
Research Article
Novel Investigation of Fractional-Order Cauchy-Reaction
Diffusion Equation Involving Caputo-Fabrizio Operator

Meshari Alesemi,1 Naveed Iqbal ,2 and Mohammed S. Abdo 3

1Department of Mathematics, College of Science, University of Bisha, P. O. Box 511, Bisha 61922, Saudi Arabia
2Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
3Department of Mathematics, Hodeidah University, Al-Hodeidah, Yemen

Correspondence should be addressed to Naveed Iqbal; n.iqbal@uoh.edu.sa and Mohammed S. Abdo; msabdo@hoduniv.net.ye

Received 23 November 2021; Revised 14 December 2021; Accepted 18 December 2021; Published 27 January 2022

Academic Editor: Mahmut I ik

Copyright © 2022 Meshari Alesemi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this article, the new iterative transform technique and homotopy perturbation transform method are applied to calculate the
fractional-order Cauchy-reaction diffusion equation solution. Yang transformation is mixed with the new iteration method and
homotopy perturbation method in these methods. The fractional derivative is considered in the sense of Caputo-Fabrizio
operator. The convection-diffusion models arise in physical phenomena in which energy, particles, or other physical properties
are transferred within a physical process via two processes: diffusion and convection. Four problems are evaluated to
demonstrate, show, and verify the present methods’ efficiency. The analytically obtained results by the present method suggest
that the method is accurate and simple to implement.

1. Introduction

The convection-diffusion equation is a mixture of convec-
tion and diffusion equations and identifies physical pro-
cesses where energy, particles, or other physical properties
are transmitted inside a physical process due to two process
steps: diffusion and convection. In standard form, the
convection-diffusion model is written as follows:

∂U
∂I

= ∇ · D · ∇Uð Þ−∇ · v!U
� �

+ R, ð1Þ

where D is the diffusivity, U is the variable term, such as
thermal diffusivity for heat flow or mass diffusion coefficient
for particle, and v! is the average velocity that the volume is
travelling. For instance, in convection, u might be the den-
sity of river in salt and then the flow velocity of water v!.
For example, in a calm lake, v! would be the average velocity
of bubbles rising to the surface due to buoyancy, and U

would be the concentration of small bubbles. R defines

“sinks” or “sources” of the quantity U. For a chemical spe-
cies, R > 0 indicates that a chemical reaction is increasing
the number of the species, while R > 0 indicates that a
chemical reaction is decreasing the number of the species.
If thermal energy is generated by friction, R > 0 may occur
in heat transport. ∇ denotes gradient, while ∇· denotes
divergence. Previously, different techniques have been
applied to investigate these models such as Adomian’s
decomposition technique [1], variational iteration tech-
nique [2], Bessel collocation technique [3], and homotopy
perturbation technique [4].

In recent decades, fractional derivatives have been used
to interpret many physical problems mathematically, and
these representations have produced excellent results in
modelling real-world issues. Many basic definitions of frac-
tional operators were given by Riesz, Riemann-Liouville,
Hadamard, Weyl, Grunwald-Letnikov, Liouville-Caputo,
Caputo-Fabrizio, and Atangana-Baleanu, among others
[5–8]. Over the last few years, many nonlinear equations
have been developed and widely used in nonlinear physical
sciences like chemistry, biology, mathematics, and different
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branches of physics like plasma physics, condensed mat-
ter physics, fluid mechanics, field theory, and nonlinear
optics. The exact outcome of nonlinear equations is cru-
cial in determining the characteristics and behaviour of
physical processes. Still, it is impossible to find exact
results when dealing with linear equations. Many useful
methods have been applied to investigate nonlinear frac-
tional partial differential equations, for example, analyti-
cal solutions with the help of natural decomposition
method of fractional-order heat and wave equations
[9], fractional-order partial differential equations with
proportional delay [10], fractional-order hyperbolic tele-
graph equation [11] and fractional-order diffusion equa-
tions [12], the variational iterative transform method
[13], the homotopy perturbation transform method [14,
15], the homotopy analysis transform method [16, 17],
reduced differential transform method [18, 19], q-
homotopy analysis transform method [20–24], the finite
element technique [25], the finite difference technique
[26], and so on [27–30].

Daftardar-Gejji and Jafari developed a new iterative
method of analysis for solving nonlinear equations in
2006 [31, 32]. It is the first application of Laplace transfor-
mation in iterative technique by Jafari et al. Iterative
Laplace transformation method [33] was introduced as a
simple method for estimating approximate effects of the
fractional partial differential equation system. Iterative
Laplace transformation method (NITM) is used to solve
linear and nonlinear partial differential equations such
as fractional-order Fornberg Whitham equations [34],
time-fractional Zakharov Kuznetsov equation [35], and
fractional-order Fokker Planck equations [36].

