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The main aim of this article is to study controllability and existence of solution of fuzzy delay impulsive fractional nonlocal
integro-differential equation in the sense of Caputo operator. The existence and uniqueness of the solution have been carried
out with the help of the Banach fixed point theorem. Moreover, for fuzzy fractional differential equations (FFDEs) driven by
the Liu process, this present work introduced a concept of stability in credibility space. Finally, efficient examples are presented

to demonstrate the main theoretical findings.

1. Introduction

Fractional-order dynamical equations can be used to model a
huge spectrum of physical processes in modern-world obser-
vations [1]. Due to its wide range application in various areas
of sciences such as physics, chemistry, biology, electronics,
thermal systems, electrical engineering, mechanics, signal pro-
cessing, weapon systems, electrohydraulics, population model-
ing, robotics, and control, the concept of fuzzy sets continues
to catch the attention of researchers [2]. As a result, in recent
years, scholars have been increasingly interested in it. As a con-
cept of describing a set with uncertain boundary, the fuzzy set
was developed by Zadeh et al. [3]. The concept of possibility
measure was studied by Zadeh [4] in 1978. Fuzzy set theory
is a very useful technique for simulating uncertain problems.
In fuzzy calculus, therefore, the concept of the fractional deriv-
ative is essential. Although the possibility measure provides the
theoretical basis for the measurement of fuzzy events, it does
not satisfy self-duality. Liu B. and Liu Y. [5] studied the con-
cept of credibility measure in 2002, and a sufficient and neces-
sary condition for credibility measure was derived by Li and
Liu [6] in 2006. Fractional differential equations (FDEs) are
differential equations with fractional derivatives. It is known
from the research on fractional derivatives that they originate
uniformly from major mathematical reasons. Different types

of derivatives exist, such as Caputo and RL [7]. In 1965, Zadeh
used the membership function to propose the concept of fuzzy
sets for the first time. The FFDE is the most fascinating field.
They are useful for understanding phenomena that have an
underlying effect. Kwun et al. [8] and Lee et al. [9] investigated
the solution of uniqueness-existence for FDEs. Controlled pro-
cesses have been explored by several researchers. In the case of
the fuzzy system, Kwun et al. [10] for the impulsive semilinear
FDEs, controllability in #-dimension fuzzy vector space was
demonstrated. Park et al. [11] controllability of semilinear
fuzzy integro-differential equations with nonlocal conditions
was investigated. Park et al. [12] established controllability of
impulsive semilinear fuzzy integro-differential equations. Phu
and Dung [13] studied stability analysis and controllability of
fuzzy control set differential equations. According to Lee
et al. [14], in the n-dimensional fuzzy space Ey" of a nonlinear
fuzzy control system, controllability with nonlocal initial con-
ditions was examined.

Balasubramaniam and Dauer [15] examined the control-
lability of stochastic systems in Hilbert space of quasilinear
stochastic evolution equations, while Feng [16] explored
the controllability of stochastic with control systems associ-
ated with time-variant coefficients. Arapostathis et al. [17]
analyzed the controllability of stochastic differential systems
of equations with linear-controlled diffusion affected by
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Lipschitz nonlinearity that is limited, smooth, and uniform.
Stochastic differential equations given by Brownian motion
are a well-known and well-studied area of modern mathe-
matics. A new type of FDE was created using the Liu tech-
nique [18], which was described as follows:
4X., = (X, v)dv + g(X,, v)dC,, (1)
where C, denotes Liu operation and f and g are functions
that have been assigned to it. This class of equations is solved
using a fuzzy technique. For homogeneous FDEs, Chen and
Qin [19] studied solutions of existence-uniqueness of few spe-
cial FDEs. Liu [20] investigated an approximate method for
solving unknown differential equations. Abbas et al. [21, 22]
worked on a partial differential equation. Niazi et al. [23, 24],
Igbal et al. [25], Shafqat et al. [26], Abuasbeh et al. [27], and
Alnahdi [28] existence-uniqueness of the FFEE were investi-
gated. Arjunan et al. [29-32] worked on the fractional differ-
ential inclusions.

Using conclusions of Liu [20], Jeong et al. [33] focused
on exact controllability in credibility space for FDEs.
Abstract FDEs’ complete controllability in credibility space
is as follows:

dx(v, @) = Ax(v, @)dv + f (v, x(v, @))dE,, + Bu(v), v €

x(0) = x,.

[0, 5],

(2)

We used the Caputo derivative to prove controllability
for the fuzzy delay impulsive fractional integro-evolution
equation in credibility space with nonlocal condition; as a
result of the above research,

SDPu(v,) = g,(v, u(v)) +Au0}0

[ 7 (2, [ s a0 )

+Bx (v)&x( )dv,ve(O v],i=1,2,---,N,
Vi () 3)

where U(CEy) and V(cEy) are two bounded spaces. Ey
is denoted for the set of numbers; all upper semicontinu-
ously convex fuzzy on R™, and (®,,P™, %,), is the credibil-
ity space.

The fuzzy coefficient is defined by the state function u
1[0, 3] x (©,P™,6,) — U. f:[0,F] x U—> U is a fuzzy
process. x:[0,3]x (©,P™,F,)— V is regular fuzzy
function, x : [0, J] x (®,, P™,¥,) — V is control function,
and A is linear bounded operator on V to U. The initial
value is u, € Ey, and &, denotes the Liu process.

