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1. Introduction

One of the several important settings in which fixed point
theory has been explored is the fuzzy context [1, 2]. -e
introduction of the fuzzy set by Zadeh [3] was a turning
point in the landscape of fuzzy mathematics. Fuzzy math-
ematics has improved enormously in the last two decades.
Fuzzy set theory has many important applications in various
fields of applied sciences such as neural network theory,
stability theory, mathematical programming, modeling
theory, engineering sciences, medical sciences (medical
genetics and nervous system), image processing, control
theory, and communication [4–9]. Kramosil [10] introduced
the notion of fuzzy metric space. George and Veeramani [11]
later on slightly modified Kramosil’s definition of fuzzy
metric space and also proved that every metric induces a
fuzzy metric and every fuzzy metric induces Hausdorff
topology. Sedghi and Shobe [12] introduced the concept of
fuzzy b-metric space. Following this idea, many researchers
analysed fixed point theory in fuzzy b-metric space via
various contractive conditions [13–17].

Sessa [18] explored common fixed points of set-valued as
well as single-valued mappings on a complete metric space
under a contractive condition along with the commutativity
concept. -e concept of a common fixed point was later on
generalized by many researchers [19–23]. Lakshmikantham
and Bhaskar [24] initiated the concept of coupled fixed
point. Ćirić and Lakshmikantham [25] established coupled
coincidence and coupled common fixed point theorems in
partially ordered metric spaces. Subsequently, many

researchers explored coupled fixed point theory in various
spaces [2, 12, 19, 25–28]. Hu [27] and Zhu and Xiao [2] gave
a coupled fixed point theorem for contractions in fuzzy
metric spaces. Vasuki [29] obtained common fixed point
results in fuzzy metric spaces. Berinde and Borcut [30]
presented the idea of a tripled fixed point and obtained some
new tripled fixed point results using mixed g-monotone
mapping. -eir results generalize and extend the Bhaskar
and Lakshmikantham’s research for nonlinear mappings.
Roldán et al. [31] investigated the multidimensional coin-
cidence points between mappings. Roldán et al. [1] modified
the concept of tripled fixed points and generalized the results
of Berinde and Borcut [30] and Zhu and Xiao [2].

In this paper, we aim to generalize and extend the notion
of coupled/tripled common fixed point by introducing the
concept of n-tupled fixed point in fuzzy b-metric space. We
established an existence and uniqueness theorem for con-
tractive mapping in fuzzy b-metric space. Our main result
generalizes and extends coupled and tripled fixed point
theorems appearing in [1, 2, 13] to n-dimensional common
fixed points in fuzzy b-metric space. Moreover, it can be
particularized to complete metric spaces to obtain an
n-tupled Brinde–Borcut type coincidence/fixed point result
in a nonfuzzy domain.

-e paper is organized as follows: Section 2 is devoted to
recall the basic definitions and lemmas that will be crucial
throughout the paper. In Section 3, we introduce the notions
of an n-tupled common fixed point and an n-tupled coin-
cidence point. Moreover, an existence and uniqueness
theorem for mappings satisfying certain contractive
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conditions in fuzzy b-metric space has been proved. Section
4 is devoted to generalize the construction presented in
Section 3 to nonfuzzy settings. Moreover, the idea is elab-
orated via a nontrivial example. In section 5, some appli-
cations of the main result of the paper are discussed, and a
kind of Lipschitzian system and an integral system both for n

variables have been solved.

2. Preliminaries

In this section, some terms and definitions are provided
which will be used in the main work of this manuscript.
Henceforth,R and N will denote the set of real numbers and
positive integers, respectively, while S will stand for an ar-
bitrary nonempty set. Arguments of a metric d and fuzzy
metric T will be represented by subscripts. For example,
d(u, v) andT(x, y, δ) will be represented by duv andTxy(δ),
respectively.

Definition 1 (see [32]). A map ∗: [0, 1]2⟶ [0, 1], such
that ([0, 1], ≤ , ∗ ) is an ordered abelian topological monoid
with unit 1, is called a continuous t-norm.

x∗Ly � max x + y − 1, 0􏼈 􏼉, x∗Py � xy, and
x∗My � min x, y􏼈 􏼉 are examples of some frequently used
continuous t-norm that satisfy ∗M ≥∗P ≥∗L.

Definition 2 (see [33]). A continuous t-norm ∗ is said to be
of H-type if the sequence ∗mx{ }∞m�1 is equicontinuous at
x � 1. -at is, for all ξ ∈ (0, 1) there exists ς ∈ (0, 1) such
that 1 − ς< x≤ 1 implies that ∗mx> 1 − ξ for all m≥ 1, where
the sequence ∗mx{ } is defined as ∗1x � x and
∗nx � (∗n− 1x)∗ x.

An important and most commonly used continuous
t-norm of H-type is ∗M which satisfies x∗My≥
x∗Py, ∀x, y ∈ [0, 1]. -e following lemma characterizes
continuous t-norm to be of the H-type.

Lemma 1 (see [1]). Let ∗ be a t-norm and ϵ ∈ (0, 1]. If

a∗εb �
a∗ b ; if max(a, b)≤ 1 − ε,

min(a, b) ; if max(a, b)> 1 − ε.
􏼨 (1)

3en, ∗ϵ is a t-norm of theH-type.

Definition 3 (see [34]). -e 3-tuple (S,T, ∗ ) is called fuzzy
metric space if S is a nonempty set, ∗ is a continuous
t-norm, andF is a fuzzy set on S × S × (0,∞) which satisfies
the following conditions, for all u, v, w ∈ S and δ, ρ> 0.

(i) [(FM1)] Tuv(δ)> 0
(ii) [(FM2)] Tuv(δ) � 1, iff u � v

(iii) [(FM3)] Tuv(δ) � Tvu(δ)

(iv) [(FM4)] Tuw(δ + ρ)≥Tuv(δ)∗Tvw(ρ)

(v) [(FM5)] Tuv(.): (0,∞)⟶ [0, 1] is continuous
(vi) [(FM6)] limδ⟶∞Tuv(δ) � 1

Definition 4 (see [12]). -e 3-tuple (S,T, ∗ ) is called fuzzy
b-metric space (F b MS for short) if S is a nonempty set, ∗ is

a continuous t-norm, and F is a fuzzy set on S × S × (0,∞)

which satisfies the following conditions, for all u, v, w ∈ S

and δ, ρ> 0 and a given real number b≥ 1.

