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In recent years, the theory of operators got the attention of many authors due to its applications in different fields of sciences and
engineering. In this paper, making use of the Bernardi integral operator, we define a new class of starlike functions associated with
the sine functions. For our new function class, extended Bernardi’s theorem is studied, and the upper bounds for the fourth
Hankel determinant are determined.

1. Introduction

Let H be the family of holomorphic (or analytic) functions
in D = fz ∈ℂ : jzj < 1g, and An ⊂H such that f ∈An has
the series representation:

f zð Þ = z + 〠
∞

j=n+1
ajz

j: ð1Þ

Let S be the subfamily of A1 ≡A containing univalent
functions in D. Despite the fact that function theory was
first proposed in 1851, it only became a viable research topic
in 1916. Many academics attempted to prove or refute the
conjecture janj ≤ n, which was initially proven by de Branges
in 1985, and as a result, they identified multiple subfamilies
of the class S that are connected to various image domains.
The starlike, convex, and close-to-convex functions are
among those families which are defined by

S∗ = f ∈ S : R
zf ′ zð Þ
f zð Þ

 !
> 0, z ∈D

( )
,

C = f ∈ S : R 1 + zf ′′ zð Þ
f ′ zð Þ

 !
> 0, z ∈D

( )
,

K = f ∈ S : R
zf ′ zð Þ
g zð Þ

 !
> 0, g zð Þ ∈ S∗, z ∈D

( )
:

ð2Þ

Let f and g be the two analytic functions in D; then, f is
subordinate to g, denoted by

f zð Þ ≺ g zð Þ, z ∈Dð Þ, ð3Þ

if there exists a Schwarz functionwðzÞ satisfying the conditions:

w 0ð Þ = 0, w zð Þj j < 1, z ∈Dð Þ, ð4Þ

such that
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f zð Þ = g w zð Þð Þ, z ∈Dð Þ: ð5Þ

Let pðzÞ = 1 + c1z + c2z
2 +⋯ be an analytic and regular

function inD with pð0Þ = 1,RpðzÞ > 0, satisfying the criteria:

p zð Þ ≺ 1 + Az
1 + Bz

� �
,−1 ≤ B < A,−1 < A < 1: ð6Þ

Then, this function is referred to as the Janowski function
which is represented by P ðA, BÞ. Geometrically, pðzÞ ∈P ðA,
BÞ⟺ pð0Þ = 1, and pðUdÞ is inside the domain specified by

Ω A, Bð Þ = ω : ω −
1 − AB

1 − B2

����
���� < A − B

1 − B2

� �
, ð7Þ

having diameter end points:

1 − A
1 − B

= p −1ð Þ, 1 + A
1 + B

= p 1ð Þ: ð8Þ

Let S∗ðA, BÞ be the class of functions ϰðzÞ, where ϰð0Þ = 0
= ϰ′ð0Þ − 1 are holomorphic in Ud and meet the following
requirements:

ϰ zð Þ ∈ S∗ A, Bð Þ⟺ zϰ′ zð Þ
ϰ zð Þ ∈P A, Bð Þ: ð9Þ

Distinct subclasses of analytic functions associated with
various image domains have been introduced by many
scholars. For example, Cho et al. [1] and Dziok et al. [2] dis-
cussed various properties of starlike functions related to Bell
numbers and a shell-like curve connected with Fibonacci
numbers, respectively. Similarly, Kumar and Ravichandran
[3] and Mendiratta et al. [4] investigated subclasses of star-
like functions associated with rational and exponential func-
tions, respectively. Kanas and Raducanu [5] and Sharma
et al. [6] explored some subclasses of analytic functions
related to conic and cardioid domains, respectively. Raina
and Sokól [7] investigated some important properties related
to a certain class of starlike functions. Sokól and Stankiewicz
[8] discussed radius problems of some subclasses of strongly
starlike functions. Recently, Cho et al. [9] explored a family
of starlike functions related to the sine function, which is
defined as follows:

S∗
s = f ∈A ~ zf ′ zð Þ

f zð Þ ≺ 1 + sin z

( )
: ð10Þ

The qth Hankel determinant for q ≥ 1 and n ≥ 1 of the
functions f is introduced by Noonan and Thomas [10],
which is given by

Δq,n fð Þ =

an an+1 ⋯ an+q−1

an+1 an+2 ⋯ an+q

⋮ ⋮ ⋮ ⋮

an+q−1 an+q ⋯ an+2 q−1ð Þ

�����������

�����������
  a1 = 1ð Þ:

ð11Þ

The following options are provided for some special
choices of n and q:

(1) For q = 2, n = 1,

Δ2,1 fð Þ =
a1 a2

a2 a3

�����
����� = a3 − a22, a1 = 1, ð12Þ

is the famed Fekete-Szegő functional.