The goal of this work is to investigate the existence and
stability of results to FDEs and the exact controllability
driven by the Liu process, in order to deal with a fuzzy pro-
cess. Some scholars discovered FDE results in the literature,
although the vast majority of them were differential equa-
tions of the first order. We discovered the results for Caputo
derivatives of order (0, 1) in our research. Stability, as a part

u(0) =uy+h(vy, vy o,
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of differential equation theory, is vital in both theory and
application. As a result, stability is a key subject of study
for researchers, and research papers on stability for FDE
have been published in the last two decades, for example,
essential conditions for solution stability and asymptotic sta-
bility of FDEs. We use fuzzy delay impulsive fractional
integro-evolution equations with the nonlocal condition.
The theory of fuzzy sets continues to gain scholars’ attention
because of its huge range of applications in different fields of
sciences such as engineering, robotics, mechanics, control,
thermal systems, electrical, and signal processing.

In Section 2, we go over some basic notions relating to
Liu’s processes and fuzzy sets. Section 3 demonstrates the exis-
tence of solutions of FDE and shows that FDE is precisely con-
trollable. The concept of credibility stability for FDEs driven
by the Liu process was developed in Section 4. Finally, in Sec-
tion 5, several theorems for FDEs driven by the Liu process
that is stable in credibility space were demonstrated.

2. Preliminary

If M;(R™) be the family of all nonempty compact convex
subsets of R™, then addition and scalar multiplication are
commonly defined as M, (R™). Consider two nonempty
bounded subsets of R™, A, and B,. The distance between
A, and B, is measured using the Hausdorft metric as

a;eA;bi€B

d(A;, B;) = max {supb1nf|a bi||,:uguig{||ai - bi||}, (4)
i €B; i

where ||-|| indicates the usual Euclidean norm in R™. It
follows that (M, (R™), d) is a separable and complete metric
space [20]. Satisfy the below condition:

E™ = {j: R™ — [0, 1]|jsatisfies(a) — (b)below},  (5)

where

(a) jis normal; there exists an j, € R™ such that j(j,) = 1.

(b) j is fuzzy convex, such that is j(Av + (1 —A)s) > 1.

(c) j is upper semicontinuous function on R™, that is, j
(vg) 2 kli_r)nooj(\_zk) for any v, e R™(k=0,1,2,-), v,

— .
(d) []]0 =cl{u e R™|j(v) >0} is compact.

In R™ [34], for 0 < B < 1, denote [j] = {v e R™|u(v) > 8}
and [u]” are nonempty compact convex sets. Then from (a) to

(b), it concludes that B-level set [j]*v € M, (R™) for all 0 <
< 1. Using Zadeh’s extension principle, we can have scalar mul-
tiplication and addition in fuzzy number space E™ as follows:

li®e)f =[] ® [0, (ki) = k], (6)

where j, o € E™, k e R™ and 0 < 3 < 1. Assume Ey denotes a set
of all numbers upper semicontinuously convex fuzzy on R™.
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Definition 1 (see [35]). Given a complete metric D; by

D,(j.y) = sup di{ i/, o)}

0<pB<1

3

for any u, v € Ey, which satisfies D, (j + z,p+z) = D, (jg) for

each z€ Ey and [j]“ = [jﬁ, uf], for each € (jp) where Xf’

uf € R™ with ]'lg < uf.

i -

- sup max ([ ot
0<p<1

>

Definition 2 (see [36]). The fractional derivative of RL is
stated as

DM (v)= (;i) ij(v —7)" A f(r)dr, where (n< A< n+1).

a

(3)

Definition 3 (see [37]). The fractional derivatives in the sense
of Caputo ¢D]f(v) of order a € R™" are described by

n-1 ¢(k) a
DY) =0, <f(V)— Z’%w—a)k), ©)

where n=[o]+1 for 0 ¢ Ny;n=0 for 0 € N,,.

Definition 4 (see [37]). The Wright function v is defined by

0O (_w)n

v, (@) = Zom (10)
- %n_l (EZD i)! ['(no) sin (nmo),

where @ € C with 0 <o < 1.

Definition 5 (see [38]). For any j, g € €([0, T], Ey), metric
H,(x, ) on €([0, T], Ey) is defined by

H,(jp) = sup Dy (j(v)p(v))- (11)

0<v<T

Consider that ®; is a nonempty set and P™ denotes
power set on ©,. A case is a label given to each element of
P™. To present an axiomatic credibility, an idea based on
the consideration of A; will occur. To validate that the num-
ber ©,{A;} is applied to each A; event, representing the
probability of A; happens. We accept the four main axioms
to ensure that the number %,{A;} has certain mathematical
features that we predict:

(a) Normality property €,{0,} =1,

(b) Monotonicity property &,{A;} <%,{B;}, whenever
A; CB,,

(c) Self-duality property €,{A;} +€,{A} =1 for any
event A;,

(d) Maximality property €,{U;A;} = sup,;€,{A;} for any
events {A;} with sup,&,{A;} <0.5.

Definition 6 (see [39]). Take ® be the nonempty set, P" be the
power set of ®,, and €, be the credibility measure. After that,
the triplet (®,, P", G, ) is assigned to the set of real numbers.

