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The study is concerned with the Hadamard sequential fractional hybrid differential inclusions with two-point hybrid integral boundary
conditions. With the help of the Dhage fixed-point theorem for the product of two operators and the Covitz-Nadler fixed-point theorem
in the case of fractional inclusions, we obtain the existence results of solutions for Hadamard sequential fractional hybrid differential
inclusions. Finally, two examples are presented to illustrate the main results.

1. Introduction

Nowadays, with the increasing demand of researchers for the
study of natural phenomena, the use of fractional differential
operators and fractional differential equations become an
effective means to achieve this goal. Compared with integer
order operators, fractional operators, which can simulate
natural phenomena better, are a class of operators developed
in recent years. This kind of operator has been expanded and
widely used in modeling real-world phenomena such as
biomathematics, electrical circuits, medicine, disease
transmission, and control [1-6]. Also, some studies in the
biological models with fractional-order derivative have been
conducted in recent years [7-9]. In the past year, fractional
differential operators and fractional differential equations
have been used in modeling the spread of some viruses, such
as Zika virus and mumps virus [10, 11]. All of these have
enabled researchers to discover the structure of fractional
boundary value problems (BVP) and the hereditary nature
of their solutions from various aspects. In this regard, many
researchers investigated advanced fractional-order model-
ings and related theoretical results and qualitative behaviors
of such fractional-order boundary value problems, see
[12-20] and the references therein.

There have been appeared different versions of fractional
operators during these years. Much of the work on fractional

differential equations only involves either Riemann-Liou-
ville derivative or Caputo derivative [21-29]. Guo et al.
([30, 31]) discussed the existence and Hyers-Ulam stability
of solution for an impulsive Riemann-Liouville fractional
neutral functional stochastic differential equation with
infinite delay of order 1<f<2 and the existence and
Hyers-Ulam stability of the almost periodic solution to the
fractional differential equation with impulse and fractional
Brownian motion under nonlocal condition. Ma et al. [32]
investigated the existence of almost periodic solutions for
fractional impulsive neutral stochastic differential equations
with infinite delay in Hilbert space.

However, there is another concept of fractional deriv-
ative in the literature which was introduced by Hadamard in
1892 [33]. This derivative is known as Hadamard fractional
derivative and differs from aforementioned derivatives in the
sense that the kernel of the integral in its definition contains
logarithmic function of arbitrary exponent. Many re-
searchers have studied and obtained some results on the
existence of solutions of Hadamard fractional differential
equations in recent years. Yang ([34, 35]) studied the
extremal solutions for a coupled system of nonlinear
Hadamard fractional differential equations with Cauchy
initial value conditions and the existence and nonexistence
of positive solutions for the eigenvalue problems of non-
linear Hadamard fractional differential equations with
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p-Laplacian operator. Tomar et al. [36] established certain
generalized Hermite-Hadamard inequalities for generalized
convex functions via local fractional integral.

In 1993, Miller and Ross also defined another type of
fractional derivative called sequential derivative, which is a
combination of the existing derivative operators. From then
on, the attention of some researchers was attracted to finding

(CHD +/\CH
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where A, u; y,,€ (0,1],y,,v, € (0,6— oc) with 2<a<¢<3,
1> 9, >0, 8, 8, € R. The symbol CHD points out the
Caputo-Hadamard fractional derivative of order ¢ € {a, ¢,
V1> ¥}, with the notation 17, standing for the Hadamard
fractional integrals of order g € {g;,g,}. The function f
formulated by f: [1, M] x R — R is assumed to be con-
tinuous on [1, M] x R with respect to its both components.

As a generalization of fractional boundary value prob-
lems, hybrid differential problems with different kinds of
boundary conditions have received a lot of attention in
recent years [42-44]. The research in this field started from
Dhage and Lakshmikantham in 2010 [45]. There is a new

HD“(f(f(t)(t))) e F(t,x(t), te(Le),ae (1,2],

x(1)=x(e) =

where ¥D" is the Hadamard fractional derivative,
feC([l,e] xR, R\{0}), F: [1l,e] xR — P (R) is a mul-
tivalued map, and 9 (R) is the family of all nonempty
subsets of R. In [47], by using a hybrid fixed-point theorem

C
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o [w(o) =37 R (s, w(s)
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w(0) = p(w), w(l) =«

where p: C(J,R) — R, .a € R0 € (1,2], CD3+ is the
Caputo derivative, and ®I(! is the Riemann-Liouville inte-
gral of order ¢ > 0, such that ¢ € {$,,5,,...,p,,}. In [48], by
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a connection between the Hadamard fractional derivative
and the sequential fractional derivative [37-40]. In [41], by
using the topological degree theory and Leray-Schauder
fixed-point theory, Rezapour and Etemad studied the ex-
istence of solutions for the following Caputo-Hadamard
fractional boundary value problem via mixed multiorder
integroderivative conditions:

t e[l,M],

(1)

concept of differential equation in the literature which was
introduced by Dhage and Lakshmikantham. They described
this novel differential equation as a hybrid differential
equation and investigated the extremal solutions of this new
BVP by using some useful fundamental differential in-
equalities [45]. So far, there are few studies about the ex-
istence and various properties of solutions for hybrid
boundary value problems of fractional order. In [46], by
using a fixed-point theorem due to Dhage, the authors
developed some existence theorem for Hadamard-type
fractional hybrid differential inclusions problem:

(2)

of Schaefer type for a sum of three operators due to Dhage,
the authors investigated the existence of solutions for the
nonlocal fractional BVP of hybrid inclusion problem given
by

e F(s,w(s)), se]:=1[0,1],

(3)

using the well-known Dhage fixed-point theorems for sin-
gle-valued and set-valued maps, Baleanu and Etemad
studied a new fractional hybrid model of thermostat in
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which the thermostat controls an amount of heat based on
the temperature detected by sensors. This hybrid differential
inclusions of Caputo type are illustrated by
_C (i.;.[x(S) € (D(S,X(S)), 4 € (1,2],36 [0)1])
p(s,w(s))
x(s)
D|———— =0, 4
Lo(s,x(s))] - @
/\CDQ—1|: x(s) ] +[ x(s) ] _o,
L o+ (P(S,X(S)) s=1 (P(S,X(S)) s=1

where 1>0,5 € [0,1],0—1 € (0,1],D = d/ds,°Dj, is the
Caputo derivative of fractional order a € {g,0—1}, the
function ®: [0,1] x R — 9 (R) is a multivalued map, and

(

w(0) =0,

0

Q

0+

w(s)

g(s,w(s))

C

where ¢ € (2,3] 0" >0,7 € (0,1). The function G: [0, 1] x
R — R is continuous, and g € C([0,1] x R,R~{0}). In
[50], by using various novel analytical techniques based on
a — y—contractive mappings, endpoints, and the fixed points

):

@ € C([0,1] x R,R~{0}). In [49], the authors investigated
the following fractional three-point hybrid problem:

G(s,w(s)), se]0,1],

) [ w(s) :| RIQ* |: w(s) ] 0 (5)
gswe) ]l T lglwe) ]l
[ w(s) ] RI@" [ w(s) ] -0
L g(saw(s)) s=0 0 g(s>w(s)) s=1 ’

of the product operators, the authors investigated a new
category of the sequential hybrid inclusion problem with
three-point integroderivative boundary conditions:

[ /e C el w(s)
pl( Dy, + p2 Dy, )[((s,w(s),RIg+w(s))} €S(sw(s), sel0,1],
S
{(sw(s)RIb,w(s)) ]l
] (6)
cl w(s) c.2 w(s) -0
o* ((5>w(5)aRIg+w(5)) s=0 o* ((5>w(5)aRIg+w(5)) s=0_ ’
w(s) Ry w(s) o
| (s ws) Ry w(s) ]l " [{(sw(). R w(s) [y




where ¢ € (2,3],p € (0,1), py, P, 1, €>0, CDé;z and RIO;
denote the Caputo-fractional derivative and the Rlemann—
Liouville fractlonal integral, respectively. Note that © D0 L=
d/ds and CD0 , = d*/ds*. The nonzero continuous real-val-
ued function ( is supposed to be defined on [0,1] X R x R.

x (1)
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& [0,1] xR — P(R) is a set-valued map equipped via
some properties.

Motivated by these problems, in this study, we will study
the following Hadamard sequential fractional hybrid dif-
ferential inclusion with two-point hybrid Hadamard inte-
groboundary conditions:

’ (HD“ +AHD“'1)<p(

tx (), "I x (1))

x (&)
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where a€(12EE(le)pE(Ol)Ar>0(x,,ﬁl€R
i=1,2,D" and HI" denote the Hadamard fractional
derivative and the Hadamard fractional integral, respec-
tively. The nonzero continuous real-valued function p is
supposed to be defined [1,e] x Rx R, and G: [1,e] x R x
R— P(R) is a set-valued map equipped via some
properties.

The Hadamard sequential fractional hybrid differential
inclusion BVP (7) is modeled with respect to the generalized
operators with kernels, including logarithmic functions. In
other words, the presented formulation for the given
Hadamard sequential fractional hybrid differential inclusion
BVP (7) involves two different derivatives in the format of
the Hadamard. The supposed abstract fractional hybrid
differential inclusion problem (7) with given hybrid integral
boundary conditions can describe some mathematical
models of real and physical processes in which some pa-
rameters are often adjusted to suitable situations. The value
of these parameters can change the effects of fractional

e,x(e),HIPx(e)

- 1 d\" ¢ £\ L ()
b f(t)_l“(n—tx)(t&) L(log;) Tds

provided the right side is pointwise defined on [1, 00), where
I'() is the gamma function and log(-) = log, ().

Definition 2 (see [2]). The Hadamard fractional integral of
order f for a function g is defined as

Hihg () = - Jt (log )ﬁ 1925) s >0, (9)

1
I'(B)

provided the integral exists.

)

derivatives and integrals. Moreover, we express that such a
Hadamard sequential fractional hybrid differential inclusion
BVP is new and enriches the literature on boundary value
problems for nonlinear Hadamard fractional differential
inclusions. In this way, with the help of Dhage fixed-point
theorem and Covitz-Nadler fixed-point theorem in the case
of multivalued mapping, we try to find the existence criteria
of solutions for the proposed problem (7).

The rest of this study is organized as follows. In Section 2,
some preliminary facts that we need in the sequel are given.
In Section 3, the existence results of solution for system (7)
are discussed. In Section 4, two examples are given to prove
validity of the results we obtained.

£x(9), 1" x ()

2. Preliminaries

Definition 1 (see [2]). The Hadamard derivative of frac-
tional-order « for a function f: [1,00) — R is defined as

(8)

n—-l<a<nn=[al+1

Definition 3 (see [15]). Letw: [1,+00) — Risa sufficiently
smooth function; then, the sequential fractional derivative is
defined by

"D'w(s)=("D" D% ... D" Yw(s), (10)
where ¢ = (0,0, - --,0,) is @ multiindex.
Lemma 1. For any heC([l,el,R). A function

x € AC([1,e],R) is a solution of the Hadamard sequential
fractional hybrid differential equations:
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Hp® 4 A D™ x () —h(t), tellLelae (1,2], 11
( ) p(tx (), 1 x (1)) e (1
supplemented with the boundary conditions in (7) if and only
if it satisfies the following integral equation:
-1
_ H P t- o (€ Er_lf/lfljs)tlH B JAIH
x(8) = p(t x (0), Ix(t))(A 1Bz[r(r) L(logs) s ( 1 h(r)dr)ds | h()ds]
Al J log— Hs—“xq I 1Hy h(r)dr)ds—/j’ j U (s)ds
|T(r) 1 ),
1O " aa a2
+—t s (log s)* “ds
A 1
(12)
) ﬁr ¢ SR JS A-1H ;o1 B —AJe A-1H
{Al[r(r) 10g2) ><< R h(r)dr)ds gt | “h(s)ds
|l [ e\ JS M-1H B r I-1H
Bl[l"(r) Jl<logs> s ( 1 h(T)dT)ds o & 1 h(s)ds
t
et [ S h(s)ds),
1
where
A = AIBZ - AZBI %0’
_ (13)
3 e e\—1 -1
S F(r)J <log;> s ds,
¢ e r—1 s
_ -1 A1 a-24. % € —A-1 A1 a-2
A, = LS (log s)* “ds T )J <log > s <.[1T (log 1) dT)dS,
gt o B [10g8) o
B, = e T Jl (logs) s 7 ds, (14)

B, =B Jj M1 (log 5)* *ds — P J (lo

I'(r)

Proof. As argued in [2], the solution of Hadamard differ-
ential equation in (11) can be written as

x(t) = p(t,x (1), Hlpx(t))<c0t‘A +ot!

t t
J s (log s)“‘zdsu‘*J U s )ds),
1 1

(15)

r—1 s
gﬁ) s_A_l(J 7 ! (log T)“_2d1>d5
1

where ¢;, (i =0,1) are the unknown arbitrary constants.
Making use of the integral boundary conditions given by (7)
in (15), we obtain

(G )0)-C)
B, B, S I,

where A; and B; (i =
(14), and

1,2) are, respectively, given by (13) and
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o [ er_l—A1s)L1H E)LIH
=g ), o) (]2 s [ 4 s @
B fF T 1H; ¢ 1H ]
=1 L (logs> s <L h(r)dr)ds—/il L “h(s)ds. (18)
Solving (16) for ¢, and ¢, and using notation (13), we find
that
s a B I3
¢ = { [ L log s 1<L#‘1H1 1h(r)dr)ds—oc1£ *L& 1 h(s)ds]
(19)
E T -H] -4 (¢ -Hg
{r( ; (1 ) x(Jl " h(n)dr )ds - e Jls h(s)ds”
A [y -4 € -y
¢ _—{ [r( | Jl( ) (L h(r)dr)ds—[Sl Ls h(s)ds:| "
-1 *A-1H 1 ot LH
[F(r)J (10 ) (JIT I h(T)dT)ds—oclf J- (s)ds]}
t—d(y,G (1)) = inf{|y — z|: z € G(1)}, (21)

Substituting the values of ¢, and ¢; in (15), we get the
desired solution (12). This completes the proof.