(2) For q = 2, n = 2,

Δ2,2 fð Þ =
a2 a3

a3 a4

�����
����� = a2a4 − a23 ð13Þ

is the second Hankel determinant.
There are relatively few findings in the literature in

connection with the Hankel determinant for functions
belonging to the general family S . Hayman [11] established
the well-known sharp inequality:

Δq,n fð Þ�� �� ≤ λ
ffiffiffi
n

p
, ð14Þ

where λ is the absolute constant. Similarly for the same class
S , it was obtained in [12] that

Δ2,2 fð Þ�� �� ≤ λ, 1 ≤ λ ≤
11
3 : ð15Þ

For different subclasses of the set S of univalent functions,
the growth of jΔq,nð f Þj has been estimated many times. For
example, Janteng [13] investigated the sharp bounds of
Δ2,2ð f Þ for the classes S∗, C, and R as given below:

Δ2,2 fð Þ�� �� ≤
1, f ∈ S∗,
1
8 , f ∈C,

4
9 , f ∈K:

8>>>>><
>>>>>:

ð16Þ

The sharp bound of Δ2,2ð f Þ for the class of close-to-
convex functions is unknown. On the other hand, Krishna
and Reddy [14] calculated a precision estimate of Δ2,2ð f Þ
for the Bazilevic function class.

(3) For q = 3, n = 1,
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Δ3,1 fð Þ =
a1 a2 a3

a2 a3 a4

a3 a4 a5

��������

��������
ð17Þ

is the third Hankel determinant.
The calculations in (17) represent that estimating

jΔ3,1ð f Þj is significantly more difficult than estimating the
bound of jΔ2,2ð f Þj. In the first paper of Babalola [15] on
Δ3,1ð f Þ, he obtained the upper bound of jΔ3,1ð f Þj for the clas-
ses S∗, C, andK . Later, some more contributions have been
made by different authors to calculate the bounds of jΔ3,1ð f Þj
for different subclasses of analytic and univalent functions.
Zaprawa [16] enhanced the results of Babalola [15] and
demonstrated that

Δ3,1 fð Þ�� �� ≤
1, f ∈ S∗,
49
540 , f ∈C,

41
60 , f ∈K:

8>>>>><
>>>>>:

ð18Þ

He also observed that the bounds are still not sharp.

(4) For q = 4, n = 1,

Δ4,1 fð Þ =

a1 a2 a3 a4

a2 a3 a4 a5

a3 a4 a5 a6

a4 a5 a6 a7

�����������

�����������
ð19Þ

is the fourth Hankel determinant.
Since f ∈ S and a1 = 1, thus Δ4,1ð f Þ = a7Λ1 − a6Λ2 + a5

Λ3 − a4Λ4, where

a3 a2a4 − a23
� 	

− a4 a4 − a2a3ð Þ + a5 a3 − a22
� 	

=Λ1,

a3 a2a5 − a3a4ð Þ − a4 a5 − a2a4ð Þ + a6 a3 − a22
� 	

=Λ2,

a3 a3a5 − a24
� 	

− a5 a5 − a2a4ð Þ + a6 a4 − a2a3ð Þ =Λ3,

a4 a3a5 − a24
� 	

− a5 a2a5 − a3a4ð Þ + a6 a4 − a2a3ð Þ =Λ4: ð20Þ

In the last few years, many articles have been published
to investigate the upper bounds for the second-order Hankel
determinant Δ2,2ð f Þ, third-order Hankel determinant Δ3,1
ð f Þ, and fourth Hankel determinant Δ4,1ð f Þ. For the func-
tions with bounded turning, Arif et al. [17, 18] estimated
the bound for the fourth- and fifth-order Hankel determi-
nants. Khan et al. [19] also addressed this issue and
derived upper bounds for the third- and fourth-order
Hankel determinants for a class of functions with bounded
turning that are related to sine functions. For more study
about the Hankel determinant, we refer to [19–29].

In geometric function theory (GFT), especially in the
category of univalent functions, integral and differential
operators are extremely helpful and important. Convolution
of certain analytic functions has been used to introduce
certain differential and integral operators. This approach is
developed to facilitate further exploration of geometric
features of analytic and univalent functions. Libera and
Bernardi were the ones who investigated the classes of star-
like, convex, and close-to-convex functions by introducing
the idea of integral operators. Recently, some researchers
have shown a keen interest in this field and developed
various features of the integral and differential operators.
Srivastava et al. [30] investigated a new family of complex-
order analytic functions by using the fractional q-calculus
operator. Mahmood et al. [31] looked at a group of analytic
functions that were defined using q-integral operators. Using
the q-analogue of the Ruscheweyh-type operator, Arif et al.
[32] constructed a family of multivalent functions. Srivastava
[33] presented a review on basic (or q-) calculus operators,
fractional q-calculus operators, and their applications in GFT
and complex analysis. This review article has been proven very
helpful to investigate some new subclasses from different view-
points and perspectives [34–40].

Inspired from the above recent developments, in this
study, we investigate the inclusion of the Bernardi integral
operator in the class of starlike function associated with sine
function in D. The Bernardi integral operator JðzÞ: A
⟶A was defined by Bernardi [41], which is given by the
following relation:

J zð Þ = γ + 1
zγ

ðz
0
tγ−1g tð Þdt, γ > −1: ð21Þ

In the first part of the study, we extend Bernardi’s theo-
rem to a certain class S∗

s of univalent starlike functions inD.
Particularly, we prove that if g ∈ S∗

s , then JðzÞ ∈ S∗
s . In the

second part of the study, we investigate the upper bounds for
the fourth-order Hankel determinant Δ4,1ð f Þ with respect to
the function class S∗

s associated with the sine function.

2. Main Results

In order to obtain our desired results, we first need the
following lemmas.