Definition 7 (see [39]). A fuzzy variable is a function that is
generated from a set of real numbers (®,, P", %,) to credi-
bility space (®,, P",E,).

Definition 8 (see [39]). If (®,,P",8,) be credibility space
and (©,, P",%,) be an index set, a fuzzy process is a func-
tion that takes a set of real numbers and multiplies them
by T'x (©,,P",%,).

It is a fuzzy method. u(v, {) is a two-variable function in
which u(v, ") represents a fuzzy variable for each v*. For
each fixed (¥, the function u(v,{) is termed a sample path
of fuzzy process. The fuzzy process u(v, {) is said to be sam-
ple continuous if sample ping is continuous for almost all ¢.
Alternately of u(v, (), we frequently use the notation u,,.

Definition 9 (see [39]). (®,, P, €,) is the symbol of a cred-

ibility space. The S-level set is applied for the fuzzy random
variable u, in credibility space for each € (0, 1).

(12)

(13)

where (uv)f, (uv)f € R™ with (uv)f < (uv)f; when € (0,1).

Definition 10 (see [5]). Suppose that @ is a fuzzy variable and
that r is a real number. Then, @’s expected value is defined:

0
G, {@<r}dr,

—00

Ed= J(:OOCr{(D > r}dr—J (14)

if at least one of the integrals is finite.

Lemma 11 (see [5]). If @ is a fuzzy vector, then the following
are properties of expected value operator E:

(@) If f < g E[f(@)] <E[g(a)]
(b) E[-f(@)] = -E[f(@)]

(c) If f and g are comonotonic, we have for any nonneg-
ative real numbers a; and b,,



(a)

E[a,f (@) + big(@)] = a,E[f(@)] + b,E[g(@)],
(15)

where f(®@) and g(®@) are fuzzy variables, respectively.

Definition 12 (see [5]). A fuzzy process €, is Liu process, if

(a) (g() = 0)
(b) the ¥, has independent and stationary increments,

(c) any increment €, — €, is normally distributed
fuzzy variable with expected value ev and variance

¢*Vv?, with membership function.

E(u) =2<1 +exp ("'\”}T_(P‘;”'))l LER™  (16)

The parameters ¢ and e represent the diffusion and drift
coeflicients, respectively. If e = 0 and ¢ = 1, the Liu process is
standard.

Definition 13 (see [40]). Suppose that €, is a standard Liu
process and u,, is a fuzzy process. The mesh is fixed as ¢ =
vy < -+ <v, =d for any partition of the closed interval [c, d
| with c=vy< - <v, =d,

A=max(v;—v_;). (17)

1<i<n

After that, the fuzzy integral of u, with regard to &, is
calculated:

d n
JC uvd%v = Alglo ; M(vi—l) (%vi - %vt_l )’ (18)

determined by the limit exists almost positively and is a
fuzzy variable.

Lemma 14 (see [40]). Consider that €, represent the stan-
dard Liu process with €,{(} >0, and the direction €, is
Lipschitz continuous, employing the below inequality:

|6, = B.,| < H()|vi =), (19)

where F({) is Lipschitz, which is a fuzzy variable
described by

sup @ -5, (>,
%(C) = 0<s<v v (20)
00, otherwise,

and E[#?] < oo for all p> 1.
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Lemma 15 (see [40]). Assume that h(v;c) is a continuously
differentiable function and that €., is a standard Liu process.
The function is defined as u,, =h(v;%,). Then, there is the
chain rule, which is as follows:

_0h(v;9€,) oh(v;%,)
du, = 3 dv+ 57 de,. (21)

Lemma 16 (see [40]). The fuzzy integral inequality exists if
f(nu) is a continuous fuzzy process:

d d
| s, | <[ rwiav (22)

c

In Lemma 14, the term K = K ({) is defined.

3. Existence of Solutions

This part applies the symbol u,, instead of the lengthy notation
u(v, (), as defined by Definition 8. The existence-uniqueness
of solutions to FDE 1 (x = 0) has been investigated.

Jo Jo

{ ot =g+ au+ [ 1) [ How) s, pe)

u(0) =uy +h(v), vy, v u(.)),  €Ey,

(23)

where u,, is state that includes values from the U(CEy) set
of values. The set of all upper semicontinuously convex fuzzy
numbers on R™ is called Ey, credibility space is (©,, P™, %, ),
fuzzy coeflicient is A, and state function u : [0, §] % (©,, P™
,€,) — U is fuzzy process, f : [0, J] x U — U is regular
fuzzy function, €, is standard Liu process, and 1, € Ey is ini-
tial value.

Lemma 17. If u(v) is the solution of equation (3) for u(0)
=g+ Q(V Vo o5V, (), then u(v) is given by

u(v) =vF1(y Vi,V oV, Ul i ‘Vv—sﬁ_l.s,xs s
(V) =V (g + 4(v1r V2 vy <)>+ﬁUO< P15, x(5))d

v

[ faus 0+ [ 1
(s 050 | s uts )8, ) + 50 | ] ds,

0

(24)
holds, and then,

u(v) = vﬁ’lPﬁ(v)(uo +g(Vp vy o Vps u())
+ O(V - s)ﬁ’lP,g(v —5)g;(s, x(s))ds

4

+ O(V =) Pg(v—s)[Au(s, Q)

[ (s, u(s,0), r%(s, u(s, C))d%s> +B(s)‘(§(s)] ds,

0 0

(25)
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where

P=| quMq@)Q(vqodc. (26)

Suppose that the statements below are correct:
(J,) For u,,v,eB([0,F]x(©,P™%,),U),vel0,S]
There exist positive number m that is

dy (1)), (£ w))F) < md (10,6, )

f(o, X{O}(0)> =0. )

(J,) 2emH 3 < 1. Because of Lemma 17, (23) has the solu-
tion u,,. As a result, we establish in Theorem 18 that the solu-
tion to (23) is unique.