(i) [(FM1)] Tuv(δ)> 0
(ii) [(FM2)] Tuv(δ) � 1, iff u � v

(iii) [(FM3)] Tuv(δ) � Tvu(δ)

(iv) [(FM4)] Tuw(δ + ρ)≥Tuv(δ)∗Tvw(ρ)

(v) [(FM5)] Tuv(.): (0,∞)⟶ [0, 1] is continuous
(vi) [(FM6)] limδ⟶∞Tuv(δ) � 1

Note that Tuv(δ) represents the degree of closeness
between u and v with respect to δ > 0. -e fuzzy b-metric
reduces to a fuzzy metric for b � 1. -erefore, the class of
fuzzy b-metric spaces is larger than the class of
fuzzy metric spaces. -e following example shows that a
fuzzy b-metric on a nonempty set S need not be a fuzzy
metric.

Example 1 (see [13]). Let S � R and Tuv(δ) �

e(− ‖u− v‖p/δ), for all u, v ∈ S and δ > 0 with r∗ s � rs. It can be
easily verified that (S,T, ∗ ) is a F b MS with b � 2p− 1. But
for p � 2, (S,T, ∗ ) is not a fuzzy metric space.

Remark 1 ( see [14]). For u≠ v and δ > 0, it is always true that
0<Tuv(δ)< 1.

Lemma 2 (see [35]). Tuv(.) is nondecreasing for all u, v ∈ S.

Definition 5 (see [36, 37]. In a fuzzy b-metric space
(S,T, ∗ ):

(1) A sequence un􏼈 􏼉 converges to u ∈ S if for every
ξ ∈ (0, 1) and δ > 0 there exists nξ ∈ N such that
T(un, u, δ)> 1 − ξ, ∀n≥ nξ

(2) un􏼈 􏼉n∈N is said to be Cauchy sequence if for every
positive real number ξ ∈ (0, 1) and δ > 0 there exists
nξ ∈ N such that T(un, um, δ)> 1 − ξ, ∀m, n≥ nξ

(3) A F b MS is said to be complete if every Cauchy
sequence converges in it

Remark 2 (see [14]). In general, a fuzzy b-metric is not
continuous.

In a fuzzy b-metric space, we have the following
proposition.

Proposition 1 (see [37]). Let (S,T, ∗ ) be a F b MS and
suppose a sequence un􏼈 􏼉 converges to u, then

T u, v,
δ
b

􏼠 􏼡≤ lim sup
n⟶∞

T un, v, δ( 􏼁≤T(u, v, bδ),

T u, v,
δ
b

􏼠 􏼡≤ lim inf
n⟶∞

T un, v, δ( 􏼁≤T(u, v, bδ).

(2)
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3. Main Results

Definition 6. Let T: Sn⟶ S and θ: S⟶ S, a point
(1u,2u,3u, . . . ,nu) ∈ Sn is said to be the following:

(1) n-tupled fixed point of T if T(1u,2u,3u, . . . ,nu)

�1u, T(2u,3u, . . . ,nu,1u) �2u, . . . , T(nu,1u,2
u, . . . ,n− 1u) �nu

(2) n-tupled coincidence point of T and θ if
T(1u,2u,3u, . . . ,nu) � θ(1u), T(2u,3u, , . . . ,nu,1u) �

θ(2u), . . . , T(nu,1u,2u, . . . ,n− 1u) � θ(nu)

(3) n-tupled common fixed point of T and θ if
T(1u,2u,3u, . . . ,nu) � θ(1u), T(2u,3u, , . . . ,nu,1u) �

θ(2u)�2u, . . . , T(nu,1u,2u, . . . ,n− 1u) � θ(nu)�nu

Definition 7. Let T: Sn⟶ S and θ: S⟶ S be two map-
pings. -en, T and θ are said to be commuting if
θT(1u,2u,3u, . . . ,nu) � T(θ(1u), θ(2u), θ(3u), . . . , θ(nu)).

In our proof of main result, we will use the following
lemmas.

Lemma 3. Let T: Sn⟶ S and θ: S⟶ S be mappings on a
F b MS S, such that T ≡ u is constant and θ is continuous and
commuting with T. 3en, (u, u, u, . . . , u) is a unique n-tupled
common fixed point of T and θ.

Proof. As T is constant on Sn, therefore, there exists u ∈ S

such that T(1u,2u,3u, . . . ,nu) � u for all 1u,2u,3u, . . . ,nu ∈ S.
-en, from T and θ being commuting, it can be deduced that

θ(u) � θT 1u,2u,3u, . . . ,nu( 􏼁

� T θ 1u( 􏼁, θ 2u( 􏼁, θ 3u( 􏼁, . . . , θ nu( 􏼁( 􏼁 � u.
(3)

-erefore, u � θ(u) � T(u, u, u . . . , u). -at is,
(u, u, u . . . , u) is an n-tupled common fixed point of T and θ.
Let (1v,2v,3v, . . . ,nv) be another n-tupled common fixed
point of T and θ such that u≠ kv for k � 1, 2, . . . , n. -en,

1>Tu,kv(δ) � TT(u,u,u,...,u)T kv,k+1v,k+2v,...,n+1− kv( )(δ)

� Tu,u(δ) � 1.
(4)

Which is a contradiction. -erefore, (u, u, u . . . , u) is a
unique n-tupled common fixed point of T and θ.

Let B denote the class of all increasing and continuous
functions β: [0, 1]⟶ [0, 1] such that β(δ)> δ for all
δ ∈ (0, 1) with β(0) � 0 and β(1) � 1. -en, the following
lemma is used. □

Lemma 4. Let (S,T, ∗ ) be a complete F b MS with b≥ 1,
where a∗ b � min a, b{ } for all a, b ∈ [0, 1]. Let T: Sn⟶ S

and θ: S⟶ S be such that

TT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )(δ)≥ β Tθ 1u( ),θ 1v( ) b
nδ( 􏼁∗Tθ 2u( ),θ 2v( )(δ)∗Tθ 3u( ),θ 3v( ) b

nδ( 􏼁∗ . . . ∗Tθ nu( ),θ nv( ) b
nδ( 􏼁􏼒 􏼓. (5)

For some β ∈ B, for all 1u,2u,3u, . . . ,nu,1v,2v,3v, . . . ,nv ∈ S

and δ > 0. Suppose (1u,2u,3u, . . . ,nu) is an n-tupled coinci-
dence point of T and θ. 3en,

T 1u,2u,3u, . . . ,nu( 􏼁(δ) � θ 1u( 􏼁 � θ 2u( 􏼁 � T 2u,3u, . . . ,nu,1u( 􏼁(δ) � θ 3u( 􏼁

� T 3u,4u, . . . ,nu,1u,2u( 􏼁(δ) � θ 4u( 􏼁 � . . . � θ nu( 􏼁 � T nu,1u,2u, . . . ,n− 1u( 􏼁(δ).
(6)

Proof. Suppose on the contrary that there are at least two
distinct integers p and q in 1, 2, . . . , n{ } such that

θ(pu)≠ θ(qu). Let Tθ(pu),θ(qu)(bnδ)∗Tθ (p+1u), θ(q+1u)