For a normed space (X,|-1I), let P, (X)={Y € P
(X): Yisbounded}, 2., (X) ={Y € P(X): Y is compact},
P(X) ={Y € P(X): Yisclosed}, and Peper (X) =
{Y € 2(X): Y is compact and convex}.

Definition 4 (see [51]). A multivalued map G: X — P (X)
is convex (closed) valued if G(x) is convex (closed) for all
x € X.

Definition 5 (see [51]). The multivalued map G is bounded
on bounded sets if G (B) = U ,zG(x) is bounded in X for all

B € &, (X) (ie., sup,p{sup{lyl: y € G(x)}} <00).

Definition 6 (see [51]). A multivalued map G is called upper
semicontinuous (u.s.c.) on X if for each x; € X, the set
G (x,) is a nonempty closed subset of X, and if for each open
set N of X containing G (x,), there exists an open neigh-
borhood /# of x,, such that G (/4 ))CN.

Definition 7 (see [51]). A multivalued map G is said to be
completely continuous if G(B) is relatively compact for
every B € P, (X).

Definition 8 (see [51]). A multivalued map G has a fixed
point if there is x € X, such that x € G(x). The fixed point
set of the multivalued operator G will be denoted by FixG.

Definition 9 (see [51]). A multivalued map G: [0,1] — P,
(R) is said to be measurable if for every y € R, the function

is measurable.

Lemma 2 (see [51]). If the multivalued map G is completely
continuous with nonempty compact values, then G is u.s.c. if
and only if G has a closed graph, that is, x, — x,, ¥, —
y., and y, € G(x,) imply y, € G(x,).

Let C([1L,e],R) denote a Banach space of continuous
functions from [1,e] into R with the norm |x| = sup,c(;
|x (£)]. Let L? ([1,e], R) be the Banach space of measurable
tunctions x: [1,e] — Rwhich are p-th Lebesgue integrable
and normed by [xll;, = ([} [x(£)[Pdt)"?.

Definition 10 (see [51]). A collection of selections of mul-
tivalued map G at point x € C[1,e] is defined by

Sex ={v(s) e L' ([Le]): v(s)

(22)
G(t,x(t),HIPx(t)) fora.e. t € [l,e]}.

Definition 11 (see [51]). A multivalued map G:[1,e]xR*> —
P (R) is said to be Caratheodory if

(i) =G (t, x, y) is measurable for each x, y € R

(ii) (x, y)—G(t,x, y) is upper semicontinuous for
almost all ¢ € [1,¢]

Definition 12 (see [37]). A function x € AC([l,e],R) is
called a solution of problem (7) if there exists a function
veL'([Le],R) with v(t) € G(t, x(t), HI’x (1)), ae. on
[1,e], such that
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' Hp® 4 AHp™! x(®) =v(t), aete (Le)
( + ><p(t,x(t),HIPx(t)) v(t), aete (l,e)

a( x (&) )zaHf< x(e) ) o3
1 P(f:x(f), HIpx(f)) ? p(e,x(e), HIpx(e)) ’

ﬁ< x(e) )ZﬁHf< x(©) )
\p(ex(e). "I’ x(e)) P\ p(6x 0. x(®)

Lemma 3 (see [52]). Let X be a Banach space. Let G: [1,e]x
R* — P . (X) be an L'-Caratheodory multivalued map,

cpsev

and let © be a linear continuous mapping from L' ([1,¢e], X)
to C([1,e], X). Then, the operator

®°S5: C([Lel, X) — P, (C([1,€], X)), x— (6S5) (x) = (S5, ), (24)

is a closed graph operator in C([1,e], X) x C([[L,e], X).

Lemma 4 (see [53]). Let X be a Banach algebra and
A: X — X be a single-valued and B: X — P, ., (X) bea
multivalued operator satisfying the following:

cp,ev

(i) A is single-valued Lipschitz with a Lipschitz constant
k

(ii) B is compact and upper semicontinuous operator
(iii) 2MK < 1, where M = |B(X)|

Then, either

(i) The operator inclusion x € AxBx has a solution or
(ii) The set & ={u € X: yu € AuBu, u>1} is unbounded.

Definition 13 (see [51]). A multivalued map G: X — &£
(X) is said to be a contraction mapping if there is a constant
0<A<1, such that

Hy(G(x), G(y) <Alx = ylix (25)

for every x, y € X, where H,; is the Hausdorff metric.

Lemma 5 (see [54]). Let (X, d) be a complete metric space. If
N: X — P;(X) is a contraction, then Fix N + .

3. Main Results

In this section, we will study the existence results of solutions
for problem (7). First of all, we fix our terminology.

Let X = C([1,e], R) denote the space equipped with the
norm |[x|| = sup;c(;lx(£)]. Observe that (X,[-|) is a
Banach space, and (X, || - [|) with multiplication given by (x -
x')(s) = x(s)x' (s) is a Banach algebra.

Now, we enlist the assumptions that we need in the
sequel.

(H,) The function p: [1,e] x RxR — R~{0} is
continuous, and there exists a bounded function ¥,
with bound |[¥|, such that ¥ (¢) >0, a.e.t € [1,e], and

lp (t. %1 1) = p (£, %20 32|
S‘I’(t)(|x1 - X,| 4]y, —yzl), (26)
aete[le], Vx,y,x5¥, €R

(H,)G: [1,e] x Rx R — X is Caratheodory and has
nonempty compact and convex values

(H;) There exists a constant p, € (0, p) and a function
g € LYP1 ([1,e],RY), such that

IG (¢, x, )| = sup{lvl: v € G(t, x, y)} < g (¢), (27)

For all x, y € R and for a.e. t € [[1,e].
(H,) There exists a positive real number 2, such that

R> P0M1 ”g"LI/m

—_ (28)
1- M0M1 ”g"y/m

where MoM,||gll e <172, py = supyepy o lp (£, 0,0)].