Theorem 18. For (u, + g(v;,v,, 5V u(.)) €Ey, if (J,) and
(],) are hold, (23) has an unique solution u, € €([0, J]) x (
6, P",%,),U).

Proof. For all @,€%([0,S]x(©,,P™,€,),U),vel0,T],
define

@, = vﬁ_lPﬁ(v) (g + h(vis vy, vy (L)

+ J:(v =) Py(v = 5)gi(s, (DS)>ds

+ J:(v - s)/HPﬁ(v )

: [Aws + J f (s, a, JSK(S, @S)ds‘gs> + B(s)‘g(s)] ds.

(28)
O

As a result, the ¢@ : [0, ] x (@, P™, €,) — ([0, TF] x

(©,,P™,%,), U) can be established as
¢ 6([0, 5] x (0, P, ,), U) — ([0, 5] x (0, P, 6,), U).
(29)

For equation (23), ¢ is a fixed point which is likewise an
obvious  solution. @, u, € €([0, ] x (©,,P™,%,), V),
according to hypothesis (J,) and Lemma 16.

v

0

{ @, = vﬁ'lPﬁ(v)(uO + h(vl, Vot Vs u()) + J

u(0) =uy +h(v, vy, - vy u(L)),

(v- s)’HPﬁ(v —5)g;(s, u))ds + J

d, (19, [gm,)")
~a([[[ -9 v 0) + [ v-9 B9

0
S

. :A(S, a,) +f((5, ‘Ds)’J H (s, @S)ds‘gS)Hﬁ,

0

: J( — PPy (v - S)ai(s ) + J( — 9Py v—s)

: :AMS +f ((s) te)s JO% (s #s)dCsﬂ ﬁ)

< cm%J a, (105, 1)) ds.

v
0

(30)

Therefore, we obtain

Dy(ga, du,) = sup di([90,)% 00)

Be(0,1
sup d (@, [} )ds  (31)
0pe(0.1)

= cm%J Dy (@, p,)ds.
0

Scm,%J

As a result, according to Lemma 11, for a.s. ® € ©,,

E(H, (¢, pu)) =E< ZEJPT ]DL(¢‘DV> ¢m)>

<E (cm.%f sup JVDL(LDV, ‘uv)> (32

ve(0,3]J0

<cmHIIE(H, (@, u)).

A contraction mapping is ¢ according to hypothesis (J,).
The Banach fixed point theorem equation (23) has unique
fixed point x,, € €([0, J] x (©,, P™, F,), U).

3.1. Exact Controllability. In this section, we will study exact
controllability for differential equation in the context of
Caputo operator (3). We investigate a solution for equation

(3) x in V(CEy).

v

(v=5)F"Pg(v—s) {Aus + J f (s, u, I H (s, us)d%s> + BuS%us} ds,

0

(33)
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where S(v) continuous, such that $(0) =1=8'(0) and | [u,]f = [Vﬁ‘lpﬁ(v) (g +h(vis vy - vy u(.))
S(v)|<¢c¢>0,ve[0,T]. The term of controllability is y
defined for Caputo fuzzy differential equations. + J (v- s)‘HPﬁ(v - 5)g;(s, us)) ds
0
Definition 19. Equation (3) is called a controllable on [0, ], + JV(V — ) Py(v—s) [Aus +f(5) 5 JS%(S» us)d%&s)
if there is control u, € V for every u, € Ey where the solution 0 0
u of (3) satisfies the condition u, = u ' eU, as. , that is, + Bus%us]ds}ﬁ
B, 11P
[,)7 = [u']". = [vﬁ‘lPﬁ(V) (uo +h(v, vy, v ,u())fn
Given fuzzy G : P(R™) — U mapping such that + JV( =) Py(v- s)ah (s u )) ds
0
T v -1
p-1 = +J (v=s)""Pg(v-s)
- v—s)" Pp(v—s)BvGvds, ¢cl,,
Gﬁ(V) _ JO ( ) ﬁ( ) s@Vs © j 0 .
. B B
0, otherwise, {AuS +fh (s, u,, L%m(s, us)d%s)}
(34) + (v- s)ﬁ"lPﬁ(v - s)B(Gﬁl) B
0
where I, is closure of support x and a nonempty fuzzy sub- . {(ul)i =V IPg(v) (uo +Q(Vis Vo o vy (- ))’g
set P(R™) of R™, v s
-~ —1
After that, there is a Glﬁ(i =m,n), - O(V =5 PR(v = ) (5 )) ds