In 1999, He developed the homotopy perturbation
method (HPM) [37], which combines the homotopy tech-
nique, and the standard perturbation method has been
broadly utilized to both linear and nonlinear models
[38–40]. The homotopy perturbation method is important
because it eliminates the need for a small parameter in the
model, eliminating the disadvantages of traditional pertur-
bation techniques. The main goal of this paper is to use
HPM to solve nonlinear fractional-order Cauchy-reaction
diffusion equation using a newly introduced integral trans-
formation known as the “Yang transform” [41]. The sug-
gested technique is applied to analyse two well-known
nonlinear partial differential equations. In the context of a
quickly convergent series, we obtain a power series solution,
and only a few iterations are required to obtain very efficient
solutions. There is no need for a discretization technique or
linearization for the nonlinear equations, and just a few few
can yield a result that can be quickly estimated to utilize
these methods.

2. Basic Definitions

We provide the fundamental definitions that will be used
throughout the article. For the purpose of simplification,
we write the exponential decay kernel as, KðI, ϱÞ =
e½−℘ðI−ϱ/1−℘Þ�.

Definition 1. The Caputo-Fabrizio derivative is given as
follows [42]:

CFD℘
I ℙ Ið Þ½ � = N ℘ð Þ

1−℘

ðI
0
ℙ′ ϱð ÞK I, ϱð Þdϱ, n − 1 < ℘ ≤ n:

ð2Þ

Nð℘Þ is the normalization function with Nð0Þ =Nð1Þ = 1.

CFD℘
I ℙ Ið Þ½ � = N ℘ð Þ

1−℘

ðI
0
ℙ Ið Þ −ℙ ϱð Þ½ �K I, ϱð Þdϱ: ð3Þ

Definition 2. The fractional integral Caputo-Fabrizio is given
as [42]

CFI℘I ℙ Ið Þ½ � = 1−℘
N ℘ð Þℙ Ið Þ + ℘

N ℘ð Þ
ðI
0
ℙ ϱð Þdϱ,I ≥ 0,℘ ∈ 0, 1ð �:

ð4Þ

Definition 3. For Nð℘Þ = 1, the following result shows the
Caputo-Fabrizio derivative of Laplace transformation [42]:

L CFD℘
I ℙ Ið Þ½ �� �

= vL ℙ Ið Þ −ℙ 0ð Þ½ �
v+℘ 1 − vð Þ : ð5Þ

Definition 4. The Yang transformation of ℙðIÞ is expressed
as [42]

Y ℙ Ið Þ½ � = χ vð Þ =
ð∞
0
ℙ Ið Þe−I

v dI:I > 0, ð6Þ

Remark 5. Yang transformation of few useful functions is
defined as below.

Y 1½ � = v,
Y I½ � = v2,

Y Ii� �
= Γ i + 1ð Þvi+1:

ð7Þ

Lemma 6 (Laplace-Yang duality). Let the Laplace transfor-
mation of ℙðIÞ be FðvÞ, and then, χðvÞ = Fð1/vÞ [43].

Proof. From Equation (5), we can achieve another type of the
Yang transformation by putting I/v = ζ as

L ℙ Ið Þ½ � = χ vð Þ = v
ð∞
0
ℙ vζð Þeζdζ:ζ > 0: ð8Þ

Since L½ℙðIÞ� = FðvÞ, this implies that

F vð Þ = L ℙ Ið Þ½ � =
ð∞
0
ℙ Ið Þe−vIdI: ð9Þ

Put I = ζ/v in (8), and we have

F vð Þ = 1
v

ð∞
0
ℙ

ζ

v

� �
eζdζ: ð10Þ
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Thus, from Equation (7), we achieve

F vð Þ = χ
1
v

� �
: ð11Þ

Also from Equations (5) and (8), we achieve

F
1
v

� �
= χ vð Þ: ð12Þ

The connections (10) and (11) represent the duality link
between the Laplace and Yang transformation.