Lemma 1. LetM and N be holomorphic functions in Ud such
that N maps Ud onto many sheeted starlike regions with M
ð0Þ =Nð0Þ = 0 and M ′ð0Þ =N ′ð0Þ = 1: If ðM ′ðzÞ/N ′ðzÞÞ ∈
S∗

s , then ðMðzÞ/NðzÞÞ ∈ S∗
s :

Proof. We know that

M ′ zð Þ
N ′ zð Þ

∈ S∗
s ⟺

M ′ zð Þ
N ′ zð Þ

= 1 + sin w zð Þ ≺ 1 + sin z: ð22Þ

Also, σðzÞ = 1 + sin z maps jzj < r onto the disc jσðzÞ −
1j < sin ð1Þ. But M ′ðzÞ/N ′ðzÞ takes values in the same disc,
and therefore,
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M ′ zð Þ
N ′ zð Þ

− 1
�����

����� < sin 1ð Þ, zj j < r, 0 < r < 1: ð23Þ

Choose ΛðzÞ so that

N ′ zð ÞΛ zð Þ =M ′ zð Þ −N ′ zð Þ: ð24Þ

Then, jΛðzÞj < sin ð1Þ: Fix z0 in Ud . Let L be the
segment joining 0 and Nðz0Þ, which lies in one sheet of the
starlike image of Ud by N: Let L−1 be the preimage of L
under N: Then,

M z0ð Þ −N z0ð Þj j =
ðz0
0

M ′ tð Þ −N ′ tð Þ

 �

dt
����

����
=
ð
L−1

N ′ tð ÞΛ tð Þdt
����

���� < sin 1ð Þ
ð
L

dN tð Þj j

= sin 1ð Þ N z0ð Þj j:
ð25Þ

That is,

M zð Þ
N zð Þ − 1
����

���� < sin 1ð Þ: ð26Þ

This implies that

M zð Þ
N zð Þ ≺ 1 + sin z, ð27Þ

and hence,

M zð Þ
N zð Þ ∈ S∗

s : ð28Þ

Lemma 2 (see [12]). Let MðzÞ and NðzÞ be regular in D and
NðzÞ map D onto many sheeted starlike regions:

M 0ð Þ =N 0ð Þ

= 0, M
′ 0ð Þ

N ′ 0ð Þ

= 1,R M ′ zð Þ
N ′ zð Þ

 !
> 0:

ð29Þ

Then,

R
M zð Þ
N zð Þ

� �
> 0: ð30Þ

Lemma 3. Let g ∈ S∗
s such that

J zð Þ =
ðz
0
tγ−1g tð Þdt: ð31Þ

Then, J is ð1 + γÞ-valent starlike for γ = 1, 2, 3,⋯, in D.

Proof. The proof is analogous to the one given in [41] and
hence omitted.

Lemma 4. Let g ∈ S∗
s and JðzÞ = ð1 + γÞ/zγJ ðzÞ for γ = 1,

2, 3,⋯, where J ðzÞ is given by (31) in Lemma 3. Then,
JðzÞ ∈ S∗

s .

Proof. Let

J′ zð Þ = 1 + γ

z
g zð Þ − γ

z
J zð Þ: ð32Þ

Then,

zJ′ zð Þ
J zð Þ = zJ′ zð Þ

J zð Þ :
zγ

zγ
= zγg zð Þ − γJ zð Þ

J zð Þ = M zð Þ
N zð Þ , ð33Þ

where

M zð Þ = zγg zð Þ − γJ zð Þ,N zð Þ = J zð Þ: ð34Þ

By Lemma 3, N ≪ J is ð1 + γÞ-valent starlike for γ = 1,

2c2 = c21 + 4 − c21
� 	

,

4c3 = c31 + 2c1x 4 − c21
� 	

− c1x
2 4 − c21
� 	

+ 2 4 − c21
� 	

1 − xj j2� 	
z:

ð38Þ

4 Journal of Function Spaces



2, 3,⋯ in D:

M ′ 0ð Þ
N ′ 0ð Þ

= zg′ 0ð Þ
g 0ð Þ = 1, ð35Þ

and since g ∈ S∗
s ,

M ′ zð Þ
N ′ zð Þ

= zg′ zð Þ
g zð Þ ∈ S∗

s : ð36Þ

From Lemma 1, we can get the conclusion:

M zð Þ
N zð Þ = zg′ zð Þ

g zð Þ ∈ S∗
s : ð37Þ

Lemma 5 (see [42]). If pðzÞ ∈P , then there exists some x, z
with jxj ≤ 1, jzj ≤ 1, such that

Lemma 6 (see [43]). Let pðzÞ ∈P ; then,

c41 + c22 + 2c1c3 − 3c21c2 − c4
�� �� ≤ 2,

c51 + 3c1c
2
2 + 3c21c3 − 4c31c2 − 2c1c4 − 2c2c3 + c5

�� �� ≤ 2,

c61 + 6c21c
2
2 + 4c31c3 + 2c1c5 + 2c2c4 + c23 − c32 − 5c41c2 − 3c21c4 − 6c1c2c3 − c6

�� �� ≤ 2,
cnj j ≤ 2, for n = 1, 2, 3,⋯:

ð39Þ

Lemma 7 (see [44]). Let pðzÞ ∈P ; then,

c2 −
c21
�� ��
2

����
���� ≤ 2 −

c21
�� ��
2

,

cn+k − μcnckj j < 2, 0 ≤ μ ≤ 1,
cn+2k − μcnc

2
k

�� �� ≤ 2 1 + 2μð Þ:

ð40Þ

Now, we are in position to present our main results.