"V

- T | (v- s)F'p (v=s) [Aus - (s, U, S%En(s, us)d‘[ﬁs)
Ghlio,) = j (v =) Pl (v = 9)B(), 60, (90),, € [ (05 (0)' ] 0 ’ J 0

s T —Bus‘gus] }ds, vﬁ'lPﬁ(V) (uo + h(vl,vz, IR} ,u())f
G = -8) T P (v —5)B(p,), B(g,), ds. Lp)E|. v
)= | =9 B 980, 6 0,45 (0), € (00" (0] B ST D

(35) . Q(V_s)ﬁ,lpﬁ(v_s) {Aus+f€(5’ ", Js

+ V(v - s)lHPﬁ(v - 5)B(Gf> -

HE (s, us)d%s)}

We assume that Gﬁ, Gf are bijective functions. A 3-level

set of x, can be presented as below: 0
{(ul)f =V IPg(v) (uo + (Vi vy, o vy (- ))f
=[xt f] -9 -9 n)as
0
= |: —VI3 lpﬁ(v) (uo + h(V1 Vo, )V;v ”( )),ﬁn _ Jv(v —s)ﬁ_lPﬁ(v—s)
0
- Jo(v 5)’5 P;s(v—S)gfm(s, us))ds -[Aus —fF (s, uS,J HE(s, us)d%s) —Bus‘gus} }ds]
"V v S 0
’ Jo(v_s)ﬁilpﬁ(V =) {Aus ' Lff,, (S) o Jo%ﬁ(s’ uS)d%S) = [Vﬁ_lpﬁ(") (”o +h(vy vy, - Voo (- ))f«
~B -1 v
+ Bfn(us)%fi(us)ds] ds}, (G) o [ 9P Py — a5 ) ds
. {—(ul)f —v‘HPﬂ(V) (uo + h(vl,vz, Vs ”())f 3 .
v + (v- s)ﬁ’lpﬁ(v -s) [Aus +fP (s, U, J HE (s, us)d%sﬂ
[ ) s 0 0
0 APV S _acP(eP\
+[ (v—s)ﬁ‘lPﬁ(v—s) i O(V 9 IPB(V $)C <G”)
o0 N . {(ul)fn —vﬁ’lPﬁ(v) <u0 +h(vi, vy, e vy (- ))fn
- |Au B S, U, Bs, u B (u)EP (u.)ds . v
{A S+Jofn( ’ JO%"( S)d%as) + Bl Ba ) } }] - (v—s)ﬁ’lPﬁ(v—s)gfm(s, uy))ds
(36) 3

[[= ) [ = £ (s, |

0

- BuGuy)}ds, V‘B'lpﬁ(v) (”o + h(vl, Vo to Vi U(. ))f

HE (s, us)d%”s)
This expression is substituted into (33) to get the S-level

of x,.
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[ v 9Py = )b (s w))ds

0

vV

+| (v=s)F T Py(v—s) {Aus +fP (s, u, J}%f(s, us)d‘&)}

0

v ~ ~ -1
+| (v=9"By(v-9)G, ()
0

{ (ul)f - vﬁ’lPﬁ(v) (uo + h(vl, Vartt Vs u())’;3

- va =P Py = 5)af (s u))ds

- [ =99
. {Aus gt <s, ", Ly/ﬁ (s us)d‘gs) Bux‘[gux} Vds|

= [, ()] = )" (37)

Hence, this control x,, satisfies u, =u', a.s. {.
We now set

yu, = vﬁ’lPﬁ(v) (uo + (v, vy, e vy u(L)

+J"(v—s)ﬂ*1Pﬁ(v—s)gi(s, ”s))ds+J (v— )t

0

Pyv—s) {Aus + f(s, . JS.%(S, us)da)}

0

+ Jv(v — ) Py(v - s)B(G) h { (u') = vFPy(v)  (38)

. (uo+h(v1 vy, - )—Jv(v—s)ﬁ_lPﬁ(v—s)

0

)ds )P Py(v—s) [Au -f

( SL (su)d%) Bu‘[gu}}d

Fuzzy mappings G~ holds the above equation.

dy ([ )f, o))
-d, ( {vﬁflpﬁ(v) (uo RV va s vy u(.))
o[ -9 B -9 us)> ds
K [Aus +f (s, HES us)d‘{gS)]
[y -5)3(6)"{(u1) RIS
(
J