Lemma 7. Let ℙðIÞ be a continuous function; then, the
Caputo-Fabrizio derivative Yang transformation of ℙðIÞ is
define by [43]

Y ℙ Ið Þ½ � = Y ℙ Ið Þ − vℙ 0ð Þ½ �
1+℘ v − 1ð Þ : ð13Þ

Proof. The Caputo-Fabrizio fractional Laplace transforma-
tion is given by

L ℙ Ið Þ½ � = L vℙ Ið Þ −ℙ 0ð Þ½ �
v+℘ 1 − vð Þ : ð14Þ

Also, we have that the connection among Laplace and
Yang property, i.e., χðvÞ = Fð1/vÞ. To achieve the necessary
result, we substitute v by 1/v in Equation (13), and we get

Y ℙ Ið Þ½ � = 1/vY ℙ Ið Þ −ℙ 0ð Þ½ �
1/v+℘ 1 − 1/vð Þ ,

Y ℙ Ið Þ½ � = Y ℙ Ið Þ − vℙ 0ð Þ½ �
1+℘ v − 1ð Þ :

ð15Þ

The proof is completed.

3. Algorithm of the HPTM

The procedure of general nonlinear Caputo-Fabrizio frac-
tional partial differential equations is through HPTM. Let
us take a general nonlinear Caputo-Fabrizio partial differen-
tial equations with nonlinear function NðUðφ,IÞÞ and lin-
ear fractional LðUðφ,IÞÞ as [43]

CFDρ
IV φ,Ið Þ + L V φ,Ið Þð Þ +N V φ,Ið Þð Þ = g φ,Ið Þ,

V φ, 0ð Þ = h φð Þ,

(

ð16Þ

where the term gðφ,IÞ shows the source function. Using
Yang transformation to Equation (16), one can obtain

Y V φ,Ið Þ − vV φ, 0ð Þ½ �
1+℘ v − 1ð Þ

= −Y L V φ,Ið Þð Þ +N V φ,Ið Þð Þ½ � + Y g φ,Ið Þ½ �,

Y V φ,Ið Þ½ � = vh φð Þ − 1+℘ v − 1ð Þð Þ
� Y½ L V φ,Ið Þð Þ +N V φ,Ið Þð Þ½ � + Y g φ,Ið Þ½ �:

ð17Þ

Implementing inverse Yang transformation, we obtain

V φ,Ið Þ = V φ, 0ð Þ − Y−1 1+℘ v − 1ð Þ½
� Y L V φ,Ið Þð Þ +N V φ,Ið Þð Þ½ � + Y g φ,Ið Þ½ �½ �,

ð18Þ

where the term Vðφ,IÞ shows the source function and with
the initial condition. Now, we apply homoptopy perturba-
tion method.

V φ,Ið Þ = 〠
∞

i=0
ρiV i φ,Ið Þ: ð19Þ

We decompose the nonlinear term NðVðφ,IÞÞ as

N V φ,Ið Þð Þ = 〠
∞

i=0
ρiHi Vð Þ, ð20Þ

where HiðVÞ represents the He’s polynomial and is calcu-
lated through the following formula:

Hi V1, V2, V3,⋯,V ið Þ = 1
Γ i + 1ð Þ

∂i

∂ρi
N 〠

∞

i=0
ρiV i

 !" #
ρ=0

, i = 1, 2, 3:

ð21Þ

Substituting Equations (19) and (20) in Equation (18),
we obtain

〠
∞

i=0
ρiV i φ,Ið Þ = V φ,Ið Þ − ρ

 
Y −1
"
1+℘ v − 1ð Þð ÞY

� L〠
∞

i=0
ρiVi φ,Ið Þ +N〠

∞

i=0
ρiHi Vð Þ

" ##!
:

ð22Þ

We obtain the following terms by coefficients comparing
of ρ in (22):

ρ0 : V0 φ,Ið Þ = V φ,Ið Þ,
ρ1 : V1 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY L V0 φ,Ið Þð Þ +H0 Vð Þ½ �½ �,
ρ2 : V2 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY L V1 φ,Ið Þð Þ +H1 Vð Þ½ �½ �,
ρ3 : V3 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY L V2 φ,Ið Þð Þ +H2 Vð Þ½ �½ �,

⋮

ρi : V i φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY L V i φ,Ið Þð Þ +Hi Vð Þ½ �½ �:
ð23Þ
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As a result, the obtained solution of Equation (16) can be
written as follows:

V φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ+⋯: ð24Þ

4. Error Analysis and Convergence

The following theorems are fundamental on the tech-
niques address the original models [16] error analysis
and convergence.

Theorem 8. Let Vðφ,IÞ be the actual result of (16), and let
V iðφ,IÞ ∈H and σ ∈ ð0, 1Þ, where H denotes the Hilbert
space. Then, the achieved result ∑∞

i=0V iðφ,IÞ will converge
Vðφ,IÞ if V iðφ,IÞ ≤ V i−1ðφ,IÞ∀i > A, i.e., for any ω > 0∃A
> 0, such that kV i+nðφ,IÞk ≤ β, ∀i, n ∈N [43].