(Hs) There exists a continuous nondecreasing, sub-
homogeneous function ®: R* — R* (that is, ® (ux)
<u O(x) for all p>1 and x € R") and a function
¢ e LYPi([1,e], RY), such that

IG (. x, )l = sup{lyl: y € G(t, x, y)}

(29)
<c (D (x| +1yD),
For each (t,x,y) € [1,e] x R%
(Hg) There exists a constant r > 0, such that
poMy (1 + 1T (p+ 1)l P (r) (30)

1- MM, (1+ UT(p+ D)lpun®(r)

where
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1 1
MoMy| 1+ 5 JIllum @ (r) <5, po = sup

£,0,0)|. 31
T(p+1) Sup p(50,0) (31)

< 2,

(H,)G: [l,e] xR* — @CP (R) satistying the condi- Ip(t,x )l <n(®), ¥t x, y) € [1e] xR (32)
255111 ?x(.,y))c’ ey 22[1’ e} — P¢p(R) is measurable for In assumption (Hg), H, is the Hausdorff metric, where

’ o _ B d is the Euclidean metric in R defined by d(x, y) = |x — y|
(H)H, (Gt ) GUEIN<CO(x-F +1y =3 forx, y e R
for ae. te[l,e] and for all x,y,X%, yeR with
(eLVPi([1,e],R*) and d(0,G(t,0,0))<((t) for a.e.
te(l,e].
(Hy) The function p: [1,e] x Rx R — R~{0} is
continuous, and there exists a function € C([1,e],
R*), such that

Furthermore, we set the notations:

o] | [(ec = D|B,| +|B ]
Pl =D) [ T(a- DI (r+ D[ +a)’ P (1-py)+(1+a) 7]

|ﬁ2|[(0‘ - 1)'A2' +|A1|] (log &‘)(1+a)(1—p1)+r+1
rr(“— I)F(T + 1)[(1 +a)27P1 (1 _pl) + (1 +a)1—p1]

|B,|[(a = D] A,] +|Ay]] | |[(a = 1)|B,| +|B, |] (log g)(+a) (1-p1)+1
} +
Ta-D[(1+a) " (1-p)+1+a)™] Tla-D[1+a) P (1-p)+A+a) "]

+ |A] (a 1)
Ta-D[a+a’ " (1-p)++a ][’

M :L l‘lelBZl N |ﬁ2||A2|(10g f)(lm)(l_Pl)”“
A= Drers 1)[(1 +a) P (1-p)+(1 +d)1_P‘] [(a—1I(r+ 1)[(1 +a) P (1-p)+(1 +a)1_P‘]

I“IHBZI(IOg E)(1+ﬁ)(1*pl)+l . |ﬂ1||A2|
Ta-D[1+a’ P (1-p)+1+a) ] T(a-D[1+a)’ P (1-p)+(1+a) ]|

M, = 1 l“2||B1| N |/32||A1|(10g E)(l+ﬁ)(1fpl)+r+1
P [Na- DI+ D[+ P (1-p)+(1+a) "] T@=DIr+D[A+a) " (1-p)+1+a) "]

ja[|B.[ Qog 9o B.]|4
T-D[1+a P (1-p)+(1+a) "] Ta-D[A+a) " (1-p)+1+a) ]|

oa—2 € P
191 = supie ¥ (1 7l = supreqy g (Ol a = — , Ml = (Jl IC(t)I”Pldt) .
1
(33)
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Theorem 1. Let the hypotheses (H,)-(H,) be satisfied. Proof. Consider the operator /: X — 9 (X) defined by

Then, inclusion problem (7) has at least one mild solution on

C([1,e],R).
-1 e —
Hx(t) = {w e C([Lel, R): w(t) = p(t,x(t),HIpx(t))<% {Bz[% Jl <10g§> S
s 4
X(L A-1Hp v(r)dr)ds—oclf Jl A-1Hp v(s)ds]
i3 r—1 s e
-A, [% L (logg) s ><<J’1 A-1Hp v(r)dr)ds - Be” J-l A-1Hp v(s)ds]}
+ % <l‘_A Jz $1 (log 5)“_2d5> (34)
I3 r—1 s e
. {Al |:1"€2r) L <log§> s x(L A-1Hp v(r)dr)ds—ﬁ1 Jl A-1Hp v(s)ds]
% (¢ e\ i f Al et af s 1H]
-B, [TT) Jl (logg> s (Jl T V(T)dT)dS - J v(s)ds”»
t
+t_AJ A-1Hp v(s)ds),vescx},
1
and we define two operators ¢/: X — X by and #: X — P(X) by
dx(t)=p(t,x(),"I"x(1), telle, (35

[ris o) (] o s
[ tou] gy L () s (e e s s
(ol )

x(ﬁ A= 1H e (T)dT)ds—ﬁ1 Ji A-iHT v(s)ds]

[— A R R |

t
+t_AJ A-1H v(s)ds, ve SG)X}.
1

Bx(t) —{weC([l e, R): w(t) =%{

(36)
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Observe that 4 (x) = A xBx. We will show that the
operators & and 9 satisfy all the conditions of Lemma 4.
For the sake of convenience, we split the proof into several
steps. O

ldx(t) — oy ()| = |p(t,x(t),HIPx(t))

<Ol - y O+ x () - "

Journal of Function Spaces

Step 1. o/ is a Lipschitz on X, that is, (i) of Lemma 4 holds.
Let x, y € X. By H,, we have

-p(ty®," 1" y ()|

Py(t)‘)

t\?

t —11
SI‘I’(t)I<|x(t) y(t)l+r( )J (1 g—) ;IX(S)—y(S)IdS>

< I‘I’I(le -yl +

I/\

O
(le I+ 5
(

1+1“(1+p))

Therefore,

|lx -yl = sup |x(t) -

te[l,e]

i1+ Vix—
- I'(1+p) x=rh

=5 {a [ ()

dy(t)]

(38)

lx = ¥
I'(p)

log t —1 Pid 1
J (log t —log s)P~'d 0gs> (37)

=yl (log t)f
F(p)

>)
)le yll)

=l

for all x, y € X. So, o is a Lipschitz on X with Lipschitz
constant M, = ¥ (1 + /T (1 + p)).

Step 2. The multivalued operator 9 is compact and upper

semicontinuous on X, that is, (ii) of Lemma 4 holds.
First, we show that % has convex values. Let

wy, w, € Bx, and then, there are v}, v, € Sg,, such that

A-1Hp v (T)dr)ds o & J A-1H v (s)ds]

I3 r—1 s e -
-A, [% L <log§) s x(L A-IH Y v (T)dT)ds—B1 Jl ST 1v,-(s)ds:”
1/ ot . £ N
+K(t ALSA 1(log s) 2ds){A1 [% L <log§) s IX(L A-1Hp v (T)dT)

B Ji et (s)ds] [r"(‘zr) Ji (logar-lﬂq(ﬁ

t
+t_AJ A-1Hp v (s)ds,
1

A-1Hp v (T)dT)dS— a & J A-1Hy v (s)ds”
1

(39)
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i=1,2,t ¢ [l,e]. For any 0 € [0, 1], we have

Ow, () + (1 - O)w, (£)

Gk (IOgi)r_ls*“(f I (B (1) (1 vy () s

_alg-*j M Gy, (s) + (1 - O)v, (5))d ]

r—1 s
A [F[zzr) J <10g§> s X(L . (9V1(T)+(l —H)VZ(T))dT>

N

—ﬁlef’\ r A-1Hp (91/1 (s) + (1 -0, (s))ds]}

1 t ﬁ 4 &' =1 (40)
A Lol [
A[ (9v1(7)+(1—e)vz(ﬂ)df)ds—ﬁle [ v, 5+ (1 - v, )