Jo

v(v =) Py(v-s) [Aus -f (s, u, Jsz(s, us)d‘gs> - Bu;‘gus} }ds] ﬁ,

0

g+ B(vi vy v u(l)) - [V(v—s)ﬂ’IPﬁ(v—s)gi(s, us)>ds

7
vp’lPﬁ(v) <v0 +h(vi vy v () + J:(v - s)ﬁ_lPlg(v - 5)gi(s vs)>ds
J (v—-s)F ]Pﬁ(v s) {Av +f<s Ve L (s vs)d%s>]
+ j:( =) Py(v-5)BG {(v ) =V Pg(v)
: (VO +h(vis vy v () = jiv(v =) P (v - 5)ai(s, vs)> ds
—J:(v )P lPﬁ v=s) {Av ( J K (s, vy) dC) - By %v} }ds)
de<U:(v s)ﬁ Pp(v=s)g;(s; us)ds+J0 P/;(v s)
. [Aus +f(s, U, J;%(s, qu‘@)H s UO (v- s)/HPﬁ(v —5)g;(s, v)ds
+ J:(v - s)ﬁ*IPﬁ(v -53) [Avs +f (s, Ve J‘;‘%(s, vs)d%r(s)> ] ] ﬁ)
+d; ( U:(v - s)lHPﬁ(v - s)BCf1 X j:(v - s)‘HPﬁ(V -5)gi(s, us))ds
[ - (s, [ 76 a9
- JAV(V - s)‘HPﬁ(v =5)8;(s, v)ds + J:(V - s)‘B’IPﬁ(v -5s)
- Avs s %(s v,)dE,
< L v=s) 5 lPﬁ (v=$)BG x ?v(v—s)ﬁlPﬁ(v—s)g,-(s, us)>ds
_ L(V — )P Py(v=s)f <s, uy j:)%(s, us)d%r(s)ds)} ﬁ)
< cm%.[:dL ([us]ﬁ, [vs]ﬁ) ds
+d, ( {GG" U:(v = 5P Py(v — )5, u,)ds
oo o
“Pg(v—s)g;(s,v,)ds + J:f (s, Ve J}%(s, vs)dgsﬂ ] ﬁ)
<ot | d (), 0 ) s+ emt [ (15 w0 [FCs v s
< ZCm%J:dL([us]ﬁ, [vs]ﬁ)ds. (39)

Theorem 20. If Lemma 16 and hypotheses (],) and (],) are
hold, then equation (3) is controllable on [0, ).

Proof. From %([0, ] x (©,,P™, U) to ¥([0,S], we can
clearly see that y is continuous. We have Lemma 16 and
hypotheses (J;) and (J,) for any given { with €,{(} >0, x,,
©, €6([0,I] x (©,P™,6,),U). O

Hence, by Lemma 11,

E(H, (yu,yv)) :E< sup Dy (yuy, vm)) :E< sup sup D |y, f, |wmﬁ)d5)

ve[0,3] ve[0,3]0<p<1

< ( sup sup 2cm%J DL([M] [ s]ﬁ)d5>
ve[0,3]0<p<1

E( sup 2cm%[ D, (u,, vS)ds> <2emHKIF(H,(u,v)).

ve[0,3]

(40)



As a consequence, (2cm#'J) < 1 is a A, sufficient . As

a result, ¥ stands for contraction. The Banach fixed point
theorem is now being applied to show that (33) has a single

fixed point. [0, F] can be used to control (3).

EDBu(v,0) = g,(v, u(v)) + Au(w,§) + ff((v, w0+ |

0

u(0) =uy+h(v, vy v u(.), €Ey,

where states consider values from U(CEy) and space V
(CEy) two bounded spaces. The set of all, upper semicon-
tinuously convex, fuzzy numbers on R™ is Ey and (®,, P™
,€,) denotes credibility space.

The state function u: [0, 3] % (®,P™,€,) — U is
fuzzy coeflicient. Fuzzy process f : [0, S| x U — U. x : [0,

v

{ u, = vﬁ’lPl;(v)(uo Fh(vi vy v u(.) +J

Therefore, Lemma 17 is satisfied.

2]° = [B+1,3 - f] is the p-level, set of fuzzy, number 2,
for all S€(0,1). B-level set of f(v,u,) is

) =v|(B+ 1w G-Bw)h]- (43)
Further, we have

dy (1)) [F ()
=d, (v[(B+ 1)(w)f, 3= B, v
[B+0-pmE])
—vmax { (B+ 1)), - ()}
3= ) - 8]}

<33 max ’(uv)ﬁ — (n,)P

> (44)

m m

| =

j

= md ([u,)f, (v},

Journal of Function Spaces

Example 1. We investigate FFDE in credibility space:

Sk(s, u(v, C))) d€, + Bx(v)Ex(v)dv,

0

3] x (0, P™,€,) — V is a regular fuzzy function, x : [0,
S| x (©,,P™,€,) — V is a control function, and Bisa V
to U linear bounded operator. u, € Ey is an initial value,
and @, is standard Liu process.

Assume f(v,u,)=2vu,, S (v)=e?, defining w, =
S™'(v)u,. Then, the equations of balance become

2v

v

(3= Byt =0 x(3)ds+ | (v=9f Byl [auts )+ [ £(s.60), [ (s uts ), ) 500 | s

0

(42)

where m = 3 satisfies an inequality in the (J1) and (J,)
hypotheses. All conditions given in Theorem 18 are fulfilled.
Assume that 1 is the initial value for u,. The plan set u' =2.
Lis[1]=[B-1,1- ], f€(0,1) is B-level set of fuzzy num-
bers 1. The x, of (41)’s B-level set is presented.

(x)f ()]

This expression is then substituted into (42) to get the 3
-level of u,:
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= [sm)(ﬂ 1)+ | S 95+ 1),

+[ s -9m(eh) {B+1-sh®)-1)
[sts s+ 1), s ()1 -
+ 555(5—5)5(1—13)(%)561‘55

o[ sts-98(E) {G-p-s@a-p

3

- [ shs - 9s- prfae, o
= [(B+1).3-p) = [2)".

(46)

Following that, conditions in Theorem 20 have been ful-
filled. As a result, (41) on [0, T] can be controlled.

4. Definition of Stability in Credibility

We shall provide a concept of credibility stability for FFDEs
driven by the Liu process in this part.