(bnδ)∗ . . . ∗Tθ(n+1− pu),θ(n+1− qu) (δ) � Tθ(iu),θ(4u) (bnδ).. -en,

Tθ iu( ),θ ju( 􏼁
(δ) � T

T iu,i+1u,i+2u,...,n+1− iu( ),T ju,j+1u,j+2u,...,n+1− ju( 􏼁
(δ)

≥ β Tθ iu( ),θ ju( 􏼁
b

nδ( 􏼁∗Tθ i+1u( ),θ j+1u( 􏼁
b

nδ( 􏼁∗ . . . ∗Tθ n+1− iu( ),θ n+1− ju( 􏼁
b

nδ( 􏼁􏼒 􏼓

≥ β Tθ ju( 􏼁,θ ju( 􏼁
b

nδ( 􏼁􏼒 􏼓>Tθ ju( 􏼁,θ ju( 􏼁
b

nδ( 􏼁≥Tθ ju( 􏼁,θ ju( 􏼁
(bδ),

(7)
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which is a contradiction. Hence,

T 1u,2u,3u, . . . ,nu( 􏼁(δ) � θ 1u( 􏼁 � θ 2u( 􏼁 � T 2u,3u, . . . ,nu,1u( 􏼁(δ) � θ 3u( 􏼁 �

T 3u,4u, . . . ,nu,1u,2u( 􏼁(δ) � θ 4u( 􏼁 � . . . � θ nu( 􏼁 � T nu,1u,2u, . . . ,n− 1u( 􏼁(δ).
(8)

□
Theorem 1. Let (S,T, ∗ ) be a complete F b MS, where
a∗ b � min a, b{ } for all a, b ∈ [0, 1]. Let T: Sn⟶ S and
θ: S⟶ S be such that T(Sn)⊆ θ(S) and θ is continuous and

commuting with T. Suppose for all
1u,2u,3u, . . . ,nu,1v,2v,3v, . . . ,nv ∈ S and δ > 0,

TT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )(δ)≥ β Tθ 1u( ),θ 1v( ) b
nδ( 􏼁∗Tθ 2u( ),θ 2v( )(δ)∗Tθ 3u( ),θ 3v( ) b

nδ( 􏼁∗ . . . ∗Tθ nu( ),θ nv( ) b
nδ( 􏼁􏼒 􏼓, (9)

where β ∈ B, then T and θ have a unique n-tupled common
fixed point.

Proof. If T is constant, then the proof of the theorem follows
from Lemma 2. Suppose T is not constant on Sn. In this case,
the proof is divided into three steps. □

Step 1. Definition of the sequences θ(1um)􏼈 􏼉, θ(2um)􏼈 􏼉,
θ(3um)􏼈 􏼉, . . . , θ(num)􏼈 􏼉.

Let 1uo,2uo,3uo, . . . ,nuo be arbitrary points of S. As
T(Sn)⊆ θ(S), therefore, there exist 1u1,2u1,3u1, . . . ,nu1 ∈ S

such that θ(1u1) � T(1uo,2uo,3uo, . . . ,nuo), θ(2u1) �

T(2uo,3uo, . . . ,nuo,1uo), θ(3u1) � T(3uo,4uo, . . . ,nuo,1uo,2uo)

and θ(nu1), � T(nuo,1uo,2uo, . . . ,n− 1uo).
Again, as T(Sn)⊆ θ(S), therefore, there exists

1u2,2u2,3u2, . . . ,nu2 ∈ S such that

θ 1u2( 􏼁 � T 1u1,2u1,3u1, . . . ,nu1( 􏼁, θ 2u2( 􏼁 � T 2u1,3u1, . . . ,nu1,1u1( 􏼁,

θ 3u2( 􏼁 � T 3u1,4u1, . . . ,nu1,1uo,2u1( 􏼁, . . . , θ nu2( 􏼁 � T nu1,1u1,2u1, . . . ,n− 1u1( 􏼁.
(10)

Continuing in the same way, sequences θ(1um)􏼈 􏼉,
θ(2um)􏼈 􏼉, θ(3um)􏼈 􏼉, . . . , θ(num)􏼈 􏼉 can be constructed such
that

θ 1um+1( 􏼁 � T 1um,2um,3um, . . . ,num( 􏼁,

θ 2um+1( 􏼁 � T 2um,3um, . . . ,num,1um( 􏼁,

θ 3um+1( 􏼁 � T 3um,4um, . . . ,num,1um,2um( 􏼁,

⋮

θ num+1( 􏼁 � T num,1um,2um, . . . ,n− 1um( 􏼁, where m ∈ N ∪ 0{ }.

(11)

Step 2. θ(1um)􏼈 􏼉, θ(2um)􏼈 􏼉, θ(3um)􏼈 􏼉, . . . , θ(num)􏼈 􏼉 are
Cauchy sequences.

Let λm(δ) � Tθ 1um( )θ 1um+1( )(δ)∗Tθ 2um( )θ 2um+1( )(δ)∗ . . . ∗Tθ num( )θ num+1( )(δ); ∀δ > 0. (12)
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Using (9), for all δ > 0, we have

Tθ 1um( )θ 1um+1( )(δ) � TT 1um− 1 ,2um− 1 ,...,num− 1( )T 1um,2um,...,num( )(δ),

≥ β Tθ 1um− 1( )θ 1um( ) b
nδ( 􏼁∗Tθ 2um− 1( )θ 2um( ) b

nδ( 􏼁∗ . . . ∗Tθ num− 1( )θ num( ) b
nδ( 􏼁􏼒 􏼓,

� β λm− 1 b
nδ( 􏼁( 􏼁> λm− 1 b

nδ( 􏼁,

Tθ 2um( )θ 2um+1( )(δ) � TT 2um− 1 ,3um− 1 ,...,num− 1 ,1um− 1( )T 2um,3um,...,num,1um( )(δ),

≥ β Tθ 2um− 1( )θ 2um( ) b
nδ( 􏼁∗Tθ 3um− 1( )θ 3um( ) b

nδ( 􏼁∗ . . . ∗Tθ num− 1( )θ num( ) b
nδ( 􏼁∗Tθ 1um− 1( )θ 1um( ) b

nδ( 􏼁􏼒 􏼓,

� β λm− 1 b
nδ( 􏼁( 􏼁> λm− 1 b

nδ( 􏼁,

⋮

Tθ 2um( )θ 2um+1( )(δ) � TT num− 1 ,1um− 1 ,2um− 1 ,...,n− 1um− 1( )T num,1um,2um,...,n− 1um( )(δ),

≥ β Tθ num− 1( )θ num( ) b
nδ( 􏼁∗Tθ 1um− 1( )θ 1um( ) b

nδ( 􏼁∗ . . . ∗Tθ n− 1um− 1( )θ n− 1um( ) b
nδ( 􏼁􏼒 􏼓,

� β λm− 1 b
nδ( 􏼁( 􏼁> λm− 1 b

nδ( 􏼁,

(13)

