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The COVID-19 pandemic has caused emotional loss to people around the world and provides an unusual test for public welfare,
educational framework, food frameworks, and the world of work. The economic and social turmoil caused by this epidemic is
increasing, and many people are at risk of falling into oppressive poverty. In this article, we describe the pandemic of
infectious illness with the help of stochastic mathematical modeling. Based on the environmental white noise and by building
appropriate Lyapunov functions and by applying Ito’s formula, a few subjective properties are gotten. We provide a new
mathematical model for the COVID-19 spread. The novel stochastic model is used to analyze the existence and prevalence of
the disease, as well as its extinction. A numerical approach is developed for computing approximate solutions of the model.
We show numerical simulations of deterministic and stochastic models of COVID-19 by utilizing the MATLAB software. In
this direction, three graphs are included in the paper for the numerical interpretation of the stochastic model with the help of
existing parametric and initial values for the model.

1. Introduction

A new virus known as “corona” was claimed to be wreaking
havoc on the Chinese city of Wuhan in December 2019. This
virus and its subsequent pandemic initially struck Wuhan
and then spread to practically the entire world [1, 2]. Hun-
dreds of thousands of people died all across the world. It is
difficult to come to a single conclusion on the virus’s genesis.
It could be the result of the migration patterns of people or a
seafood market exchange. It is also possible that it is related
to human-to-human relationships [3, 4]. So far, the virus has
wreaked havoc on practically everything on the planet. Every

aspect of human life has been badly impacted, including
social life, health, the economy, and education. In battling
the fatal pandemic, health researchers, government politi-
cians, and health care authorities are perplexed. They all
have a different perspective on the problem and are working
hard to reduce the number of people who die as a result of
the outbreak. For detail, one can see the useful work in [5, 6].

The coronavirus pandemic causes moderate respiratory
symptoms in those who are affected. The symptoms of this
illness include a fever, a dry cough, a throat infection, and
exhaustion. Nasal infection, pains, and a sore throat are
some of the other symptoms that people may experience.
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In order to describe the pandemic of infectious illnesses,
mathematical modeling is an important technique. The goal
of mathematical modeling is to use mathematical language
to depict many types of real-world situations. The COVID-
19 was presented with the help of mathematical models in
several recently published articles including a paper regard-
ing coronavirus with two categories of asymptomatic and
symptomatic individuals [7], a paper regarding the effect of
quarantine on the spread of this disease [8], a paper in rela-
tion to this pandemic with deterministic structure [9], and a
paper on the COVID-19 model with Haar wavelet colloca-
tion method [10]. Even, some researchers modeled this dis-
ease via different operators such as nonsingular derivatives
[11] or Caputo singular derivatives [12].

A neural network is a type of nonparametric machine
learning technique that is commonly used for prediction.
New improved mathematical methods for predicting and
analyzing pandemic casualties have been established by
well-known researchers including Tutsoy et al. in [13, 14].
The nature of nonlinear dynamics is determined by the
countries’ health care infrastructure, as well as the qualities
of enforced pharmacological or nonpharmacological poli-
cies. In the context of nonlinear dynamics, the neural net-
work technique clearly improves the batch type least-
squares technique. In the case of linear dynamics, batch type
least squares typically outperforms. Only when the casualties
have less diversity, such as in intensive care and death casu-
alties, the neural network produces more accurate findings
[15]. In future, we will analyze our biological model with
the help of batch type least squares and neural network
approach which will provide us more real results only when
the causalities have less variation.

In probability theory and associated fields, a stochastic
or random process is a mathematical object, usually charac-
terized as a group of random variables. In the 1930s, the first
mathematical definition of a stochastic process as a family of
random variables indexed by means of the change of the real
line was given by Aleksandr Khinchin. Khinchin, Andrey
Kolmogorov, Joseph Doob, and William Feller furthered
the probability concept and stochastic modeling.

A stochastic model means to recognize the random
nature of the input components. By contrast, in a stochastic
model, the output is random in nature. The output is only a
snapshot or an estimate of the characteristic of the model for
a given set of inputs. A stochastic model will be run many
times with the same output and gives distributions of the
relevant results for a distribution of scenarios. The results
of stochastic models require Monte Carlo simulations,
although some stochastic models can have analytical solu-
tions. Correlation can be important in stochastic models as
they indicate the behavior of one variable is associated with
that of the other. Stochastic models are more complex and
difficult to interpret, so stochastic models require more
expertise, expense, and computer power. A stochastic model
has the capacity to handle uncertainties in the inputs
applied. Stochastic models possess some inherent random-
ness—the same set of parametric values and initial condi-
tions will lead to an ensemble of different outputs. In
mathematics, the theory of stochastic processes is a signifi-

cant aspect of probability theory and a subject of research
for both theory and applications [16, 17]. The word stochas-
tic is used to portray different terms and objects in mathe-
matics. For example, this includes a stochastic matrix,
which describes a stochastic process known as a Markov
process [18], and stochastic calculus [19, 20], which includes
differential equations and integrals depending on stochastic
processes such as the Wiener process, also called the Brow-
nian motion (white noise) process [21–23].