Definition 21. The FDE 1 is said to be stability in credibility if
for, any two, solutions u,, and v, corresponding to different
initial values uy + h(vy,v,, -+, v,, u(.) and vy + h(vy, vy, -,
v, v(.), we have

lim %, {|u, -

|ug—vo|—0

vl <e}=1Lforallv=0,  (47)

where ¢ is any given number and € > 0.

lim @, {|u, -
| (uo+h (vl,vz;n,vp u(4))—(v0+h (vl,vz,---,vp v()) |*>
= lim
| <u0+h(vl,v2,--»,vp,u(.))—(v0+h(v1,v2,~-~,vp,v(.)) ‘

vl<e)

As a result, the credibility of FFDE is stable.

Definition 22. The n-dimensional FDE 1 is called stable in
credibility, if for any two solutions u, and v, corresponding
to different initial values uy + h(v,v,, ---,v,, u(.) and v, +

P
h(vl’VZ’ T P’ V(~)) we haVe

G, {|lu, —v,|<e} =1LV¥v=0.

(51)

im
|| (un+h(vl,v2,-»»,vp,u(A))f(v0+h(vl,vz,m,vp,v(.)) ”—»O

% Al (o +R(vis vy -

Example 2. Take the FFDE to better understand the concept
of credibility stability.

u,= v'g_IPﬁ(V)(uO +h(vi, vy vy, u(.)

o[ @ By a s e
. v(v ~ S)/mpﬁ(\, - $5)[Au(s, {)

v

+ f(s, u(s, ¢), JS%(S, u(s, ())d‘gs) + B(s)%(.s)} ds,

0 0

v, = vﬁ’lPﬁ(v)(vo +h(vi,va vy ()

+ J O(V =) Py (v = 5)ay(s, x(s))ds

+ ) (v— s)ﬁ_lPlB(v - 5)[Av(s, ()

[ (s,v(s, C),Js%(s, v(s, ())d%s) . B(s)fg(s)} ds,

0 0
(48)
respectively. Then, we have
u, = v, | = (g +h(vy, vy oo v,, ul.
=l = ot h e vput)

= (vo+h(vy vy o

Voo v())|

Deduce to, for any given & > 0, we always have

(vo+h(vi, vy, v

» V()] <e}=1L¥v=0.

Vp> ())'

(50)

Example 3. Take an m-dimensional FFDE:

gDﬁu(v, {) =g;(v, u(v)) + Au(v, C)

[ (0w, [ ks un) ),
+ Bx(v)€x(v)

(52)

The two solutions corresponding to different initial
values are
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u,= v'g_lPﬁ(V)(uo +8(viyva vy (L)
+ ( v = )PPy (v = 5)g,(s, x(s))ds

+ ( v=s)Pg(v - 5)[Aus {)

+ ( (50), 0% u(s,{)) d%) ()%(s)]ds

v, :‘Vﬁ_lpﬁ(\/)(vo + h(Vl, Vo5t

Vps v())
+ J (v=5)F " Pg(v = 5)gi(s, x(s))ds

0

lim G, {|u, -
(u0+h(vl,v2,---,vp,u(4))—(v0+h(v1,vz,---,vwv(,))‘—»0
= lim
‘(u0+h(vl,v2,»-»,vp u(,))—(v0+h(v1,vz,-<-,vp v())|—>0

vl<e)

Thus, m-dimensional FFDE is stability in credibility.

Note that some fuzzy differential equations driven by the
Liu process are not stable in credibility. It will be demon-
strated in the following example.

5. Theorems of Stability in Credibility

In this part, we will discuss the necessary criteria for a FFDE
driven by the Liu process to achieve credibility stability.

Theorem 23. Assume the FFDE 1 for each initial value has a
unique solution. Then, it is stable in credibility space, if coef-
ficients f (v, u) and g(v, u) satisfy strongly Lipschitz condition

DU () = fw)) + () +9(m)) o
<L(v)D(u—v)Yu,veR™,v>0,

for some integrable function L(v) on [0, +00).

Proof. Let u, and v,, be two solutions corresponding to dif-
ferential initial values (1 +h(vy, vy, =+, v, u(.)) and (vy +
h(vy, vy, -+, v,, v(.)), respectively. Then, for each 9 € ®,,

>
D(u, = vy)
=D(f(v,u,)dv —f(v,v,)dv +D(g(v, u,)dE, - g(v,v,)dE,)
=D((f(vsuy) = f(vsw))dv +D((g(v> u,) = 4(v v,))d )
<D((f(vsuy) = f(vsvy))dv) + D((g(v, ) = g(v» ,))dE,)
<L(v)D(u, - v,)dv + DL(t)(u, - v,)d€
<L(v)D(u, - v,)dv + DL(V)\&?',’(\‘))\(L{v -v,)dv
=L(6)(1+ [KO)[)D(u(v) = v(v)),
(57)

G, {|(u + (v, vy, -

Journal of Function Spaces

+ Jv(v - s)ﬁ’lPﬁ(v —5)[Av(5,0)

; jf (s v | #(s 215,005 )
+ B(s)€/(s)]ds, (53)

respectively. Then, we have

[y = vl = [ (g + B (Vs Vs oo vy () = (Vo + B (Vs Vs -+ v V(1) ) -
(54)