(13) implies that for all δ > 0 and m≥ 0,

λm(δ)≥ β λm− 1 b
nδ( 􏼁( 􏼁. (14)

Obviously,

λm(δ)≥ β λm− 1 b
nδ( 􏼁( 􏼁> λm− 1 b

nδ( 􏼁≥ λm− 1(δ). (15)

It means λn(δ)􏼈 􏼉 is an increasing sequence in [0, 1], and
therefore, lim supn⟶∞λn(δ) � ℓ(δ)≤ 1 for all δ > 0. If
ℓ(δ)< 1, then by letting n⟶∞ in (6), we get a contra-
diction ℓ(δ)> ℓ(δ). -erefore, ℓ(δ) � 1, that is, for all
m, δ ≥ 0,

lim sup
n⟶∞

T 1um( )θ 1um+1( )(δ)∗T 2um( )θ 2um+1( )(δ)∗ . . . ∗T num( )θ num+1( )(δ)􏼒 􏼓 � 1. (16)

To show that the sequences θ(1um)􏼈 􏼉, θ(2um)􏼈 􏼉,
θ(3um)􏼈 􏼉, . . . , θ(num)􏼈 􏼉, where m � 1, 2, 3, · · ·, are Cauchy,
first we prove that for every ϵ ∈ (0, 1) there exist p, q ∈ N

such that Tθ(1up)θ(1uq)(δ)∗Tθ(2up)θ(2uq) (δ)∗ . . . ∗

Tθ(nup)θ(nuq)(δ)> 1 − ϵ. Suppose it is not true. -en, there
exists some ϵ ∈ (0, 1) such that for each r ∈ N, there exist
integers p(r) and q(r) with p(r)> q(r)≥ r such that

Tθ 1up(r)( 􏼁θ 1uq(r)( 􏼁
(δ)∗Tθ 2up(r)( 􏼁θ 2uq(r)( 􏼁

(δ)∗ . . . ∗Tθ nup(r)( 􏼁θ nuq(r)( 􏼁
(δ)≤ 1 − ϵ. (17)

Let p(r) be the least such positive integer which exceeds
q(r) and satisfies (17). -en,

Tθ 1up(r)( 􏼁θ 1uq(r)( 􏼁
(δ)∗Tθ 2up(r)( 􏼁θ 2uq(r)( 􏼁

(δ)∗ . . . ∗Tθ nup(r)( 􏼁θ nuq(r)( 􏼁
(δ)> 1 − ϵ. (18)

Let mr(δ)�Tθ(1up(r))θ(1uq(r))
(δ)∗Tθ(2up(r))θ(2uq(r))

(δ)∗ ...∗
Tθ(nup(r))θ(nuq(r))

(δ). Using (18) and (19) and properties
(FbM3) and (FbM4), we have
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1 − ϵ ≥mr(δ)≥Tθ 1uq(r)( 􏼁θ 1up(r)− 1( 􏼁

δ
2b

􏼠 􏼡∗Tθ 1up(r)− 1( 􏼁θ 1up(r)( 􏼁

δ
2b

􏼠 􏼡∗Tθ 2uq(r)( 􏼁θ 2up(r)− 1( 􏼁

δ
2b

􏼠 􏼡∗Tθ 2up(r)− 1( 􏼁θ 2up(r)( 􏼁

δ
2b

􏼠 􏼡∗

. . . ∗Tθ nuq(r)( 􏼁θ nup(r)− 1( 􏼁

δ
2b

􏼠 􏼡∗Tθ nup(r)− 1( 􏼁θ nup(r)( 􏼁

δ
2b

􏼠 􏼡>(1 − ϵ)∗ λr

δ
2b

􏼠 􏼡.

(19)

Letting r⟶∞ we get the contradiction
1 − ε≥ lim sup

r⟶∞
mr(δ)> 1 − ε. (20)

Hence, θ(1um)􏼈 􏼉, θ(2um)􏼈 􏼉, θ(3um)􏼈 􏼉, . . . , θ(num)􏼈 􏼉 are
Cauchy sequences.

Step 3. T and θ have an n-tupled common fixed point.
As S is complete, so there will be some

1u,2u,3u, . . . ,nu ∈ S such that limm⟶∞θ(1um)

�1u, limm⟶∞θ(2um)� 2u, . . . , limm⟶∞θ(num)�nu. Due to
continuity of θ,
limm⟶∞θθ1um � θ(1u), limm⟶∞θθ(2um) � θ
(2u), . . . , limn⟶∞θθ(num) � θ(nu). Also, θ commutes with
T, therefore, θθ(1um+1) � θT(1um,2um, . . . ,num) �

T(θ(1um), θ(2um), . . . , θ(num)).
Using (9), we have

Tθ θ1um+1( )T 1u,2u,3u,...,nu( )(δ) �� TTθ 1um( ),θ 2um( ),...,θ num( ))T 1u,2u,3u, . . . ,nu( 􏼁(δ)

≥ β Tθ θ 1um( )( ),θ 1u( ) b
nδ( 􏼁∗Tθ θ 2um( )( ),θ 2u( ) b

nδ( 􏼁􏼒

∗Tθ θ 3um( )( ),θ 3u( ) b
nδ( 􏼁∗ . . . ∗Tθ θ num( )( ),θ nu( ) b

nδ( 􏼁􏼓.

(21)

Using Proposition 1 and (16), we have

Tθ 1u( )T 1u,2u,3u,...,nu( )(δ)≥ lim sup
m⟶∞

TTθ 1um( ),θ 2um( ),...,θ num( )T 1u,2u,3u,...,nu( )
δ
b

􏼠 􏼡

≥ lim sup
m⟶∞

β Tθ θ 1um( )( ),θ 1u( ) b
n− 1δ􏼐 􏼑∗Tθ θ 2um( )( ),θ 2u( ) b

n− 1δ􏼐 􏼑∗ . . . ∗Tθ θ num( )( ),θ nu( ) b
n− 1δ􏼐 􏼑􏼒 􏼓

≥ Tθ 1u( ),θ 1u( ) b
n− 1δ􏼐 􏼑∗Tθ 2u( ),θ 2u( ) b

n− 1δ􏼐 􏼑∗Tθ 3u( ),θ 3u( ) b
n− 1δ􏼐 􏼑∗ . . . ∗Tθ nu( ),θ nu( ) b

n− 1δ􏼐 􏼑􏼒 􏼓

� 1.

(22)

Hence, T(1u,2u,3u, . . . ,nu)(δ) � θ(1u). Similarly, it can
be shown that

T 2u,3u, . . . ,nu,1u( 􏼁(δ) � θ 2u( 􏼁,

T 3u,4u, . . . ,nu,1u,2u( 􏼁(δ) � θ 3u( 􏼁,

⋮
T nu,1u,2u, . . . ,n− 1u( 􏼁 � θ nu( 􏼁.