Proof. We make a sequence of ∑∞
i=0V iðφ,IÞ:

C0 φ,Ið Þ = V0 φ,Ið Þ,
C1 φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ,
C2 φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ + V2 φ,Ið Þ,
C3 φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ + V2 φ,Ið Þ + V3 φ,Ið Þ,

⋮

Ci φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ + V2 φ,Ið Þ+⋯+V i φ,Ið Þ:
ð25Þ

To provide the correct outcome, we have to demonstrate
that Ciðφ,IÞ forms a “Cauchy sequence.” Take, for example,

Ci+1 φ,Ið Þ − Ci φ,Ið Þk k = V i+1 φ,Ið Þk k ≤ σ V i φ,Ið Þk k
≤ σ2 V i−1 φ,Ið Þk k ≤ σ3 V i−2 φ,Ið Þk k⋯
≤ σi+1 V0 φ,Ið Þk k:

ð26Þ

For i, n ∈N , we acquire

Ci φ,Ið Þ − Cn φ,Ið Þk k = V i+n φ,Ið Þk k
= ‖Ci φ,Ið Þ − Ci−1 φ,Ið Þ + Ci−1 φ,Ið Þ − Ci−2 φ,Ið Þð Þ

+ Ci−2 φ,Ið Þ − Ci−3 φ,Ið Þð Þ+⋯+ Cn+1 φ,Ið Þ − Cn φ,Ið Þð Þ‖
≤ Ci φ,Ið Þ − Ci−1 φ,Ið Þk k + Ci−1 φ,Ið Þ − Ci−2 φ,Ið Þk k

+ Ci−2 φ,Ið Þ − Ci−3 φ,Ið Þk k+⋯+ Cn+1 φ,Ið Þ − Cn φ,Ið Þk k
≤ σi V0 φ,Ið Þk k + σi−1 V0 φ,Ið Þk k+⋯+σi+1 V0 φ,Ið Þk k
= V0 φ,Ið Þk k σi + σi−1 + σi+1� 	
= V0 φ,Ið Þk k 1 − σi−n

1 − σi+1 σ
n+1:

ð27Þ

Since 0 < σ < 1, and V0ðφ,IÞ is bounded, let us take β
= 1 − σ/ð1 − σi−nÞσn+1kV0ðφ,IÞk. Thus, fV iðφ,IÞg∞i=0
forms a “Cauchy sequence” in H. It follows that the
sequence fV iðφ,IÞg∞i=0 is a convergent sequence with the

limit limi⟶∞V iðφ,IÞ = Vðφ,IÞ for ∃Vðφ,IÞ ∈H . Hence,
this ends the proof.

Theorem 9. Let ∑k
h=0Vhðφ,IÞ is finite and Vðφ,IÞ repre-

sents the obtained series solution. Let σ > 0 such that kVh+1
ðφ,IÞk ≤ kVhðφ,IÞk; then, the following relation gives the
maximum absolute error [43].

V φ,Ið Þ − 〠
k

h=0
Vh φ,Ið Þ












 < σk+1

1 − σ
V0 φ,Ið Þk k: ð28Þ

Proof. Since ∑k
h=0Vhðφ,IÞ is finite, this implies that ∑k

h=0
Vhðφ,IÞ <∞.

Consider

V φ,Ið Þ − 〠
k

h=0
Vh φ,Ið Þ












 = 〠

∞

h=k+1
Vh φ,Ið Þ














≤ 〠
∞

h=k+1
Vh φ,Ið Þk k

≤ 〠
∞

h=k+1
σh V0 φ,Ið Þk k

≤ σk+1 1 + σ + σ2+⋯
� 	

V0 φ,Ið Þk k

≤
σk+1

1 − σ
V0 φ,Ið Þk k:

ð29Þ

This ends the theorem’s proof.

5. The General Procedure of NITM

The general solution of fractional-order partial differential
equation is as follows:

CFD℘
IV φ,Ið Þ +NV φ,Ið Þ +MV φ,Ið Þ
= h φ,Ið Þ, i ∈N , i − 1 < ℘ ≤ i,

ð30Þ

where N is nonlinear and M linear functions.
With the initial condition

Vk φ, 0ð Þ = gk φð Þ, k = 0, 1, 2,⋯, i − 1, ð31Þ

implementing the Yang transformation of Equation (30), we
get

Y D℘
IV φ,Ið Þ� �

+ Y NV φ,Ið Þ +MV φ,Ið Þ½ � = Y h φ,Ið Þ½ �:
ð32Þ

Applying the Yang differentiation is given to

Y V φ,Ið Þ½ � = vV φ, 0ð Þ + 1+℘ v − 1ð Þð ÞY h φ,Ið Þ½ �
− 1+℘ v − 1ð Þð ÞY NV φ,Ið Þ +MV φ,Ið Þ½ �:

ð33Þ
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Using inverse Yang transformation Equation (32), we get

V φ,Ið Þ = Y −1 vV φ, 0ð Þ + 1+℘ v − 1ð Þð ÞY h φ,Ið Þ½ �f g½ �
− Y−1 1+℘ v − 1ð Þð ÞY NV φ,Ið Þ +MV φ,Ið Þ½ �½ �:

ð34Þ

By iterative method, we get

V φ,Ið Þ = 〠
∞

i=0
V i φ,Ið Þ, ð35Þ

N 〠
∞

i=0
V i φ,Ið Þ

 !
= 〠

∞

i=0
N V i φ,Ið Þ½ �: ð36Þ

The nonlinear term N is identified as

N 〠
∞

i=0
V i φ,Ið Þ

 !
= V0 φ,Ið Þ +N 〠

∞

i=0
V i φ,Ið Þ

 !

−M 〠
∞

i=0
V i φ,Ið Þ

 !
:

ð37Þ

Putting Equations (35)–(37) in Equation (34), we have
obtain the following solution:

〠
∞

i=0
V i φ,Ið Þ = Y −1

" 
1+℘ v − 1ð ÞÞ

 
〠
∞

i=0
s2−φ+iui φ, 0ð Þ

+ Y h φ,Ið Þ½ �
!#

− Y −1
"
1+℘ v − 1ð Þð ÞY

� N 〠
∞

i=0
V i φ,Ið Þ

 !
−M 〠

∞

i=0
V i φ,Ið Þ

 !" ##
,

V0 φ,Ið Þ = Y −1 vV φ, 0ð Þ + 1+℘ v − 1ð Þð ÞY g φ,Ið Þð Þ½ �,

V1 φ,Ið Þ = −Y −1 1+℘ v − 1ð Þð ÞY N½ V0 φ,Ið Þ½ � +M V0 φ,Ið Þ½ �½ �,

Vm+1 φ,Ið Þ = −Y −1
"
1+℘ v − 1ð Þð ÞY

"
−N 〠

i

i=0
V i φ,Ið Þ

 !

−M 〠
i

i=0
V i φ,Ið Þ

 !##
,m ≥ 1:

ð38Þ

Lastly, Equations (30) and (31) provide the i-term solu-
tion in series form which is expressed as

V φ,Ið Þ ≅ V0 φ,Ið Þ + V1 φ,Ið Þ + V2 φ,Ið Þ
+⋯::,+V i φ,Ið Þ, i = 1, 2,⋯:

ð39Þ

Example 10. Consider fractional-order Cauchy-reaction dif-
fusion equation as [44]

CFD℘
IV φ,Ið Þ =D2

IV φ,Ið Þ − V φ,Ið Þ, 0 < ℘ ≤ 1, φ,Ið Þ ∈Ω ⊂ R2,
ð40Þ

with initial and boundary conditions

V φ, 0ð Þ = e−φ + φ = g φð Þ, V 0,Ið Þ = 1 = f0 Ið Þ,
∂V 0,Ið Þ

∂I
= e−I − 1 = f1 Ið Þ, φ,I ∈ R:

ð41Þ

The methodology consists of applying Yang transforma-
tion first on both side in (40) and utilizing the differentiation
property of Yang transformation, and we have

Y V φ,Ið Þ½ � = v e−φ + φð Þ + 1+℘ v − 1ð Þð ÞY D2
IV − V

� �
: ð42Þ

Using Yang inverse transform, we get

V φ,Ið Þ = e−φ + φð Þ + Y −1 1+℘ v − 1ð Þð ÞY D2
IV − V

� �� 	
:

ð43Þ

Now, we apply the new iterative transform method

V0 φ,Ið Þ = e−φ + φ,

V1 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY D2
IV0 − V0

� �� �
= −φ 1+℘I−℘f g,

V2 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY D2
IV1 − V1

� �� �
= φ 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �
,

V3 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY D2
IV2 − V2

� �� �
= −φ 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 �

⋮

ð44Þ

The series type solution is given as

V φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ + V2 φ,Ið Þ + V3 φ,Ið Þ
+⋯V i φ,Ið Þ:

ð45Þ
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The approximate solution is achieved as

V φ,Ið Þ = e−φ + φ



1 − 1+℘I−℘f g

+ 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

−



1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2

+ ℘3I3

3!