As a result, we always have
(55)

(vo + h(vl, vy, -

,vp,u())— 5V V() )’<£}—1VV>0

where F (9) is the Lipschitz constant of the Liu process.
When we take integral on both sides of equation (57),

D(u, = v,) < D((uy vp u())
(V (Vp Vo5t Vp’ V( ))) €xp (58)

: (1 + |%(S)|J:L(s)ds) :

For any given & > 0, we always have

+h(v1,v2, ey
+h

O

G, {|u, —v,| <&}
> {|(ug + h(vi, vy - vy u())
= (o +h(vis vy, v v(.)) | exp (1 + \%(9)\JVL(s)ds> <e}.
0
(59)
Since
G {|(ug +h(vi, vy e vy u())
= (gt h(vis vy vy v() | exp (60)
~(1 + |%(9)|J L(s)ds) <£} — 1,
0
as |uy — vo| — 0, we obtain
lim G {|lu,-v,|<e}=1

‘ (u0+h(v1,vz,---,vp,u(A))—(v0+h(vl,v2,---,vp v()) ‘—>0
(61)

Hence, the FFDE is stability in credibility. If it is not easy
to determine whether or not f(v, u) and g(v, u) satisfy strong
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Lipschitz condition, the following corollary can be used to
determine whether the FFDE is stable in credibility space.

Corollary 24. Assume f(v,u) and g(v,u) be bounded real
value functions on [0, +00). If f (v, u) and g(v, u) have deriv-
atives with respect to u and satisfy

|fu(vs )| + | @ (v> )| <L(v).V 2 0, (62)

for some integrable function L(v) on [0, +00), then FFDE
1 is stability in credibility.

Proof. For the bounded real valued functions f(v,u) and g
(v, u),

fvu)l +la(v, u)| < H(1+[u)), (63)

where # is constant which satisfy |f (v, u)| + |g(v, u)]
< FH. We can derive from the mean value theorem that

o) ) ) o)
=fu O’ = u""| + gy (v |u’ — "]
SL(V)|u' - u/'| +L(v)|u/ —u"‘ :2L(v)‘u' —u!

>

(64)

where &€ (u' —u) existence-uniqueness theorem
demonstrates that FFDE has a unique solution. We can
deduce from Theorem 23 that FFDE is stable in credibility.
Different from Theorem 23 and Corollary 24, we have below
corollary when FFDE is general linear FFDE driven by the
Liu process. O

Corollary 25. Suppose that u,,, u,,, v,,, and v,,, are bounded
functions, with respect to v on [0,+00). If u,, and v,, are
integrable, on [0, +00), then linear FDE driven by Liu process

duv = (ulvuv + sz)d\) + (Vlvuv + VZV)d(gv’ (65)
is stability in credibility.

Proof. For the linear FFDE 7, we have f(v,x) =u;,x + uy,
and g(v, x) = v, x + v,,, since

‘ulvuv + u2v| + |v1vvv + VZV‘
< |u1v||uv| + |u2v| + |V1v|‘uv‘ + |V2v|
< Huy| + FH + H|uy| + F =2 (|uy| + 1),

|(ulvuv + uZV) - (ulvvv + uZV)‘ + |(V1vuv + V2v) - (Vlvvv + V2v)|
= |u1v(uv - Vv)‘ + |v1v(uv + 1/v)|
< |u1v‘|uv - Vv| + |v1v|‘uv + VV|

= (|u1v| + |V1v|)|(uv _Vv)| < 2‘%(uv - VV)’
(66)

where J is a constant which make u,, < %, u,, < %,
vy, <K, v,, <K hold. The existence-uniqueness theorem

11

shows that FDE 7 has a unique solution. Since L(v) = |u,, |
+|v;,| is integrable function on [0,+00), from Theorem
23, the credibility of FFDE can be determined. O

According to Definition 22, Theorem 23 can be used to n
-dimensional FFDEs driven by the Liu process.

Theorem 26. Assume that each initial value of the n
-dimensional FFDE 1 has a unique solution. If coefficients f
(v, u) and g(v, u) satisfy Lipschitz’s strong condition,then it
is stable in credibility space:

[f (v ) = f ()| + [[8(v: ) = g (v, V)

(67)
<L(v)||u—v|,forVu,ve R™,v>0,

for some integrable function L(v) on [0, +00).

6. Conclusion

Accurate controllability for FFDEs can be used as a standard
when analyzing controllability for semilinear integro-
differential equations in the credibility space and fuzzy delay
integro-differential equations. Therefore, the research’s the-
oretical conclusions can be applied to construct stochastic
extensions on credibility space. The FFDEs driven by the
Liu process have an important role in both theory and prac-
tice as a technique for dealing with dynamic systems in a
tuzzy environment. There have been some proposed stability
approaches for FFDEs driven by the Liu process up until
now. This is a rewarding field with numerous research pro-
jects that can lead to a variety of applications and theories.
We hope to learn more about fuzzy fractional evolution
problems in future projects. We can discover uniqueness
and existence with uncertainty using the Caputo derivative.
Future work could include expanding on the mission con-
cept, including observability, and generalizing other activi-
ties. This is an interesting area with a lot of study going on
that could lead to a lot of different applications and theories.
This is a path in which we intend to invest significant
resources.
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