(23)

Lemma 4 implies that

T 1u,2u,3u, . . . ,nu( 􏼁 � θ 1u( 􏼁 � θ 2u( 􏼁 � · · · � θ nu( 􏼁

� T nu,1u,2u, . . . ,n− 1u( 􏼁.
(24)

From (9) and (24) along with Proposition 1 and con-
tinuity of β, it comes out that

T
1u,θ 1u( )(bδ)≥ lim sup

m⟶∞
Tθ 1um+1( ),θ 1u( )(δ),

≥ lim sup
m⟶∞

TT 1um ,2um ,...,num( ),T 1u,2u,...,nu( )(δ),

≥ lim sup
m⟶∞

β Tθ 1um( ),θ 1u( ) b
nδ( 􏼁∗Tθ 2um( ),θ 2u( ) b

nδ( 􏼁∗ . . . ∗Tθ num( ),θ nu( ) b
nδ( 􏼁􏼒 􏼓,

≥ lim sup
m⟶∞

Tθ 1um( ),θ 1u( ) b
nδ( 􏼁∗Tθ 2um( ),θ 2u( ) b

nδ( 􏼁∗ . . . ∗Tθ num( ),θ nu( ) b
nδ( 􏼁􏼒 􏼓,

(25)
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applying Proposition 1 again, we get

T
1u,θ 1u( )(bδ)≥ lim sup

m⟶∞
Tθ 1u( ),θ 1u( ) b

n− 1δ􏼐 􏼑∗Tθ 2u( ),θ 2u( ) b
n− 1δ􏼐 􏼑∗Tθ 3u( ),θ 3u( ) b

n− 1δ􏼐 􏼑∗ . . . ∗Tθ nu( ),θ nu( ) b
n− 1δ􏼐 􏼑􏼒 􏼓 � 1. (26)

-erefore, θ(1u)�1u. Similarly, it can be shown that

θ(2u) � 2u ,

θ(3u) � 3u, . . . ,

θ(nu) � nu.

(27)

From (24), it follows that

T 1u,1u,1u, . . . ,1u( 􏼁 � θ 1u( 􏼁�1u. (28)

To show uniqueness, let v ∈ S be another n-tupled
common fixed point of T and θ such that v≠ 1u. -en,

T
1u,v(δ) � TT 1u,1u,1u,...,1u( ),T(v,v,...,v)(δ)≥ β Tθ 1u( ),θv b

nδ( 􏼁∗Tθ 1u( ),θv b
nδ( 􏼁∗ · · · ∗Tθ 1u( ),θv b

nδ( 􏼁􏼒 􏼓,

� β Tθ 1u( ),θv b
nδ( 􏼁􏼒 􏼓>Tθ 1u( ),θv b

nδ( 􏼁 � T
1u,v b

nδ( 􏼁≥T
1u,v(δ),

(29)

which is a contradiction. -us, T and θ have a unique
n-tupled common fixed point. □

Taking n � 2 in the abovementioned theorem, we get the
following corollary, which is the main result of [13].

Corollary 1. Let (S,T, ∗ ) be a complete F b MS, where
a∗ b � min a, b{ } for all a, b ∈ [0, 1]. Let T: S2⟶ S and
θ: S⟶ S be such that T(S2)⊆ θ(S) and θ is continuous and
commuting with T. Suppose for all 1u,2u,3u,4u ∈ S and δ > 0,

TT 1u,2u( )T 3u,4u( )(δ)≥ β Tθ 1u( ),θ 3u( ) b
2δ􏼐 􏼑∗Tθ 2u( ),θ 4u( ) b

2δ􏼐 􏼑􏼒 􏼓,

(30)

where β ∈ B, then there exists a unique u ∈ S such that
u � θ(u) � T(u, u).

Corollary 2. Let (S,T, ∗ ) be a complete F b MS, where
a∗ b � min a, b{ } for all a, b ∈ [0, 1]. Let T: Sn⟶ S and
θ: S⟶ S be such that T(Sn)⊆ θ(S) and θ is continuous and
commuting with T. Suppose for all
1u,2u,3u, . . . ,nu,1v,2v,3v, . . . ,nv ∈ S and δ > 0,

TT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )(δ)≥ Tθ 1u( ),θ 1v( ) b
2δ􏼐 􏼑∗Tθ 2u( ),θ 2v( ) b

2δ􏼐 􏼑∗ . . . ∗Tθ nu( ),θ nv( ) b
2δ􏼐 􏼑􏼒 􏼓

α
, (31)

where β ∈ B, and α ∈ (0, 1), then T and θ have a unique
n-tupled common fixed point.

Proof. Proof follows from -eorem 1, by setting
β(t) � tα. □

Corollary 3. Let (S,T, ∗ ) be a complete F b MS, where
a∗ b � min a, b{ } for all a, b ∈ [0, 1]. Let T: Sn⟶ S and
θ: S⟶ S be such that T(Sn)⊆ θ(S) and θ is continuous and
commuting with T. Suppose for all
1u,2u,3u, . . . ,nu,1v,2v,3v, . . . ,nv ∈ S and δ > 0,

TT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )(δ)≥ 2 Tθ 1u( ),θ 1v( ) b
2δ􏼐 􏼑∗Tθ 2u( ),θ 2v( ) b

2δ􏼐 􏼑∗ . . . ∗Tθ nu( ),θ nv( ) b
2δ􏼐 􏼑􏼒 􏼓

α

− Tθ 1u( ),θ 1v( ) b
2δ􏼐 􏼑∗Tθ 2u( ),θ 2v( ) b

2δ􏼐 􏼑∗ . . . ∗Tθ nu( ),θ nv( ) b
2δ􏼐 􏼑􏼒 􏼓

2
,

(32)

where β ∈ B, then T and θ have a unique n-tupled common
fixed point.