1

_B J (1o 5>r_ls*)‘*‘(r L (G, (1) + (1= Oy, (1) de )ds

1 F( ) g . 1 2
_alﬂj I Gy, (s) + ((1—0)v2(s))ds”»
+ JZ ST Gy, () + (1= O)v, (5))ds,

where V(t) = (v, (t) + (1 - 0)v, (1) € G(t, x(t), TTx(t)) Next, we show that 9% maps bounded sets into bounded

for all t € [1,e]. Hence, Ou, (t) + (1 - O)u, (t) € Bx, and sets in X. To see this, let Q be a bounded set in X, and then,
consequently, %Bx is convex for each x € X. As a result, B there exists a real number r >0, such that ||x||<r, Vx € Q.
defines a multivalued operator : X — £, (X). Now, for each h € Bx, there exist v € S, such that

=3 o ) ([ £
Al [ ) e vmdsn
e () (] e
e ol e o]

t
+ﬂj AHE O s
1

(41)
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Then, for each t € [1,e], using (H,), we have

|h(t)|s%{|32|[% Ji(log%)r_ls_A_l<Lr’\ I o)l )ds o r -1 H1“|v(s)|ds]
() e )
. ﬁ (t" Jtl &1 (log s)“ds>
x{|A1||:% Jf (log§>rls_’1_1><(ﬁ A1 |v(‘r)|d‘r>ds+|ﬂ1|e_ALji 11ty Iv(s)lds:|
B 1|[r|(2|)J ( E)"‘S-quj #-IHI“’I|V(T)|(1T>(1$+|ocl|5'A r d-1H Iv(s)lds”»

+t‘*r I (6)lds
1
r—1 s . 3 o
%{| A 1|"(2|),[ < ) s_A_1<LTA_1HI 1g(T)dT>ds+|a1|E_’\LsA_1><HI 1g(S)ds]
18, ¢ AR T -H ! -4 (¢ g
|l log s ( R g(r)dr>d5+|/31|e “1 g (s)ds
L g a2
+M|(t Ls (log s) ds)
& r—1 s B
x{|A1||:% Jl(log§> s_A_l(JlT)‘_IHIaflg(T)dT>d5 +|ﬂ1|e_AJ A-1HT g(s)ds:|
e r— s 3
+|B ||:I[(2|)J' <logg) 15_1_1 X(J A lH (T)dr>ds+|ocllf J A= lH (s)ds]}
1
) Jt AU (9ds
1
"g”Lm“ l“2| ¢ e\ S ' T\4 21-py ~1/1-p, o
Sw{wﬂ[m Jo sty ([ (o)) s
Iall ¢ . s s\ @ 2/1-p; . I-p
’ [(a-1) Jls L (log;> ’ Pldr ds
|ﬁ2| ¢ § ! Y N Y a=2l=py o VP o
+|A2| F(oc—l)F(r) Jl (lOg;) S JIT (J (log ) PdU) dr |ds
|ﬁ1l e $\ & 2/1-p, C1-p, I-p
+1"((x— 1) Jls L (log;) T ds
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([ s il i £ (v6) 5
([ (g™ arrae) e oo g ([ ) )
e N I R (K C S M R ™
(] oty )|
() <log;>“ >
et o b 1 o) ([ ([ el ) e
T ) A imm) ds}
Hz'[r(a Vji)F(r) 1( ) (ﬁf_l(ﬁJ:(logg)a_Z/l_pléd")lpldf)‘“
r(!fl—' ) Isl(L I, <1°g;>“_m_m %dT>I_Plds] }
e (] o) e [ )
T ([ o)™ ) Y L o (] )™ )
o [ o) ([ (1 o)) o
e o ([ o) ) e gt [ ([ st o) s

gl || “(100E) s (log 5)1+@ (1-pi)+1
< |A] J[|32||:r(tx— l)r(r)[(l +a)’ P (1-p)+(1 +a)1—pl] L ( Ogs> s (log s) ds

| |0£1| (lOg E)(1+a)(l—p1)+1
T(a-D[1+a)? " (1-p)+1+a) 7]

J,(
J
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4 I3 r—1 1 (1+a) (1- p,)+1
+|AZI[F(O‘— DI (1 +a) P (1-py) +(1+a) "] X Jl (10g;) s~ (log s) ds

B

4
T

I'(a—

gl e I,

1)[(1 +a) P (1-p)+(1 +a)1‘f’1]H

|A] (& -

1) {lAll[r(a— DI +a)* P (1-p)+ 1 +a) "]

i1 r—1
X J (logf) s ' (log 5) MO (=Pt g 4
1 s

|y |

|B,]
Ia-D[(1+a) P (1-p)+(L+a) P

o— ‘ 0 —e T (1+a) (1- p; )+1
1 1 1
1||: ( D (1’)[(1 a)z_Pl(l_P1)+(1+a)l_Pl]XJl( gs) s (log s) ds

|0(1| (lOg 5)(14—(1) (1-py)+1

’F(a—1>[<1+a>2-f’1<1—pl>+<1+a>l-f“]”

||g||L1/p1
F((x— D[A+a)* P (1-p)+1+a)" Pl]

hence,

Il < M ligl e (43)

Therefore, % (Q) is uniformly bounded.

< e [ es) (]
Jj (log§>rls%_1 x(Jj A-1Hp

Lo (" aa a2
+A<t Jls (log s)™ “ds

A-1Hp v(r)dr)ds - oclff J

1 "g"Ll/m >
(42)

Next, we show that 9% maps bounded sets into equi-
continuous sets. For this purpose, we assume that Q be, as
above, a bounded set and h € %Bx for some x € Q, and then,
there exists a v € S5 ,, such that

£ .
ST 1v(s)ds]

1

“ly(adr)ds - e L A-1H ] (s)ds”

(44)

i ’lv(r)dr)ds—ﬁle‘lr Ao v(s)ds]
1

4
1H1’1v(r)dr)ds—a1£‘*J A-LH T v(s)ds”
1
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Thus, for any t,,t, € [1,e], t, >t;, we have
| (t,) - h(t)]
M Upy |, — _ M upy |, By a— BN a—
S72|:Z7|||L/p 'tzA - t1A| +73|:i|||“) £ L $ " (log $)* *ds — 1, Jl $ ! (log $)* 2ds
t, 3
(1 +a21g|ivﬁl¥l(a— 1) & L $7 (log 5) (P ds - 1! L 7! (log 9 =
(45)
Mollgllpie -2 -ap . Msllgllpin (1,2 (log )™ (log s)*
S e R v (IR B I = ” 1 a
gl o[ e toton) Ly [ Qog 9402
(1+a) T (a~1) - s e ” s ’

—0,

independent of x € Q as t, —t, — 0.