Theorem 8. If the function f ðzÞ ∈ S∗
s and is of the form

(1), then

a2j j ≤ 1
β2

, ð41Þ

a3j j ≤ 1
2β3

, ð42Þ

a4j j ≤ 0:344
β4

, ð43Þ

a5j j ≤ 3
8β5

, ð44Þ

a6j j ≤ 67
120β6

, ð45Þ

a7j j ≤ 5587
10800β7

: ð46Þ

Proof. Since JðzÞ ∈ S∗
s , according to the definition of

subordination, there exists a Schwarz function wðzÞ with
wð0Þ = 0 and jwðzÞj < 1 such that

zJ′ zð Þ
J zð Þ = 1 + sin w zð Þ: ð47Þ

Now,

zJ′ zð Þ
J zð Þ = 1 + β2a2z + 2β3a3 − β2

2a
2
2

� 	
z2

+ β3
2a

3
2 − 3β2β3a2a3 + 3β4a4

� 	
z3

+ 4β5a5 − β4
2a

4
2 + 4β2

2β3a
2
2a3 − 4β2β4a2a4 − 2β4

2a
3
2

� 	
z4

+ 5β6a6 − 5β2β5a2a5 + β5
2a

5
2 − 5β3β4a3a4

�
− 5β3

2β3a
3
2a3 + 5a22a4β2

2β4+5β2β
2
3a2a

2
3
	
z5

+ 6β7a7 − 6β2β6a2a6 + 6β2
2β5a

2
2a5 − 6β3β5a3a5

�
+ 12β2β3β4a2a3a4 − β6

2a
6
2 − 6β3

2β4a
3
2a4 − 3β2

4a
2
4

+ 2β3
3a

3
3−9β2

2β
2
3a

2
2a

2
3 + 6β4

2β3a
4
2a3
	
z6+⋯,

ð48Þ

where βn = ðn + γÞ/ð1 + γÞ. We define a function:

p zð Þ = 1 +w zð Þ
1 −w zð Þ = 1 + c1z + c2z

2+⋯: ð49Þ

It is easy to see that pðzÞ ∈P and

w zð Þ = p zð Þ + 1
p zð Þ − 1 = c1z + c2z

2 + c3z
3+⋯

2 + c1z + c2z2 + c3z3+⋯
: ð50Þ

On the other hand,

1 + sin w zð Þ = 1 + c1
2

 �

z + c2
2 −

c21
4

� �
z2 + 5c31

48 −
c1c2
2 + c3

2

� �
z3

+ 5c21c2
16 −

c41
32 −

c1c3
2 −

c22
4 + c4

2

� �
z4

+ c5
2 −

c1c4
2 −

c2c3
2 + 5c21c3

16 + c1c
2
2

16 −
c31c2
8 + c51

3840

� �
z5

+ c6
2 −

c2c4
2 −

c1c5
2 + 5c1c2c3

8 + 5c32
48 −

c23
4

�

−
5c61
512 + c41c2

768−
3c21c22
16 + 5c21c4

16 −
c31c3
8

�
z6+⋯:

ð51Þ

When the coefficients of z, z2, z3 are compared
between the equations (51) and (48), then we get

a2 =
c1
2β2

, a3 =
c2
4β3

, a4 =
1
β4

c3
6 −

c1c2
24 −

c31
144

� �
, ð52Þ
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a5 =
1
β5

c4
8 −

c1c3
24 + 5c41

1152 −
c21c2
192 −

c22
32

� �
, ð53Þ

a6 =
1
β6

−
3c1c4
80 −

7c3c2
120 −

11c51
4800 −

43c1c22
960 + 71c31c2

5760 + c5
10

� �
,

ð54Þ

a7 =
1
β7

c21c4
480 + c1c2c3

480 + 833c61
691200 −

41c21c22
3840 −

109c41c2
11520

�

−
c1c5
30 −

5c2c4
96 + 5c32

1152 + c6
12 + c31c3

144

�
:

ð55Þ
Using Lemma 6, we can simply obtain

a2j j ≤ 1
β2

a3j j ≤ 1
2β3

:
ð56Þ

Jz = γ + 1
zγ

ðz
0
tγ−1g tð Þdt = 〠

∞

n=1

bn
βn

zn, ð57Þ

with b1 = 1 and

βn =
n + γ

1 + γ
: ð58Þ

If JðzÞ =∑∞
n=1Anz

n, then by comparing like powers of
z, z2,⋯, zn, we have

A1 = 1, A2 =
b2
β2

, A3 =
b3
β3

,⋯, An =
bn
βn

: ð59Þ

For sharpness, if we take

g zð Þ = 1 + sin zð Þ = 1 + z −
1
6 z

3 + 1
120 z

5−⋯, ð60Þ

and thus b2 = 1, b3 = 0, and b4 = −1/6, then A2 = 1/β2.
This shows that the obtained second coefficient bound
is sharp.

