxiv
.org/abs/2101.08047.

Z. H. Liu, D. Motreanu, and S. D. Zeng, “Generalized penalty
and regularization method for differential variational-
hemivariational inequalities,” SIAM Journal on Optimization,
vol. 31, no. 2, pp. 1158-1183, 2021.

A. Tada and W. Takahashi, Strong Convergence Theorem for
an Equilibrium Problem and a Nonexpansive Mapping, Non-
linear Analysis and Convex Analysis, W. Takahashi and T.
Tanaka, Eds., Yokohama Publishers, Yokohama, Japan, 2007.
G. Cai, Y. Shehu, and O. S. Iyiola, “Strong convergence results
for variational inequalities and fixed point problems using
modified viscosity implicit rules,” Numerical Algorithms,
vol. 77, pp. 535-558, 2017.

M. Ghadampour, D. O'Regan, E. Soori, and R. P. Agarwal, “A
generalized strong convergence algorithm in the presence of
errors for variational inequality problems in Hilbert spaces,”
Journal of Function Spaces, vol. 2021, Article ID 9911241, 9
pages, 2021.

A. Tada and W. Takahashi, “Weak and strong convergence
theorems for a nonexpansive mapping and an equilibrium
problem,” Journal of Optimization Theory and Applications,
vol. 133, no. 3, pp. 359-370, 2007.

S. Takahashi and W. Takahashi, “Viscosity approximation
methods for equilibrium problems and fixed point problems
in Hilbert spaces,” Journal of Mathematical Analysis and
Applications, vol. 331, no. 1, pp. 506-515, 2007.

L.J. Zhu, Y. Yao, and M. Postolache, “Projection methods with
linesearch tech- nique for pseudomonotone equilibrium prob-
lems and fixed point problems,” UPB Scientific Bulletin, Series
A, vol. 83, no. 1, pp. 3-14, 2021.

G. Cai and S. Bu, “Weak convergence theorems for general
equilibrium problems and variational inequality problems
and fixed point problems in Banach spaces,” Acta Mathema-
tica Scientia, vol. 33, no. 1, pp. 303-320, 2013.

Y. Censor and T. Elfving, “A multiprojection algorithm using
Bregman projections in a product space,” Numerical Algo-
rithms, vol. 8, no. 2, pp. 221-239, 1994.

F. Schopfer, T. Schuster, and A. K. Louis, “An iterative regular-
ization method for the solution of the split feasibility problem

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

Journal of Function Spaces

in Banach spaces,” Inverse Problems, vol. 24, no. 5, pp. 055008
055020, 2008.

Q. L. Dong, L. Liu, and Y. Yao, “Self-adaptive projection and
contraction methods with alternated inertial terms for solving
the split feasibility problem,” Journal of Nonlinear and Convex
Analysis, vol. 23, no. 3, pp. 591-605, 2022.

X. Zhao, J. C. Yao, and Y. Yao, “A proximal algorithm for solv-
ing split monotone variational inclusions,” UPB Scientific Bul-
letin, Series A, vol. 82, no. 3, pp. 43-52, 2020.

S. Reich, “Book review: geometry of Banach spaces, duality
mappings and nonlinear problems,” Bulletin of the American
Mathematical Society, vol. 26, no. 2, pp. 367-371, 1992.

Y. Takahashi, K. Hashimoto, and M. Kato, “On sharp uniform
convexity, smoothness, and strong type, cotype inegualities,”
Journal of Nonlinear and Convex Analysis, vol. 3, pp. 267-
281, 2002.

R. P. Agarwal, D. O'Regan, and D. R. Sahu, Fixed Point Theory
for Lipschitzian-Type Mappings with Applications, vol. 6,
Springer, New York, 2009.

W. Takahashi, Nonlinear Functional Analysis: Fixed Point
Theory and Its Applications, Yokohama Publishers, Yoko-
hama, 2000.

Y. Shehu and O. S. Tyiola, “A cyclic iterative method for solving
multiple sets split feasibility problems in Banach spaces,”
Quaestiones Mathematicae, vol. 39, no. 7, pp. 959-975, 2016.

F. Kohsaka and W. Takahashi, “Strong convergence of an iter-
ative sequence for maximal monotone operators in a Banach
space,” Abstract and Applied Analysis, vol. 2004, no. 3,
p. 249, 2004.

Y. L. Alber, Metric and Generalized Projection Operators in
Banach Spaces: Properties and Applications, A. G. Kartsatos,
Ed., vol. 178, Theory Appl Nonlinear Operat Accretive Mono-
tone Type. Marcel Dekker, New York, 1996.

D. Butnariu, S. Reich, and A. J. Zaslavski, “Asymptotic behav-
ior of relatively nonexpansive operators in Banach spaces,”
Journal of Applied Analysis, vol. 7, no. 2, pp. 151-174, 2001.

D. Butanriu, S. Reich, and A. J. Zas Iavaski, “Weak conver-
gence of orbits of nonlinear operators in reflexive Banach
spaces,” Numerical Functional Analysis and Optimization,
vol. 24, no. 5-6, pp. 489-508, 2003.

S. Kamimura and W. Takahashi, “Strong convergence of a
proximal-type algorithm in a Banach space,” SIAM Journal
on Optimization, vol. 13, no. 3, pp- 938-945, 2002.

H. K. Xu, “Inequalities in Banach spaces with applications,”
Nonlinear Analysis, vol. 16, no. 12, pp. 1127-1138, 1991.

Y. C. Liou, “Shrinking projection method of proximal-type for
a generalized equilibrium problem, a maximal monotone
operator and a pair of relatively nonexpansive mappings,” Tai-
wanese Journal of Mathematics, vol. 14, no. 2, pp. 517-540,
2010.


http://arxiv.org/abs/2101.08047
http://arxiv.org/abs/2101.08047

	Extragradient Methods for Solving Split Feasibility Problem and General Equilibrium Problem and Resolvent Operators in Banach Spaces
	1. Introduction
	2. Preliminaries
	3. Main Results
	Data Availability
	Conflicts of Interest