Therefore, % (Q) is an equicontinuous set in X. Now, an
application of the Arzela-Ascoli theorem yields that 2 (Q) is
relatively compact.

In our next step, we show that 98 is upper semi-
continuous. By Lemma 2, 9 will be upper semicontinuous if

0= {m e (o) ([
-4, [lfij’) jf <log§>r_1s’\1 x(Jsl e

>

+ L <t)‘ Jtl s’\’l(log s)“zds)
«{A [Ffij’) J (10
= [r( ) r <1°g

t
+t7lj A-1Hp v (s)ds.
1

N

g§)r_ls—“ xquﬂ L ()dr ds - et L A1)

we prove that it has a closed graph. Let x,, — x,, h,, € Bx,,,
and h, — h,. Then, we need to show that h, € Bx,.
Associated with h, € Bx,, there exists v, € S , such that
for each t € [1,¢], ’

¢
Y (T)dT)dS— a & L i-1H ol (s)ds]

v, (e )ds - e jl U )ds:| }

(46)

(s)ds]

5)7*15,11,1<j'i A-1H 1/ (ﬂdr)ds— & J'j A-1H[ v (s)ds:H
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Thus, it suffices to show that there exists v, € S¢ . , such
that for each t € [1,e],

0= o [ oo )
Al () (oo [
A
Al () (o )
AT ]

t
+tflj A-1Hp v (s)ds.
1

(47)

Let us consider the linear operator ©: L!([1,e],R)
— C([1,e],R) given by

v(H)—0 (v) (1)

oy ) a0
Al e ]
v (t-* L &1 (log s)“‘zds> (48)
BT g ageseonion
a0 ]

t
+t_AJ A-1Hp v(s)ds
1
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Notice that the operator ® is continuous. Indeed, for
v, v, € L*([1,e],R) with v, — v, in L'([1,e],R), we
obtain

1©(v,) (&) = ©(v,) D

e r—1 s o B &
m”{ [F( )j (logf) 57171<'[1TA71HI l(vn(r)—v* (T))dr)ds—(xlf Aj A-1Hp ( (s) -, (s))ds]
r-1 s e
-A, |:F%’) J- (log§> sA1 x(Jl A= 1H o 1( (1) - v, (1'))d1’)ds—ﬁlef)L J-lslleIa_l(vn (s) —v, (s))ds:| }H

r—1 s B
" al(a- 1)”{ [rliz)J (1°g§) ([ A @ - v ) as )

—ﬂle_)L K A-1HT (v (s) - v, (s))ds]

-B, [% Ji <10g§>r_157)‘71<‘rl A-1H (v (1) — v, (T))dT)dS—OC157A ﬁ AT (V (s)—v, (S))dS”’”

+ Jt s (v () = v, (s))ds|, Vtellel,
1

which implies that ® (v,) — ®(v,) in C([1,e], R). Thus, it follows by Lemma 3 that ®°S;; is a closed graph
operator. Furthermore, we have h,(f) € ©(S;, ). Since
x, — x,, therefore, we have

. -1

“2 e e r—1 a1 s 1 a1 2 - 1H
e {Bz[m Jl <logg) s <J1 2 v, (T)d‘r)ds -, ,[1 (s)ds]
B, (¢ AN e 1H a[C A 1H]
h [F(r) Jl (log;> ’ X(Jl (T)dT>ds_ﬂl Jl v (S)ds]}
1 ) ¢ ) " & r—1 L
+g(f o) ] L(logé)

h,(t) =

(50)
><<J Ay (e )ds - et J S (94|
1 1
a e exr—1 s &
_Bl|:1“(2r) L(logg) s 1(J1 A-1Hp v (T)dT)dS— o & J-l A-1Hp v (s)ds”»
t
+t_)‘J L (s,
1
for some v, € SGx Step 3. Now, we show that 2MK < 1, that is, (iii) of Lemma 4

Asa result we have that the operator 9 is compact and ~ holds.
upper semicontinuous. This is obvious by (H,) since we have
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M =|B(X)|l = sup{|Bx|: x € X} < M,llgll > (51)  conclusion (ii) holds. We show that conclusion (ii) is not
possible.
and K = M,,. Supposed the conclusion (ii) is true. Let u € & be ar-

Thus, all the conditions of Lemma 4 are satisfied, and a  bitrary. Then, we have, for A>1,Au € Ju%Bu, and then,
direct application of it yields that either conclusion (i) or  there exists v € S5, such that

_ 1.‘7/1 o e eN’-l
u(t) =2 lp(t,x(t) I x(t))( {B |:1“(2)J <log—> g1

s ¢ _
. (J- A 1pv(r)dr)ds - alf_lj ST 1pv(s)ds]
1
r 1 s 3 e w
[F(r) st X(L T | 1pV(T)dT>dS - /31e_A L ST 1pv(s)ds:| ]»

£ r—1
( $ 1(log )Y st){ [% L <log§> Pt (52)

><<j T 1pv(r)dr)ds —ﬁle% J ST 1pv(s)ds]
1 1

—Bl[% J'i (log§>Hs’A’1(J'i A-1H Y V(T)dT)dS— & r T 1PV(S)dS”

t —
+t”\J S 1Pv(s)ds),
1

and so, for all t € [1,e], we have

(O <A p(tu (), " T (1))

t_/\ r—l__ s

G i o
I3 fr—177 s e

B () i s wndsn

J
o L

X(J A1 |v(r)|df)ds+|/51|e‘*ﬁ S (9las]

+|
1
+7
A

A,|

r 1
rl— (105%) s‘“ql U (o)l )ds +ay g J 11y |(s)|d5”>

t .
‘*J SHL llv(s)lds)
1
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< [|p(t,u(t),HIpu(t)) ~p(£,0,0)] +lp (2,0, 0)|]

19

(G B o7 ]
Sl J ) s w»ds}}
R

A
J A=1H |v(r)|d1)ds+|ﬁ1|e7’\ stA o | (S)|ds]

r 1 s
|et, 1 —A—l(J -1
[—r og s lr’\

HI“’1|V(T)|dT)ds+|al|f‘*j ) (s)lds”»

_ ¢ _ a—1 1
*jls* T |v(s)|ds)sM1||g||L1/m[uwu(l+m—+p))nun+ Po]-

Therefore,

lull = sup |u(t)]

te(l,e]

< My lglp | 190 14— Yjull +
= 1 g Ve r(1+p) PO >

where we have put p, = sup,.[;lp(£,0,0)]. Then, with
|lull = %, we have

(54)

R < P0M1 ||g||pr1

< ————~——, (55)
1-MyM, "g”Ll/m

This is contradictory. Thus, conclusion (ii) of Lemma 4
does not hold by (28). Therefore, the operator equation
AxPBx and consequent problem (7) have a solution on
[1,e]. This completes the proof.

Theorem 2. Suppose that the conditions (H,), (H,), (Hs),
and (Hg) hold. Then, inclusion problem (7) has at least one
mild solution on C([1,e],R).