�
+⋯
�
:

ð46Þ

Now applying the HPTM, we get

〠
∞

i=0
piV i φ,Ið Þ = e−φ + φð Þ + p

� Y −1 1+℘ v − 1ð Þð ÞY 〠
∞

i=0
piHi Vð Þ

" # !( )
,

ð47Þ

where the polynomials represent the nonlinear functions are
HiðVÞ. For instance, the terms of He’s polynomials are
achieved through the recursive relationship HiðVÞ =D2

IV i
− V i, ∀n ∈N . Now, as the correspond power coefficients of
p is comparison on both sides, the following solution is
obtained as follows:

p0 : V0 φ,Ið Þ = e−φ + φ,

p1 : V1 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY H0 Vð Þð Þf g� �
= −φ 1+℘I−℘f g,

p2 : V2 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY H1 Vð Þð Þf g� �
= φ 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �
,

p3 : V3 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY H2 Vð Þð Þf g� �
= −φ



1−℘ð Þ23℘I + 1−℘ð Þ3

+ 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!

�
,

⋮

ð48Þ

Then, the homotopy perturbation method series form
solution is defined as

V φ,Ið Þ = 〠
∞

i=0
piV i φ,Ið Þ: ð49Þ

The analytical result of the above equation is defined as

V φ,Ið Þ = e−φ + φ



1 − 1+℘I−℘f g

+ 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

−



1−℘ð Þ23℘I + 1−℘ð Þ3

+ 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!

�
+⋯
�
= φ〠

∞

i=0

I℘ð Þi
Γ i℘+1ð Þ ,

V φ,Ið Þ = e−φ + φE℘ I℘ð Þ: ð50Þ

The exact result of the above equation is

V φ,Ið Þ = e−φ + φe−I: ð51Þ

Figure 1 shows the analytical solution of two methods at
different fractional-order ℘ = 1 and 0.8, and Figure 2 shows
separate fractional-order at ℘ = 0:6 and 0.4 with close con-
tact with each other. In Figure 3, the graph shows the differ-
ent fractional-order ℘ of Example 10.

Example 11. Consider fractional-order Cauchy-reaction dif-
fusion equation as [44]

CFD℘
IV φ,Ið Þ =D2

IV φ,Ið Þ − 1 + 4φ2� 	
V φ,Ið Þ, 0 < ℘ ≤ 1, φ, tð Þ

∈Ω ⊂ R2,
ð52Þ

with initial condition

V φ, 0ð Þ = eφ
2
: ð53Þ

and the exact result is given as

V φ,Ið Þ = eφ
2+1: ð54Þ

Now, we apply the new iterative transform method

V0 φ,Ið Þ = eφ
2 ,

V1 φ,Ið Þ = Y −1� 1+℘ v − 1ð Þð ÞY�D2
IV0 φ,Ið Þ

− 1 + 4φ2� 	
V0 φ,Ið Þ�� = eφ

2 1+℘I−℘f g,

V2 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY D2
IV1 φ,Ið Þ − 1 + 4φ2� 	

V1 φ,Ið Þ� �� �
= eφ

2 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �
,

V3 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY D2
IV2 φ,Ið Þ − 1 + 4φ2� 	

V2 φ,Ið Þ� �� �
= eφ

2 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 �
,

⋮
ð55Þ
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The series type solution is given as

V φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ + V2 φ,Ið Þ + V3 φ,Ið Þ+⋯V i φ,Ið Þ:
ð56Þ

The approximate solution of the above equation is
defined as

V φ,Ið Þ = eφ
2


1 + 1+℘I−℘f g + 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+



1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!

�
+⋯
�
,

V φ,Ið Þ = eφ
2
E℘ I℘ð Þ:

ð57Þ

Now by applying homotopy perturbation transform
method, we get

〠
∞

i=0
piV i φ,Ið Þ

= eφ
2 + p Y −1 1+℘ v − 1ð Þð ÞY 〠

∞

i=0
piHi wð Þ

" # !( )
:

ð58Þ
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Figure 1: (a) ℘ = 1 and (b) the fractional-order ℘ = 0:8 of Example 10.
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Figure 2: Different fractional-order of ℘ = 0:6 and 0.4 of Example 10.
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Comparing the coefficients of power p, we get

p0 : V0 φ,Ið Þ = eφ
2 ,

p1 : V1 φ,Ið Þ = Y−1 1+℘ v − 1ð Þð ÞY H0 wð Þ½ �ð Þ� �
= eφ

2 1+℘I−℘f g,

p2 : V2 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY H1 wð Þ½ �ð Þ� �
= eφ

2 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �
,

p3 : V3 φ,Ið Þ = Y−1 1+℘ v − 1ð Þð ÞY H2 wð Þ½ �ð Þ� �
= eφ

2 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 �
,

⋮
ð59Þ

The HPTM series solution is given as

V φ,Ið Þ = 〠
∞

i=0
piV i φ,Ið Þ,

V φ,Ið Þ = eφ
2


1 + 1+℘I−℘f g

+ 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+



1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2

+ ℘3I3

3!