Again, by Lemma 6,

a4j j = 1
β4

c3
6 −

c31
144 −

c1c2
24

����
���� = 1

β4

1
6 c3 −

c1c2
3

h i
+ c1
72 c2 −

c21
2

� ����
����:

ð61Þ

Let c1 = c, with c ∈ ½0, 2�; then, by Lemma 7, we can get

a4j j = 1
β4

1
6 c3 −

c1c2
3

h i
+ c1
72 c2 −

c21
2

� ����
���� ≤ 1

β4

1
3 + c

72 2 − c2

2

� � �
:

ð62Þ

Now, suppose that

F cð Þ = 1
β4

1
3 + c

72 2 − c2

2

� � �
: ð63Þ

Then obviously,

F ′ cð Þ = 1
β4

1
36 −

c2

48

� �
: ð64Þ

Setting F ′ðcÞ = 0, we can get c = 2
ffiffiffi
3

p
/2, and hence, the

maximum value of FðcÞ is given by

a4j j ≤ F
2
ffiffiffi
3

p

2

 !
= 1
β4

1
3 +

ffiffiffi
3

p

162

( )
= 0:344

β4
: ð65Þ

Also,

a5j j = 1
β5

c4
8 −

c1c3
24 + 5c41

1152 −
c21c2
192 −

c22
32

����
����

= 1
β5

1
8 c4 −

c1c3
3

h i
−

c21
576 c2 −

c21
2

� 
−

c2
32 c2 −

c21
2

� 
−
7c21c2
576

����
����:

ð66Þ

Let c1 = c, with c ∈ ½0, 2�; then, again by Lemma 7,

a5j j ≤ 1
β5

1
4 + 5c2

576 2 − c2

2

� 
+ 1
16 2 − c2

2

� 
+ 7c2
288

� �
: ð67Þ

a6j j = 1
β6

−
3c1c4
80 −

7c3c2
120 −

11c51
4800 −

43c1c22
960 + 71c31c2

5760 + c5
10

����
����

= 1
β6

1
24 c5 −

9c1c4
10

� 
+ 11c31
2400 c2 −

c21
2

� ����
−
43c1c2
960 c2 −

c21
2

� 
+ 211c

3
1c2

14400 + 7 c5 − c3c2½ �
120

����:
ð71Þ

6 Journal of Function Spaces



Assume that

F cð Þ = 1
β5

1
4 + 5c2

576 2 − c2

2

� 
+ 1
16 2 − c2

2

� 
+ 7c2
288

� �
: ð68Þ

Obviously, we meet the requirement:

F ′ cð Þ = 1
β5

−
7c
144 −

5c3
288

� �
≤ 0: ð69Þ

So the function FðcÞ attains its maximum value at c = 0,
and it is given by

a5j j ≤ F 0ð Þ = 3
8β5

: ð70Þ

Next,

Take c1 = c, with c ∈ ½0, 2�; then, according to Lemma 7,
we have

a6j j ≤ 1
β6

7
60 + 1

12 + 11c3
2400 2 − c2

2

� 
+ 43
240 2 − c2

2

� 
+ 211c3

7200

� �
:

ð72Þ

Suppose that

F cð Þ = 1
β6

7
60 + 1

12 + 11c3
2400 2 − c2

2

� 
+ 43
240 2 − c2

2

� 
+ 211c3

7200

� �
:

ð73Þ

Then obviously,

F ′ cð Þ = 1
β6

−
c

240 + 277c2
2400 −

55c4
4800

� �
, ð74Þ

We see that F ′′ð0Þ < 0, and we get the maximum value at
c = 0:

a6j j ≤ F 0ð Þ = 67
120β6

: ð75Þ

Finally,

a7j j = 1
β7

c21c4
480 + c1c2c3

480 + 833c61
691200 −

41c21c22
3840 −

109c41c2
11520

����
−
c1c5
30 −

5c2c4
96 + 5c32

1152 + c31c3
144 + c6

12

����
= 1
β7

−37c61
691200 −

25c21c22
5760 −

c1c5
30 + c21 c4 − c21

� �
480

����
+ c1c2 c3 − c1c2½ �

480 + c31 c3 − c1c2½ �
144 −

29c41 c2 − c21/2
� �
11520

+ 5c22 c2 − c21/2
� �
1152 + c6 − 5/8c2c4½ �

12

����:
ð76Þ

Again, taking c1 = c, with c ∈ ½0, 2�, and using the result of

Lemma 7, we can obtain

a7j j ≤ 1
β7

1
6 + c2

240 + 9c
120 + 25c2

1440 + 29c4 2 − c2/2
� �
11520

�

+ c3

72 + 5 2 − c2/2
� �
288 + 37c6

691200

�
:

ð77Þ

Let

F cð Þ = 1
β7

1
6 + c2

240 + 9c
120 + 25c2

1440 + 29c4 2 − c2/2
� �
11520

�

+ c3

72 + 5 2 − c2/2
� �
288 + 37c6

691200

�
:

ð78Þ

Then obviously, F ′ðcÞ ≥ 0. As a result, the function FðcÞ
attains its maximum value at c = 2. Hence,

a7j j ≤ F 2ð Þ ≤ 5587
10800β7

: ð79Þ

Theorem 9. If the function f ðzÞ ∈ S∗
s and is of the form (1),

then we have

a3 − a22
�� �� ≤ 1

2β3
: ð80Þ

Proof. From (52), we can write

a3 − a22
�� �� = c2

4β3
−

c21
4β2

2

�����
�����: ð81Þ

Using Lemma 5, we get

a3 − a22
�� �� = β2

2 − 2β3
� 	

c21
8β3β

2
2

−
x 4 − c21
� 	
8β3

�����
�����: ð82Þ

We suppose that jxj = t ∈ ½0, 1�, and c1 = c ∈ ½0, 2�. Also, if
we apply the triangle inequality to the above equation, then
we get

a3 − a22
�� �� ≤ β2

2 − 2β3
� 	

c2

8β3β
2
2

+ t 4 − c2
� 	
8β3

: ð83Þ
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Assume that

F c, tð Þ = a3 − a22
�� �� ≤ β2

2 − 2β3
� 	

c2

8β3β
2
2

+ t 4 − c2
� 	
8β3

: ð84Þ

Obviously, we can write

∂F
∂t

= 4 − c2
� 	
8β3

≥ 0, ð85Þ

Fðc, tÞ is increasing on ½0, 1�. Therefore, at t = 1, the
function Fðc, tÞ will obtain its maximum value:

max F c, tð Þ = F c, 1ð Þ = β2
2 − 2β3

� 	
c2

8β3β
2
2

+ 4 − c2
� 	
8β3

: ð86Þ

Let us take

G cð Þ = β2
2 − 2β3

� 	
c2

8β3β
2
2

+ 4 − c2
� 	
8β3

,

G′ cð Þ = β2
2 − 2β3

� 	
c

4β3β
2
2

−
c

4β3
= −c
2β2

2
,

G′′ cð Þ = −1
2β2

2
< 0:

ð87Þ

It is clear that GðcÞ is decreasing on ½0, 2�. So at c = 0, the
function GðcÞ will obtain its maximum value:

a3 − a22
�� �� ≤G 0ð Þ = 1

2β3
: ð88Þ

This complete the proof.

Theorem 10. If the function f ðzÞ ∈ S∗
s and is of the form (1),

then we have

a2a3 − a4j j ≤ 1
3β4

: ð89Þ

Proof. From (52), we can write

a2a3 − a4j j = c31
144β4

+ c1c2
24β4

+ c1c2
8β2β3

−
c3
6β4

����
����: ð90Þ

From Lemma 5, we can deduce that

a2a3 − a4j j = 9β4 − 2β2β3ð Þc31
144β2β3β4

+ c1x
2 4 − c21
� 	
24β4

−
4 − c21
� 	

1 − xj j2� 	
z

12β4

�����
�����:

ð91Þ

We suppose that jxj = t ∈ ½0, 1�, and c1 = c ∈ ½0, 2�. Once
again, if we apply the triangle inequality to the above

equation, then we get

a2a3 − a4j j ≤ 9β4 − 2β2β3ð Þc3
144β2β3β4

+ ct2 4 − c2
� 	
24β4

+ 4 − c2
� 	

1 − t2
� 	

z

12β4
:

ð92Þ

Suppose that

F c, tð Þ = 9β4 − 2β2β3ð Þc3
144β2β3β4

+ ct2 4 − c2
� 	
24β4

+ 4 − c2
� 	

1 − t2
� 	

z

12β4
:

ð93Þ

Then, we get

∂F
∂t

= c − 2ð Þt 4 − c2
� 	

12β4
< 0: ð94Þ

The above expression shows that Fðc, tÞ is a decreasing
function about t on the closed interval ½0, 1�. This implies
that Fðc, tÞ will attain its maximum value at t = 0, which is

max F c, tð Þ = F c, 0ð Þ = 9β4 − 2β2β3ð Þc3
144β2β3β4

+ 4 − c2
� 	
12β4

: ð95Þ

Now define

G cð Þ = 9β4 − 2β2β3ð Þc3
144β2β3β4

+ 4 − c2
� 	
12β4

,

G′ cð Þ = 9β4 − 2β2β3ð Þc2
48β2β3β4

−
c

6β4
,

G′′ cð Þ = −
1
6β4

:

ð96Þ

Since G′′ðcÞ < 0, the function GðcÞ has maximum value
at c = 0. That is,

a2a3 − a4j j = G cð Þ =G 0ð Þ ≤ 1
3β4

, ð97Þ

and this completes the proof.

Theorem 11. If the function f ðzÞ ∈ S∗
s and is of the form (1),

then we have

a2a4 − a23
�� �� ≤ 1

3β2β4
+ 1

4β2
3

: ð98Þ

Proof. Again from (52), we can write

a2a4 − a23
�� �� = −c21c2

48β2β4
−

c41
288β2β4

+ c1c3
12β2β4

−
c22

16β2
3

�����
�����: ð99Þ
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Using the result of Lemma 5, we can obtain

a2a4 − a23
�� �� = c1 c3 − c31/24

� �
12β2β4

−
c21c2

48β2β4
−

c22
16β2

3

�����
�����: ð100Þ

Also, by Lemma 7, we have

a2a4 − a23
�� �� ≤ c

6β2β4
+ c2

24β2β4
+ 1
4β2

3
,

= 1
6β2β4

c + c2

4

� �
+ 1
4β2

3

= 1
6β2β4

H cð Þ + 1
4β2

3
,

ð101Þ

where

H cð Þ = c + c2

4 : ð102Þ

Clearly HðcÞ is an increasing function about c on the
closed interval ½0, 2�. This means that HðcÞ will attain its
maximum value at c = 2, which is HðcÞ ≤ 3. Thus,