(53)

Proof. The proof is similar to that of Theorem 1 and is
omitted. O

Theorem 3. Suppose that the conditions (H,), (H;), and
(H,)-(H,) hold. If

1
dg = M1<1 + m+p)) (hghi P2+ m) < 1
(56)

where My, I, 19l 1Nl Lvs, are given by (33); then, inclusion
problem (7) has at least one mild solution on C([1,e], R).

Proof. Observe that the set S;, is nonempty for each
x € C[1,e] by assumption (H,), and thus, G has a mea-
surable selection. We now show that the operator
N:Cll,e] — P(C[1,e]) satisfies the assumptions of
Lemma 5. To establish that /#'x € 2,(C[1,e]), for each
x € C[l,e], let {w,},., € #/x be such that w, — w as
n—> oo in CJ[l,e]. Then, w € C[l,e], and there exists
v, € Sg» such that for each t € [1, e], we have

wn(t)zp(t,x(t) I x(t))(t_A {Bz[roéi) Ji (1°g§>r_15%71(J'51 el (T)dT)dS— a & r A-iHT v (s)ds

—Az[% J'j <10g§)rls_)‘_l<jl S (T)dr)ds—ﬁl A jj e, (S)dS:H’
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AL
X{Al [% Jf(loggus‘*‘l(jl b-1H (T)dr)ds—ﬁle jl A1H (s)ds]
e, <logz>“s-l-l<£fﬂ e [ ]

t
+t7’\J A-1Hp v (s)ds),
1

(57)
with v, (t) € G(t, x (1), 11 (1)), t € [1,e]. converges to v in L'[1,e]. Thus, v € S5, and for each
Since G has compact values, therefore, we can pass onto a t € [1,e], we have w, (t) — w(t), where
subsequence (denoted in a same way) to obtain that v,
H P t o (¢ e\ ! i ST/\—IH a1 DL IH [
w(t):p(t,x(t), I x(t))(T {Bz[m J1<log;> s <L I v(T)dT)ds—oclf J v(s)ds]
A B lfr_lfaf1 S)LIH 461111
-A, og=| s v(T)dT ds - e v(s)ds
I'(r) s 1 1
( J A= "(log s)* 2ds)
(58)
r—1 s e
x{ [Fﬂ—,[ (log ) s_A_l(j A-1H (T)dT)ds—ﬁle J A-1H (s)ds:|
1 1
o, (¢ e\l 1/ (5 alim.a-1 O ff
-B, [Ti‘) L(log;) s 1<J’11’\ 1H v(r)dr)ds—alE AJI A-1Hp (5)ds”»
t
+t_AJ A-1Hp v(s)ds)
1
Hence, w € /4 (x). where A, is defined in (56), and d, is the metric induced by

Next, we show that ./ is a contraction, that is, the norm | - || in C[1,e].
_ _ _ For this, let x,X € [1,e] and w, € //x. Then, there exists
< —
Hy (Vo ¥Z) < dollx =%, VX € X, (59) v € S such that for all t € [1,e], we obtain

-1 e -
w, (1) :p(t,x(t),HIPx(t))(t {Bz[ro(cz) J <10gf> 157)“1

. <rl ‘r}FlHIa_lv1 (T)dT)dS - “154 Ji ST 2 (s)ds]

r=1 s . e
_Az[l"/iz),[ (logg) 57171<J-ITA71HI lvl(r)d1>ds—/51€7" Jl A-1H Y 1(s)dsj“»
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1/ (" . § RN
S el )

><<Jj A1Hy v (1) dT)dS Bie AJISA 1HIOHV1 (s)ds]

-B, [r"(czr) Ji <log§>r_ls’l’1 x(ﬁ T/FIHI“_IVI (T)dT)dS - “1571 Ji A-1H e (s)ds”

t
+t_AJ' A-1H T vl (s)ds)
1

(60)

By (H;), we have We define U: [1,e] — .@(1;) by U(l;) ={yeR |y,
_ _ ®) =yl <{(@) (Ix(8) = x (O] + [TT7x () - "TI°X (t)])}. As the
Hdl(G(t,x(t),HIPx(t)),G(t,x(t),HIPx(t))) multivalued operator V (t) = U@)NG(t,x (1), " 17% (1)) is

(61) bl i

_ H.P H.P_ measurable (proposition I11.4, [55]), there exists a function

s((t)(lx(t)—x(t)|+| Fx()-"1 x(t)|), v, (t) which is a measurable selection for V (t). Hence,
v, (t) € G(t,%(t), T 17% (1)) for a.e. t € [1,e] and

for a.e. t € [l,e], and then, there exists y € G(t, x(t),

HD% (1)), such that [y (8) = v (O] <L (1 (1) - X (1)
[y, (8) = ] <L) (1 (1) - X (1) {10 - "I'7@)]). aetelLel
62
{10 - "I'5(0)]), aetelLel (©2 (63)

Let us define the function w, (t),t € [1,¢] by

w, (6) = p(t% (0,71 x(t))(t {Bz[r"gi) L (1og§)r_1s*1
(L S (dr)ds - o fs)‘ et (s)ds]
—Az[% f(logg)r_ls)ll<rl gl (T)dT)ds ﬁle**r il (s)ds”
+ % (t_’l rl &1 (log s)“‘zds){A1 [% Jf <log§)r_1s_)‘_l (64)

x(jj# M1y (e )ds - ﬁle‘*ﬁs‘ i vz(s)ds]

e . <logs>f'w<ﬁ P )i [0 o]

t
+t7’1‘[ A-1Hp v (s)ds)
1
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Then, we conclude that

|w, (8) = w, (O] < [p(t, x (0, "I x () - p(t, % (1), " T"% (1)

(5 {| 2'“(3”( ) ([ olaras el L ol
14, |[r|€2|)j <1ogf)r_ls“(jj 2y (ofar s g et [ A 1(s>|ds”»
(e oo sas [ I (oef)
(J i) e 4 o
+|B 1|[r|(2|)j (1og) s ([ 21 v (ol o j 1 |v1(S)|d5]}

+t_AJ’Z il 1(s)|ds)
+|p(t,§(t) I x(t))|< {|B2||i1|“(2|)1 <log )‘ls‘l—l<ﬁ A-1H |v1(‘r —v,(0) |dr>

+|a1|£‘*j HT lvl(s>—v2(s>|ds]

4 r-1 s
+|A2|[r|€2rl) L(log‘D s*“x(jl A-1HT |V1(T)—v2(T)|dT> (65)

+|ﬁ1|e*" Jj M-1H [ |v1 (s) —Vz(S)|ds”»

1 ~ t ~ - r—1 o
+K(t AJ'ls)L 1(log s) 2ds>{|A ||:I|“/iZ|) J (log§) e
x(Jl TA_IHIWI|V1(T)—VZ(T)|dT>dS+|ﬂ1|e_AJi Ty (9) = vy (s
+|B,] l% L <log§)Hs+l (J A oy (1) = v, (‘r)ld‘r)ds