�
+⋯
�
,

V φ,Ið Þ = eφ
2
E℘ I℘ð Þ:

ð60Þ

Now ℘ = 1; then, the actual result of Equation (52) is V
ðφ,IÞ = eφ

2+I.
Figure 4 shows the analytical solution of two methods at

different fractional-order ℘ = 1 and 0.8, and Figure 5 shows
the separate fractional-order at ℘ = 0:6 and 0.4 with close
contact with each other. In Figure 6, the graph shows the dif-
ferent fractional-order ℘ of Example 11.

Example 12. Consider fractional-order Cauchy-reaction dif-
fusion equation [44]

CFD℘
IV φ,Ið Þ =D2

IV φ,Ið Þ + 2IV φ,Ið Þ, 0 < ℘ ≤ 1, φ,Ið Þ ∈Ω ⊂ R2,
ð61Þ

with initial condition

V φ, 0ð Þ = eφ: ð62Þ

The exact result is

V φ,Ið Þ = eφ+I+I2
: ð63Þ

By using the Yang transformation, we get

V φ,Ið Þ = eφð Þ + Y −1 1+℘ v − 1ð Þð ÞY D2
IV φ,Ið Þ + 2IV φ,Ið Þ� 	� �

:

ð64Þ

Now, we apply the new iterative transform method

V0 φ,Ið Þ = eφ,

V1 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY D2
IV0 φ,Ið Þ + 2IV0 φ,Ið Þ� �� �

= eφ 1+℘I−℘f g + 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �� �
,

V2 φ,Ið Þ = Y−1 1+℘ v − 1ð Þð ÞY D2
IV1 φ,Ið Þ + 2IV1 φ,Ið Þ� �� �

= eφ
�

1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+ 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 ��
,

⋮
ð65Þ

The series type solution is given as

V φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ + V2 φ,Ið Þ + V3 φ,Ið Þ+⋯V i φ,Ið Þ:
ð66Þ
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Figure 3: The different fractional-order ℘ of Example 10.
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The approximate solution of the above equation is
defined as

V φ,Ið Þ = eφ + eφ 1+℘I−℘f g +ð 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+ eφ
�

1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+ 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 ��
+:

ð67Þ

Now, using HPM, we get

〠
∞

i=0
piV i φ,Ið Þ = eφ + p Y −1 1+℘ v − 1ð Þð ÞY 〠

∞

i=0
piHi wð Þ

 !( )" #
:

ð68Þ
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Figure 4: (a) ℘ = 1 and (b) the fractional-order ℘ = 0:8 of Example 10.
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Comparing the coefficients of power p, we get

p0 : V0 φ,Ið Þ = eφ,

p1 : V1 φ,Ið Þ = Y−1 1+℘ v − 1ð Þð ÞY H0 wð Þð Þf g� �
= eφ 1+℘I−℘f g + 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �� �
,

p2 : V2 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY H1 wð Þð Þf g� �
= eφ

�
1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+ 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 ��
:

ð69Þ

Proceeding in this path, the rest of the Vnðφ,IÞ for n ≥ 3
component can be completely recovered and the series solu-
tion can therefore be absolutely determined. Eventually, we
approximate the numerical solution Vðφ,IÞ to the trun-
cated series.

V φ,Ið Þ = lim
N⟶∞

〠
N

n=1
V i φ,Ið Þ,

V φ,Ið Þ = eφ + eφ 1+℘I−℘f g + 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �� �

+ eφ
�

1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+ 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 ��
+⋯:

ð70Þ

Now for ℘ = 1, the closed form of the above series is

V φ,Ið Þ = eφ+I+I2
: ð71Þ

Figure 7 shows the analytical solution of two methods at
different fractional-order ℘ = 1 and 0:8, and Figure 8 shows
the separate fractional-order at ℘ = 0:6 and 0.4 with close
contact with each other. In Figure 9, the graph shows the dif-
ferent fractional-order ℘ of Example 12.