Proof. It is adequate to set β(t) � 2t − t2 in -eorem 1, □

Remark 3. Coincidence point of T and θ is not necessarily
unique. For example, if T ≡ c ≡ θ, where c ∈ S is constant,
then every point 1u,2u,3u, . . . ,nu ∈ Sn is coincidence point of
T and θ.
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Example 2. Let S � R and T(x, y, δ) � e(− |x− y|/δ)

for allx, y ∈ S and δ > 0 with r∗ s � min r, s{ } where
r, s ∈ [0, 1]. It can be easily verified that (S,T, ∗ ) is a
complete F b MS with b � 2. Let α, λ, c> 0 be such that
max α, c􏼈 􏼉≤ (λ/128) . Define T: S4⟶ S, θ: S⟶ S as

T(x, y, z, w) � α(x − z) + c(y − w), θ(u) � λu and β(δ) ��
δ

√
for all u, x, y, z, w ∈ S and δ > 0. Obviously θ is con-

tinuous, T and θ are commuting and T(S4) � R � θ(S).
Also,

TTxyzwTmnpq(δ) � e
|α(x− m)− α(z− p)+c(y− n)− c(w− q)|(− 1/δ)

,

≥ e
(α|x− m|+α|z− p|+c|y− n|+c|w− q|)(− 1/δ)

≥ e
(|x− m|/δ+|z− p|/δ+|y− n|/δ+|w− q|/δ)(− 4max α,c{ })

,

≥ e
(|x− m|/δ+|z− p|/δ+|y− n|/δ+|w− q|/δ)(− λ/128)

,

≥ e
max |x− m|/δ+|z− p|/δ+|y− n|/δ+|w− q|/δ{ }(− 4λ/128)

≥
��������������������������������������������

min e
− |λx− λm|/16δ

, e
− |λz− λp|/16δ

, e
− |λy− λn|/16δ

, e
− |λw− λq|/16δ

􏽮 􏽯

􏽱

�

������������������������������������������

Tθxθm 24δ􏼐 􏼑∗Tθyθn 24δ􏼐 􏼑∗Tθzθp 24δ􏼐 􏼑∗Tθwθq 24δ􏼐 􏼑

􏽱

.

(33)

-at is, all the conditions of -eorem 1 are fulfilled.
-erefore, (0, 0, 0, 0) is a unique quadrupled common fixed
point of T and θ.

4. Consequences

It is known that if (S,T, ∗ ) is a F b MS and ◇ is a con-
tinuous t-norm such that u∗ v≥ u◇v, ∀u, v ∈ [0, 1], then
(S,T,◇) is F b MS. Since for any t-norm ∗ , it is always true
that ∗M ≥ ∗ , therefore, (S,T,∗M) is F b MS implies
(S,T, ∗ ) is F b MS. As Fb MS is a generalization of b-metric
space, therefore, from a given b-metric space, a F bMS can be
considered in different ways.

Example 3 (see [1]). Let (S, d) be a b-metric space. For δ > 0
and u≠ v, the following is defined:

Td
uv(δ) � δ/δ + duv

Te
uv(δ) � e− duv/δ

Tc
uv(δ) �

0, if δ ≤ duv;

1, if δ > duv.
.􏼨

It is known that each of (S,Td,∗P), (S,Td,∗M),
(S,Te,∗M), and (S,Tc,∗M) is a F b MS.

Moreover, the completeness of (S, d) implies the com-
pleteness of any one of these F b MSs and vice versa. With
this approach, many important results for b-metric space
can be deduced from the corresponding results in a fuzzy
setting. In the following theorem the b-metric space (S, d) is
viewed as the crisp F b MS (S,Tc,∗M).

Theorem 2. Let (S, d) be a complete b-metric space,
T: Sn⟶ S and θ: S⟶ S be given mappings such that
T(Sn)⊆ θ(S) and θ is continuous and commuting with T.
Suppose T and θ satisfy some of the following conditions for all
1u,2u,3u, . . . ,nu,1v,2v,3v, . . . ,nv ∈ S:

dT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )≤ κmax dθ 1u( )θ 1v( ), dθ 2u( )θ 21v( ), . . . , dθ nu( )θ nv( )θ nv( 􏼁􏼒 􏼓for some κ ∈ (0, 1),

dT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )≤ κ α1dθ 1u( )θ 1v( ) + α2dθ 2u( )θ 21v( ) + · · · + αndθ nu( 􏼁θ nv( 􏼁􏼔 􏼕

for some κ ∈ (0, 1) and some α1, α2 · · · αn ∈ 0,
1
n

􏼔 􏼕where n ∈ N.

dT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )≤ α1dθ 1u( )θ 1v( ) + α2dθ 2u( )θ 21v( ) + · · · + αndθ nu( )θ nv( )

for α1, α2 · · · αn ∈ [0, 1) such that􏽘
n

i�1
αi < 1.

(34)
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-en, there exists a unique u ∈ S such that u � θu � T

(u, u, u, . . . , u).

Proof. Consider Tc as defined in example 3. As (S, d) is
complete, (S,Tc

uv,∗M) is complete. We prove (2), for
α1 � α2 � α3 � · · · � αn � (1/n), δ > 0 and ∗ � ∗M. In case
any one ofTc

θ(1u)θ(1v),T
c
θ(2u)θ(21v), . . . ,Tc

θ(nu)θ(nv) is 0, then (2)
obvious. Suppose

T
c
θ 1u( )θ 1v( )(δ) � T

c
θ 2u( )θ 2v( )(δ) � · · · � T

c
θ nu( )θ nv( )(δ) � 1,

⇒dθ 1u( )θ 1v( )< δ, dθ 2u( )θ 2v( )< δ, . . . , dθ nu( )θ nv( )< δ.

⇒δ >max dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼒 􏼓.

(35)

Now (a)

κδ > κmax dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼒 􏼓

≥dT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( ).

⇒Tc
T 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )(κδ) � 1.

(36)

Hence, (2) is satisfied.
(b) As

dT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )≤ κ α1dθ 1u( )θ 1v( ) + α2dθ 2u( )θ 2v( ) + · · · + αndθ nu( )θ nv( )􏼔 􏼕

≤ κ
1
n

dθ 1u( )θ 1v( ) +
1
n

dθ 2u( )θ 2v( ) + · · · +
1
n

dθ nu( )θ nv( )􏼔 􏼕,

�
κ
n

dθ 1u( )θ 1v( ) + dθ 2u( )θ 2v( ) + · · · + dθ nu( )θ nv( )􏼔 􏼕

≤
κ
n

nmax dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕,

� κmax dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕≤ κδ,

⇒Tc
T 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )(κδ) � 1.

(37)

Hence, (2) is true. (c) Let κ � 􏽐
n
i�1 αi < 1. -en,

dT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )≤ α1dθ 1u( )θ 1v( ) + α2dθ 2u( )θ 2v( ) + · · · + αndθ nu( )θ nv( )

≤ α1 max dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕

+ α2 max dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕

+ α3 max dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕

⋮

+ αn max dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕

� 􏽘
n

i�1
αi max dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕

� κmax dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕≤ κδ

� κmax dθ 1u( )θ 1v( ), dθ 2u( )θ 2v( ), . . . , dθ nu( )θ nv( )􏼔 􏼕≤ κδ,

⇒Tc
T 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( )(κδ) � 1.

(38)

Hence, (2) is true. □
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Corollary 4 (see [1], -eorem 15). Let (S, d) be a complete
metric space and T: S3⟶ S and θ: S⟶ S be such that
T(S3)⊆ θ(S) and θ is continuous and commuting with T.