1
4

+|0cllff)‘J-ls’FlHI(x_llv1 (s)—v2(s)|ds”»

ot IH
+t ,[1 |v1 (s)—v, (s)|ds>

< My llgllm|p(tx (0, "1 (0) - p(£ %0, "7 ()| + M1||(||Lupl<1 *ﬁ)"x -
x|p(t%(0), " 1'% (1))

1 _
< M1<1 + T(1+P)> (gle ¥ +InINE p )l = X0, VE € [Loe],
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which yield By interchanging the roles of x and X, we obtain a similar

relation, and thus, we get

”wl - wz“ = sup |w1 (t) - wz(f)l
te[Le] Hy (WVx, /X) < Aollx = x]. (67)
<ml1+ In view of the condition A, < 1 (given by (56)), it follows
= IL'(1+p) (66) that ./ is a contraction, and therefore, by Lemma 5, ./ has a
fixed point x, which is a solution of problem (7). This
< (gl NN+ M7M0E N e )l = X completes the proof. u
= dollx = . 4. Examples

(a) Consider the following equation:

> x (t)
e' /460 tan_1<x(t) + Hpl? x(t) + 7T/4> +2

H,32 g 12
("0 +

p’+Hp ¢ G<t,x(t),HIU2x(t)>, e (le)

; x(e”2 B HII/Z x(e) (68)
e " 1460 tan_1<x(em) LH? x(em) + 7T/4> +2 ' /460 tan_1<x(e) LH? x(e) + 7T/4> +2
3 x(e) _ H11/2 x(el/2
_ _ / - _ _ / >
¢'7°/460 tan 1(x(e) L x(e) + 7T/4> +2 ¢ 1460 tan 1<x(el/2) LH? x(em) + 7r/4> +2

where G: [l,e] x Rx R — P (R) is a multivalued map
given by

12 |3
|x|3+|HI x|

3 bl
2o<|x|3 +\H1”2x| +4> 9(

sin(x + H11/2x>‘ 8
% + sl (69)
sin<x+HI x>’ + 1)

t—> G<t,x(t),HI”2x(t)) -

By condition (H,), ¥ (t) = e'~!/460 with |\¥|| = 1/460.
For g € G, we have

1/2

/
sin(x + Hll zx)‘ 8
+—- <1, Vxe€R,

sin(x + HImx)’ + 1) 9 (70)

3
|x|3+|HI x'
3 bl
20<|x|3 +’H11/2x‘ +4) 9<

IG (£, x, y)Il = sup{lyl: y € G(t,x, )} <1=g(t), Vx,y€R

|g| < max

Let p, =1/4; then, g(t) € L*([1,e],R"). Using the given  |B,| <6,|A|<15.6018, M,<0.0048, M, <84.6585,p, =1/ 460
data, we find that |A,|<1.8196,|A,|<4.2428,|B,|<1.1041, + 2. Furthermore,
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1
MMl <0.4485 <, (71)
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and & >160(e - 1)"*(1/460 + 2) = pyM, |l gll+/ (1 — M,

M, ligll;+). Hence, all the conditions of Theorem 1 are sat-

isfied, and accordingly, problem (68) has a solution on [1, e].
(b) Let us consider the following inclusion problem:

(HD3/2 +HD1/2> x(t)

3/800¢' " + 20(sin(x(t)) +|H1“2x(t)|/1 +|H1”2x(t)|> +1/10

¢ G(t,x(t),HImx(t)), te(le)

5 x(el/Z)

]_ HI1/2 x (e)

3/800¢° " + 20<sin(x(e”2)) +|H1”2x(e”2)|/1 +’HII/ 2y

(e”z)l) +1/10

3 x (e)

3/800¢°" + 20<sin(x(e)) +|H1”2x(e)|/1 +|H1”2x(e)|> +1/10

>

x(eI/Z)

1/2
=Hy

3/800° + 20<sin(x(e)) +‘H11/2x(e)’/1 +’H11/2x(e)‘) +1/10

In order to demonstrate the application of Theorem 3,
we consider

3/800¢°! + 20(sin(x(e”2)) +|H1”2x(e”2)|/1 +|H1”2x(e“2)|) 110 |

f—s G(t,x(t), HImx(t)) ~lo

Clearly,

(72)
~1(H 1/2
1 (1) (1" x(0) , ! 73)
'512+/T4]t | 12(8 +|x (1)) 1+tan71<H11/2x(t)> 300 +¢|
3
H, (G(t, %, HImx), G(t, %, H11/2§)> <> _lx—xl,
! 512/t (74)

IG(t, x, Y)Il = sup{lv|: v € G(t,x,y)} <1 = g(¢),

Letting {(t)=3/512+/t, it is easy to check that d(0,G
(t,0,0)) < (¢) holds for almost ¢ € [1,e] and that { (t) € L* ([1,
el,R*)(p; =1/4), |I¢ll+ = 3/512. From the following inequal-
ities, we get 7 (f) = 6/(800e'"! +20)+1/10 and |||l = 88/820:

1 2
| (t)x) )|S_7+_> (t>x) )E [1,@]XR.
PR = 8008 T+ 20 10 4

(75)

Vx,y € R.

In addition, by condition (H,), we obtain ¥ (¢) = 3/
(800e"~! +20) with ||| = 3/820. Furthermore, using the
given data, we find that |A,|<1.8196,|A,|<4.2428, |B,|<
1.1040, |B,| <6,]|A| <15.6018, M, < 84.6585. Furthermore,

1
M1(1 + TU+P>> (gl I +1mlICh ) <0.8682 < 1.

(76)
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Thus, all the conditions of Theorem 3 are satisfied.
Hence, it follows by the conclusion of Theorem 3 that there
exists a solution for problem (72) on [1,e].

5. Conclusion

Nowadays, we need to study more natural phenomena to
gain more abilities for modeling. Therefore, fractional cal-
culus came into being, and today, their importance has
become more and more apparent to researchers. In this way,
it is necessary to design different and complicated modelings
by utilizing the fractional differential problems. This is useful
in making modern software which helps us to allow for more
cost-free testing and less material consumption. In this
work, we have developed the existence theory for a class of
Hadamard sequential fractional hybrid differential inclu-
sions equipped with two-point hybrid Hadamard integral
boundary value conditions. The nonlinearities in the given
problems implicitly depend on the unknown function to-
gether with its Hadamard fractional integral of order
p € (0,1). We apply fixed-point theorem due to Dhage and
Covitz-Nadler fixed-point theorem to establish the desired
results. Eventually, we give two numerical examples to
support the applicability of our findings.

The work accomplished in this study is new and enriches
the literature on boundary value problems for nonlinear
Hadamard fractional differential inclusions. For future
works, one can extend the given fractional boundary value
problem to more general structures, such as finitely point
multistrip integral boundary value conditions given by
newly introduced generalized fractional operators with
nonsingular kernels.
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