a2a4 − a23
�� �� ≤ 1

2β2β4
+ 1
4β2

3
: ð103Þ

Theorem 12. If the function f ðzÞ ∈ S∗
s and is of the form (1),

then we have

a2a5 − a3a4j j ≤ 7
36β3β4

+ 0:8156
2β2β5

: ð104Þ

Proof. From (52) and (53), we have

a2a5 − a3a4j j = c2
4β3β4

c31
144 + c1c2

24 −
c3
6

� �����
−

c1
2β2β5

−5c41
1152 + c21c2

192 + c1c3
24 + c22

32 −
c4
8

� �����
= c2

4β3β4

c31
144 −

1
6 c3−

c1c2
4


 �� �����
−

c1
2β2β5

c41 + c22 + 2c1c3 − 3c21c2 − c4
32

�

+ 19c21
192 c2 −

c21
2

� 
−
c1 c3 − 2/3c31
� �

48 −
3c4
32

�����:
ð105Þ

Using the result of Lemma 7, we can write

a2a5 − a3a4j j ≤ 1
2β3β4

c3

144 + 2
6

� �
+ 1
2β2β5

c
4 + 19c3

96 −
19c5
384 + c2

24

� �

= 1
2β3β4

H cð Þ + 1
2β2β5

M cð Þ,

ð106Þ

where

H cð Þ = 1
3 + c3

144

� �
,M cð Þ = c

4 + c2

24 + 19c3
96 −

19c5
384

� �
:

ð107Þ

Obviously,

M ′ cð Þ = 1
4 + c

12 + 19c2
32 + 95c4

384 : ð108Þ

For M ′ðcÞ = 0, we can get c = 1:71468508801 and conse-
quently M ′′ð1:71468508801Þ = −2:8693: As M ′′ð0Þ < 0, the
maximum value at c = 0 is

M 0ð Þ ≤ 0:8156: ð109Þ

Also,

H ′ cð Þ = c2

48 , ð110Þ

where HðcÞ attains its maximum value at c = 2, so

H cð Þ =H 2ð Þ ≤ 7
18 : ð111Þ

Using the results of (109) and (111) in (106), we can get

a2a5 − a3a4j j ≤ 7
36β3β4

+ 0:8156
2β2β5

: ð112Þ

Theorem 13. If the function f ðzÞ ∈ S∗
s and is of the form (1),

then we have

a5 − a2a4j j ≤ 7
18β2β4

+ 0:50
β5

: ð113Þ
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Proof. From (52) and (53), we have

a5 − a2a4j j = 1
2β2β4

c41
144 + c21c2

24 −
c1c3
6

� �����
−

1
β5

−5c41
1152 + c21c2

192 + c1c3
24

�
+ c22
32 −

c4
8

�����
= 1

2β2β4

c41
144 −

c1
6 c3 −

c1c2
4


 �� �����
−
1
β5

c41 + c22 + 2c1c3 − 3c21c2 − c4
32

�

+ 19c21
192 c2 −

c21
2

� 
−
c1 c3 − 2/3c31
� �

48 −
3c4
32

�����:
ð114Þ

Letting jxj = t ∈ ½0, 1� and c1 = c ∈ ½0, 2� and using the
results of Lemmas 6 and 7, we get

a5 − a2a4j j ≤ 1
2β2β4

c4

144 + 2c
6

� �
+ 1
β5

1
4 + c

24 + 19c2
96 −

19c4
384

� �
:

ð115Þ

Suppose that

F cð Þ = 1
2β2β4

H cð Þ + 1
β5

M cð Þ, ð116Þ

where

H cð Þ = c4

144 + c
3 ,M cð Þ = 1

4 + c
24 + 19c2

96 −
19c4
384

� �
: ð117Þ

We see that H ′ðcÞ ≥ 0 and the maximum value of HðcÞ
can be attained at c = 2, which is Hð2Þ ≤ 7/9: Also,

M ′ cð Þ = 1
24 + 19c

48 −
19c3
96 : ð118Þ

If we set M ′ðcÞ = 0, then we get c = 1:46416723. Conse-
quently, M ′′ð1:46416723Þ = −0:86: As M ′′ð0Þ < 0, the
maximum value at c = 0 is given by Mð0Þ ≤ 0:50: Hence,

a5 − a2a4j j ≤ 7
18β2β4

+ 0:50
β5

: ð119Þ

Theorem 14. If the function f ðzÞ ∈ S∗
s and is of the form (1),

then we have

a5a3 − a24
�� �� ≤ 85

324β2
4

+ 0:507900
2β2β5

: ð120Þ

Proof. From (52) and (53), we have

a5a3 − a24
�� �� = −

1
β2
4

c61
20736 + c41c2

1728 −
c31c3
432 + c21c

2
2

576 −
c1c2c3
72 + c23

36

� ������
−

c2
4β3β5

−5c41
1152 + c21c2

192 + c1c3
24 + c22

32 −
c4
8

� �����
= −

1
β2
4

c61
20736 + c23

36 −
c31
432 c3 −

c1c2
4


 �������
−
c1c2
72 c3 −

c1c2
8


 ��
−

c2
4β3β5

c41 + c22 + 2c1c3 − 3c21c2 − c4
�� ��

32

(

+ 19c21
192 c2 −

c21
2

� 
−
3c4
32 −

c1 c3 − 2/3c31
� �

48

�����:
ð121Þ

Now, using the results of Lemmas 6 and 7, we obtain

a5a3 − a24
�� �� ≤ 1

β2
4

1
9 + c

18 + c3

216 + c6

20736

� �

+ 1
2β3β5

1
4 + c

24 + 19c2
96 −

19c4
384

� �
,

a5a3 − a24
�� �� ≤ 1

β2
4
H cð Þ + 1

2β2β5
M cð Þ, ð122Þ

where

H cð Þ = 1
9 + c

18 + c3

216 + c6

20736 ,M cð Þ = 1
4 + c

24 + 19c2
96 −

19c4
384 :