Suppose T and θ satisfy some of the following conditions for all
1u,2u,3u,1v,2v,3v ∈ S:

dT 1u,2u,3u,...,nu( )T 1v,2v,3v( )≤ κmax dθ 1u( )θ 1v( ) + dθ 2u( )θ 2v( ) + · · · + dθ 3u( )θ 3v( )􏼒 􏼓for some κ ∈ (0, 1),

dT 1u,2u,3u( )T 1v,2v,3v( )≤ κ α1dθ 1u( )θ 1v( ) + α2dθ 2u( )θ 2v( ) + α3dθ 3u( )θ 3v( )􏼔 􏼕 for some α1, α2, α3 ∈ 0,
1
3

􏼔 􏼕 and κ ∈ (0, 1).

dT 1u,2u,3u( )T 1v,2v,3v( )≤ α1dθ 1u( )θ 1v( ) + α2dθ 2u( )θ 2v( ) + α3dθ 3u( )θ 3v( ) for α1, α2, α3 ∈ [0, 1) such that 􏽘
3

i�1
αi < 1.

(39)

3en, there exists a unique u ∈ S such that
u � θu � T(u, u, u).

Proof. Proof is similar to that of -eorem 2. □

Example 4. Let S � R, and duv � |u − v| for all u, v ∈ R. Let
T: Sn⟶ S and θ: S⟶ S be defined as
T(1u,2u,3u, . . . ,nu) � 􏽐

n
i�1(ηi)(iu) + ϵ/K and θ(u) � u for

all 1u,2u,3u, . . . ,nu, η1, η2, . . . , ηn, u, ϵ, K ∈ R. -en,

dT 1u,2u,3u,...,nu( )T 1v,2v,3v,...,nv( ) �
1
K

􏽘

n

i�1
ηi iu− iv( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤ 􏽘
n

i�1

ηi

K iu− iv
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽘
n

i�1
αi iu− iv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

� 􏽘
n

i�1
αi θ iu( 􏼁 − θ iv( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 􏽘

n

i�1
αidθ iu( )− θ iv( ).

(40)

-at is, the condition of -eorem 2 (c) is fulfilled. Moreover, for n-tupple (0u,0u, . . . ,0u), where
0u � (ϵ/K − 􏽐

n
i�1 ηi), we have

T 0u,0u, . . . ,0u( 􏼁 �
􏽐

n
i�1 ηi( 􏼁0u + ϵ

K
�

􏽐
n
i�1 ηi( 􏼁 ϵ/K − 􏽐

n
i�1 ηi( 􏼁( 􏼁 + ϵ

K
,

�
ϵ􏽐n

i�1 ηi( 􏼁 + ϵ K − 􏽐
n
i�1 ηi( 􏼁( 􏼁

K K − 􏽐
n
i�1 ηi( 􏼁( 􏼁

,

�
ϵ

K − 􏽐
n
i�1 ηi

�0u � θ 0u( 􏼁.

(41)

Hence, (0u,0u, . . . ,0u) is a unique n-tupled common
fixed point of T and θ.

5. Applications

5.1. Lipschitzian Systems. Let g1, g2, . . . , gn: R⟶ R be
Lipschitzian mappings on R (equipped with the Euclidean
metric) with Lipschitz constants c1, c2, c3, . . . , cn, respec-
tively, that is, for each gi where 1≤ i≤ n, there exists a
corresponding real number ci where 1≤ i≤ n such that
|gi(u) − gi(v)|≤ |ciu − v| for all u, v ∈ R. Define f: R⟶ R

as f(u) � μ1g1(u) + μ2g2(u) + · · · + μngn(u) for all u ∈ R,
where μi ∈ R for 1≤ i≤ n. -en,

|f(u) − f(v)| � 􏽘
n

i�1
μigi iu( 􏼁 − gi iv( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

≤ 􏽘
n

i�1
μiciu − v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(42)

-at is, f is itself a Lipschitzian mapping with
cf � 􏽐

n
i�1 |μici|. If cf � 􏽐

n
i�1 |μici|< 1, then f is contraction
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and by Banach contraction principle there is a unique uo ∈ R
such that f(uo) � uo. Define T: Sn⟶ S by

T 1u,2u,3u, . . . ,nu( 􏼁 � μ1g1 1u( 􏼁 + μ2g2 2u( 􏼁 + · · ·

+ μngn nu( 􏼁, for all 1u,2u,3u, . . . ,nu ∈ R.

(43)

Obviously, T(u, u, . . . , u
􏽺√√√√􏽽􏽼√√√√􏽻n

) � f(u) for all u ∈ R.
Moreover,

T 1u,2u,3u, . . . ,nu( 􏼁 − 1v,2v,3v, . . . ,nv( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽘
n

i�1
μigi iu( 􏼁 − gi iv( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

≤ 􏽘
n

i�1
μiciu − v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

� 􏽘
n

i�1
cf iu− iv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

≤ cf max
1≤i≤n iu− iv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(44)

If cf < 1, then by -eorem 2 (a), there exists a unique
u ∈ R such that

u � f(u) � T(u, u, . . . , u
􏽺√√√√􏽽􏽼√√√√􏽻n

). (45)

Corollary 5. Let g1, g2, . . . , gn: R⟶ R be Lipschitzian
mappings furnished with the Euclidean metric, and
μ1, μ2, . . . , μn ∈ R be such that C � 􏽐

n
i�1 |μici|< 1. 3en, the

system

(H) �

μ1g1 1u( 􏼁 + μ2g2 2u( 􏼁 + · · · + μn− 1gn− 1 n− 1u( 􏼁 + μngn nu( 􏼁�1u,

μ1g1 2u( 􏼁 + μ2g2 3u( 􏼁 + · · · + μn− 1gn− 1 nu( 􏼁 + μngn 1u( 􏼁�2u,

μ1g1 3u( 􏼁 + μ2g2 4u( 􏼁 + · · · + μn− 1gn− 1 1u( 􏼁 + μngn 2u( 􏼁�3u,

⋮

μ1g1 nu( 􏼁 + μ2g2 1u( 􏼁 + · · · + μn− 1gn− 1 n− 2u( 􏼁 + μngn n− 1u( 􏼁�nu,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

has a unique solution (ou,ou, . . . ,ou
􏽺√√√√√􏽽􏽼√√√√√􏽻n

), where ou is a unique
real solution of 􏽐

n
i�1 μigi(u) � u.