Example 13. Consider fractional-order Cauchy-reaction dif-
fusion equation as [44]

CFD℘
IV φ,Ið Þ =D2

IV φ,Ið Þ − 4φ2 − 2I + 2
� 	

V

� φ,Ið Þ, 0 < ℘ ≤ 1, φ,Ið Þ ∈Ω ⊂ R2,
ð72Þ

with initial condition

V φ, 0ð Þ = eφ
2
: ð73Þ

The exact result is

V φ,Ið Þ = eφ
2+I2

: ð74Þ

Now, we apply the new iterative transform method

V0 φ,Ið Þ = eφ
2 ,

V1 φ,Ið Þ = Y −1� 1+℘ v − 1ð Þð ÞY�D2
IV0 φ,Ið Þ

− 4φ2 − 2I + 2
� 	

V0 φ,Ið Þ�� = eφ
2 1+℘I−℘f g,

V2 φ,Ið Þ = Y −1� 1+℘ v − 1ð Þð ÞY�D2
IV1 φ,Ið Þ

− 4φ2 − 2I + 2
� 	

V1 φ,Ið Þ��
= eφ

2 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2
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Figure 7: (a) ℘ = 1 and (b) the fractional-order ℘ = 0:8 of Example 10.
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V3 φ,Ið Þ = Y −1� 1+℘ v − 1ð Þð ÞY�D2
IV2 φ,Ið Þ

− 4φ2 − 2I + 2
� 	

V2 φ,Ið Þ��
= eφ

2 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 �
,

⋮
ð75Þ

The series type solution is given as

V φ,Ið Þ = V0 φ,Ið Þ + V1 φ,Ið Þ + V2 φ,Ið Þ
+ V3 φ,Ið Þ+⋯V i φ,Ið Þ:

ð76Þ
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Figure 9: The different fractional-order ℘ of Example 10.
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Figure 10: The different fractional-order ℘ of Example 13.
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Figure 8: The different fractional-order of ℘ = 0:6 and 0.4 of Example 10.
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The approximate solution of the above example is

V φ,Ið Þ = eφ
2 + eφ

2 1+℘I−℘f g + eφ
2

� 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+ eφ
2 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 �
+⋯:

ð77Þ

Now, using the HPM, we get

〠
∞

i=0
piV i φ,Ið Þ = eφ

2 + p Y −1 1+℘ v − 1ð Þð ÞY 〠
∞

i=0
piHi wð Þ

 !( )" #
:

ð78Þ

Comparing the coefficients of power p, we have

p0 : V0 φ,Ið Þ = eφ
2 ,

p1 : V1 φ,Ið Þ = Y−1 1+℘ v − 1ð Þð ÞY H0 wð Þð Þf g� �
= eφ

2 1+℘I−℘f g,

p2 : V2 φ,Ið Þ = Y −1 1+℘ v − 1ð Þð ÞY H1 wð Þð Þf g� �
= eφ

2 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �
,

p3 : V3 φ,Ið Þ = Y−1 1+℘ v − 1ð Þð ÞY H2 wð Þð Þf g� �
= eφ

2 1−℘ð Þ23℘I + 1−℘ð Þ3 + 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!


 �
:

ð79Þ

Similarly, the remainder of the V iðφ,IÞ components for
n ≥ 4 can be completely achieved, thereby fully evaluating
the series solutions. Finally, we estimate the approximate
result Vðφ,IÞ by truncated sequence

V φ,Ið Þ = lim
N⟶∞

〠
N

n=1
V i φ,Ið Þ,

V φ,Ið Þ = eφ
2 + eφ

2 1+℘I−℘f g

+ eφ
2 1−℘ð Þ2℘I + 1−℘ð Þ2 + ℘2I2

2


 �

+ eφ
2



1−℘ð Þ23℘I + 1−℘ð Þ3

+ 3℘2 1−℘ð ÞI2

2 + ℘3I3

3!

�
+⋯:

ð80Þ

Figure 10 shows the analytical solution of two methods
at different fractional-order ℘ = 1, 0.8, 0.6, and 0.4 of Exam-
ple 13. The special case for ℘ = 1, and the above problem
close form is given as

V φ,Ið Þ = eφ
2+I2

: ð81Þ

6. Conclusion

The homotopy perturbation transform technique and the
Iterative transform method are used in this article to obtain
numerical solutions for the fractional-order Cauchy-reaction
diffusion equation, which is broadly used in applied sciences
as a problem for spatial effects. In physical models, the tech-
niques produce a series of form results that converge
quickly. The obtained results in this article are expected to
be useful for further analysis of complicated nonlinear phys-
ical problems. The calculations for these techniques are very
simple and straightforward. As a result, we can conclude that
these techniques can be used to solve a variety of nonlinear
fractional-order partial differential equation schemes.
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