ð123Þ

It is clear that HðcÞ is an increasing function, so it attains
its maximum value at c = 2, which is

H 2ð Þ ≤ 85
324β2

4
: ð124Þ

Also, for all c ∈ ½0, 2�, we have

M ′ cð Þ = 1
24 + 19c

48 −
19c3
96 ,

M ′′ cð Þ = 19
48 −

19c2
32 :

ð125Þ

When we set M ′ðcÞ = 0, then we get c = 1:464167.
Obviously,

M ′′ cð Þ =M ′′ 1:464167ð Þ = −0:87703 < 0, ð126Þ
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and it attains its maximum value at c = 1:464167, which is
given by

M 1:464167ð Þ ≤ 0:507900686: ð127Þ

Hence,

a5a3 − a24
�� �� ≤ 85

324β2
4
+ 0:507900

2β2β5
, ð128Þ

which completes the proof of Theorem 14.

Theorem 15. If the function f ðzÞ ∈ S∗
s and is of the form (1),

then we have

Δ4,1 fð Þ�� �� ≤ 2:916 1 × 10−2

β4
4

+ 7:031 3 × 10−2

β3
5

+ 4489

28 800β3β
2
6

+ 0:006 204

β2
4β6

+ 5587

86 400β3
3β7

+ 5:749 1 × 10−2

β2
4β7

+ 4:761 6 × 10−2

β2β3β
2
5

+ 0:105 67

β2β4β
2
5

+ 2:822 8 × 10−2

β2β
2
4β5

+ 7:239 1 × 10−2

β2β
2
4β6

+ 0:073 5

β3β
2
4β5

+ 469

8640β2
3β4β6

+ 5587
57 600β3β5β7

+ 0:162 87
β4β5β6

+ 5587
64 800β2β3β4β7

+ 0:113 84
β2β3β5β6

:

ð129Þ

Proof. We know that

Δ4,1 fð Þ = a7 a3 a2a4 − a23
� 	

− a4 a4 − a2a3ð Þ + a5 a3 − a22
� 	� �

− a6 a3 a2a5 − a3a4ð Þ − a4 a5 − a2a4ð Þf
+ a6 a3 − a22

� 	�
+ a5 a3 a3a5 − a24

� 	�
− a5 a5 − a2a4ð Þ + a6 a4 − a2a3ð Þg − a4 a4 a3a5 − a24

� 	�
− a5 a2a5 − a3a4ð Þ + a6 a4 − a2a3ð Þg,

ð130Þ

which further implies that

Δ4,1 fð Þ�� �� =
a7 a3 a2a4 − a23

� 	
− a4 a4 − a2a3ð Þ + a5 a3 − a22

� 	� �
−a6 a3 a2a5 − a3a4ð Þ − a4 a5 − a2a4ð Þ + a6 a3 − a22

� 	� �
+a5 a3 a3a5 − a24

� 	
− a5 a5 − a2a4ð Þ + a6 a4 − a2a3ð Þ� �

−a4 a4 a3a5 − a24
� 	

− a5 a2a5 − a3a4ð Þ + a6 a4 − a2a3ð Þ� �

������������

������������
:

ð131Þ

Using the triangle inequality, we can write

Δ4,1 fð Þ�� �� ≤ a7j j a3j j a2a4 − a23
�� �� + a4j j a7j j a4 − a2a3j j

+ a5j j a7j j a3 − a22
�� �� + a6j j a3j j a2a5 − a3a4j j

+ a4j j a6j j a5 − a2a4j j + a6j j2 a3 − a22
�� ��

+ a5j j a3j j a3a5 − a24
�� �� + a5j j2 a5 − a2a4j j

+ a5j j a6j j a4 − a2a3j j + a4j j2 a3a5 − a24
�� ��

+ a4j j a5j j a2a5 − a3a4j j + a4j j a6j j a4 − a2a3j j:
ð132Þ

By substituting the results of (41), (80), (89), (98), (104),
(113), (120), and (128) in (132), we can get the desired result
in (129).

3. Conclusion

In the present investigation, first, we have extended the well-
known Bernardi theorem to a specific class S∗

s of univalent
starlike functions in the open unit disk D. We have proven
that if g is a starlike univalent function in the unit disk D

and g ∈ S∗
s , then JðzÞ ∈ S∗

s , where

J zð Þ = γ + 1
zγ

ðz
0
tγ−1g tð Þdt, γ > −1: ð133Þ

Additionally, we have estimated the upper bounds of the
fourth-order Hankel determinant for the functions class S∗

s
associated with the sine function systematically.
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