Example 5. Consider the following:

(J) �

30sinx −
28

1 + y
2 +

�
z

√
+ cosw

2
+ 150 � 72x − 15tan

− 1
t,

30siny −
28

1 + z
2 +

��
w

√
+ cost

2
+ 150 � 72y − 15tan

− 1
x,

30sinz −
28

1 + w
2 +

�
t

√
+ cosx

2
+ 150 � 72z − 15tan

− 1
y,

30sinw −
28

1 + t
2 +

��
x

√
+ cosy

2
+ 150 � 72w − 15tan

− 1
z,

30sint −
28

1 + x
2 +

��
y

√
+ cosz

2
+ 150 � 72t − 15tan

− 1
w.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)
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Let g1(u) � 5+ sinu,g2(u) � 1/1+ u2,g3 (u) ���
u

√
,g4(u) � cos(u2)andg5(u) � tan− 1u. g1,g2,g3,g4 and g5

are Lipschitzian mappings with cg1
� cg3

� cg4
� cg5

� 1 and
cg2

� (3
�
3

√
/8). Let μ1 � (5/12),μ2 � (− 7/18),μ3 � μ4 � (1/72)

and μ5 � (5/24). -en,

􏽘

5

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ci �

5
12

−
3

�
3

√

8
􏼠 􏼡

7
18

􏼒 􏼓 +
1
72

+
1
72

+
5
24

,

� 0.40018703501< 1.

(48)

System (J) has a unique solution (u, u, u, u, u), where
u ≈ 2.549220382 is a unique solution of 30sinu − 28/1 + u2+��

u
√

+ cosu2 + 150 � 72u − 15tan− 1u.

5.2. Integral Systems. Let I � [a, b], where a, b ∈ Rwith a< b

and S � L1(I) with d1(g, h) � 􏽒
I
|g(t) − h(t)|dt where 􏽒 is

Lebesgue integral. -en, (L1(I), d1) is a complete metric
space. Let κ, λ1, λ2, λ3, . . . , λn ∈ R and let H: Rn⟶ R be
such that H(0, 0, 0, . . . , 0) � 0 and satisfying

H 1u,2u,3u, . . . ,nu( 􏼁 − H 1v,2v,3v, . . . ,nv( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ κ􏽘

n

i�1
λi iu− iv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 for all 1u,2u,3u, . . . ,nu( 􏼁, 1v,2v,3v, . . . ,nv( 􏼁 ∈ Rn

. (49)

If C ∈ R, we will look for mappings
g1, g2, g3, . . . , gn ∈L

1(I) such that

gi(x) � C + 􏽚
[a,x]

Hg1g2g3 ···gn
(t)dt , (50)

is satisfied for all x ∈ I, i � 1, 2, 3, . . . , n (arguments of H are
represented by subscripts).

Let for all g1, g2, g3, . . . , gn ∈L
1(I) and all x ∈ I,

J: L1(I)n⟶L1(I) be defined as follows:

Jg1g2g3 ···gn
(x) � C + 􏽚

[a,x]
Hg1g2g3 ···gn

(t)dt . (51)

-en,

d1 Jg1g2g3 ···gn
(x), Jh1h2h3 ···hn

(x)􏼐 􏼑 � 􏽚
I

Jg1g2g3 ···gn
(x), Jh1h2h3 ···hn

(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dx ,

≤􏽚
I

􏽚
[a,x]

Hg1g2g3 ···gn
(t)dt − 􏽚

[a,x]
Hh1h2h3 ···hn

(t)dt􏼠 􏼡dx

≤􏽚
I

􏽚
[a,x]

κ􏽘

n

i�1
λi gi(t) − hi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌d(t)⎛⎝ ⎞⎠dx

≤ κ􏽘
n

i�1
λi􏽚

I
􏽚

I
gi(t) − hi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌d(t)􏼒 􏼓dx

� κ􏽘
n

i�1
λi􏽚

I
d1 gi, hi( 􏼁dx

� κ(b − a) 􏽘

n

i�1
λid1 gi, hi( 􏼁.

(52)

If, then by 4.1 (c), (50) has a unique solution of the form
(g0, g0, g0, . . . , g0) ∈L

1(I)n.

6. Conclusion

We generalized the concept of tripled fixed point by in-
troducing n-tupled fixed points and established an n-tupled
unique fixed point result in fuzzy b-metric space. -is
generalization may be helpful for further investigation and
applications.

We conclude this paper by indicating, in the form of
open questions, some directions for further investigation
and work.

(1) Can the condition of continuity of θ in-eorem 1 be
relaxed?

(2) If the answer to 1 is yes, then what hypotheses on S

and θ are needed to guarantee the existence of the
n-tupled common fixed points T and θ?

(3) Can the concept of n-tupled coincidence point be
extended to more than two mappings?

12 Journal of Function Spaces



Data Availability

No data were used to support this study.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally and significantly in writing
this article.

References

[1] A. Roldán, J. Martinez-Moreno, and C. Roldán, “Tripled fixed
point theorem in fuzzy metric spaces and applications,” Fixed
Point 3eory and Applications, vol. 29, pp. 1687–1812, 2013.

[2] X.-H. Zhu and J.-Z. Xiao, “Note on “Coupled fixed point
theorems for contractions in fuzzy metric spaces“,” Nonlinear
Analysis: 3eory, Methods & Applications, vol. 74, no. 16,
pp. 5475–5479, 2011.

[3] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[4] M. Alaei and F. Yazdanpanah, “A fuzzy-based routing scheme
for network-on-chip with honeycomb topology,” Comput.
Methods. Differential Equations, vol. 7, pp. 511–520, 2019.

[5] S. Biswas and T. K. Roy, “A semianalytical method for fuzzy
integro-differential equations under generalized Seikkala
derivative,” Soft Computing, vol. 23, no. 17, pp. 7959–7975,
2019.

[6] S. Biswas and T. K. Roy, “Generalization of Seikkala derivative
and differential transform method for fuzzy Volterra integro-
differential equations,” Journal of Intelligent and Fuzzy Sys-
tems, vol. 34, no. 4, pp. 2795–2806, 2018.

[7] S. Biswas and T. Roy, “Adomian decomposition method for
fuzzy differential equations with linear differential operator,”
Journal of Information and Computational Science, vol. 11,
no. 4, pp. 243–250, 2016.

[8] M. R. Pidatella, G. Gallo, and M. Zeinali, “Pattern classifi-
cation through fuzzy likelihood,” Le Matematiche, vol. 70,
pp. 135–146, 2015.

[9] M. Zeinali, S. Shahmorad, and K. Mirnia, “Hermite and
piecewise cubic Hermite interpolation of fuzzy data,” Journal
of Intelligent and Fuzzy Systems, vol. 26, no. 6, pp. 2889–2898,
2014.

[10] I. Kramosil and J. Michalek, “Fuzzy metric and statistical
metric spaces,” Kybernetika, vol. 11, pp. 336–344, 1975.

[11] R. Vasuki and P. Veeramani, “Fixed point theorems and
Cauchy sequences in fuzzy metric spaces,” Fuzzy Sets and
Systems, vol. 135, no. 3, pp. 415–417, 2003.

[12] S. Sedghi and N. Shobe, “Common fixed point theorem in
b-fuzzy metric space,” Journal of Nonlinear Functional
Analysis, vol. 3, pp. 349–359, 2012.
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