In bioinformatics (in particular, in biochemical systems),
there are two types of important white noises. These are
intrinsic which could be seen as an inherent stochastic bio-
chemical process and extrinsic white noise as cell-to-cell var-
iability and external noise as environmental fluctuations,
which in both cases can be viewed mathematically as white
noise [24]

Also, stochastic modeling can be studied in various
fields of science and engineering. In the financial markets,
stochastic models are used to express stocks, relative stock
price, commodities, and interest rates. In biological sys-
tems, adding stochastic “noise” to internal links for balance
and other auditory interactions has been shown to assist
boost. Manufacturing processes are thought to be random.
For both continuous and batch manufacturing processes,
this assumption is essentially valid. A process control chart
illustrates a process control parameter over time and is
used to record the monitoring and testing of the existing
process. In the same way that events are interactions of
systems, stochastic social science theory emphasizes uncon-
scious processes. Because of the large number of variables
involved, every event creates its own set of possibilities,
making it unpredictable. Stochastic modeling of the
dynamical problems is very much popular in the commu-
nity of scientists. In their work, they have different aspects
of their new models including the existence, extinction,
and numerical simulations. For a detailed study of the sto-
chastic modeling and their theoretical plus numerical anal-
ysis, we recommend the readers to read [25–27] and
references therein.

In this article, we consider that the fluctuation of the β
and γ is random and β = β + σ1dB1 and γ = γ + σ2dB2.
With these considerations, we have the following new sto-
chastic model for the COVID-19 spread.

dS∗ = b − k 1 − α0S
∗I ∗ð Þ − α0kβS

∗I ∗ − yS∗ð Þdt − σ1α0kβS
∗I ∗dB1,

dI ∗ = k 1 − α0S
∗I ∗ð Þ + α0kβS

∗I ∗ − d0 + γ + yð ÞI ∗ð Þdt + kα0σ1S
∗I ∗dB1 − σ2I

∗dB2,
dR∗ = γI ∗ − yR∗ð Þdt + σ2I

∗dB2:

8>><
>>:

ð1Þ

Here, the symbol S∗ represents the class of susceptible
compartment, I ∗ represents the class of infected compart-
ment, and R∗ represents the class of recovered compart-
ment from COVID-19. Also, α0 is the isolation rate, y is
the natural death rate, γ is the recovery rate, β is the protec-
tion rate, b is the birth rate, k is the constant rate, and d0 rep-
resents death due to corona. We have the following
deterministic model [28].
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dS∗

dt
= b − k 1 − α0S

∗I ∗ð Þ − α0kβS
∗I ∗ − yS∗ð Þ,

dI ∗

dt
= k 1 − α0S

∗I ∗ð Þð + α0kβS
∗I ∗ − d0 + γ + yð ÞI ∗,

dR∗

dt
= γI ∗ − yR∗ð Þ:

8>>>>>>><
>>>>>>>:

ð2Þ

In this article, we will present an analytical and compu-
tational study of the stochastic epidemic model (1) and will
compare our results with the deterministic model (2)
numerically for different parametric values for the predic-
tion of future. Thus, this study can help the community in
the awareness about the spread of the disease.

Partition of the paper. In this article, a stochastic
COVID-19 model based on the environmental white noise
is developed. In the second section, the essential requirement
for the existence criteria, extinction, and persistence with the
help of Lyapunov function is analyzed. A numerical
approach is developed for computational and graphical anal-
ysis of the mentioned model which is included for the
numerical interpretation of the stochastic model with the
help of available parametric and initial values for the model
in the third section.

2. Existence of Solution

For the existence of solution of our problem (1), we consider
a general 3-dimensional stochastic ODE.

dU tð Þ = f U tð Þ, tð Þdt + g U tð Þ, tð ÞdB tð Þ, ð3Þ

with Uð0Þ =U0 ∈ℝ3
+ and define an operator L by

L = ∂
∂t

+ 〠
d

i=1
f i U, tð Þ ∂

∂Ui
+ 1
2 〠

3

i,j=1
gT U, tð Þg U, tð Þ
h i

ij
: ð4Þ

By operating L on V ∈ C2,1ðℝd × ½t0,+∞�iℝÞ, then

LV U, tð Þ =V t U, tð Þ +V U U, tð Þf U, tð Þ
+ 1
2 trace gT U, tð ÞV UU U, tð Þg U, tð Þ� �

,
ð5Þ

in which V t = ∂V /∂t, V U = ð∂V /∂U1,⋯, ∂V /∂UdÞ, and
V UU = ð∂2V /∂Ui∂UjÞ. In the light of the Ito’s formula, if
UðtÞ ∈ℝ3, we get

dV U tð Þ, tð Þ =LV U tð Þ, tð Þdt +V U, tð Þg U tð Þ, tð ÞdB tð Þ:
ð6Þ

To prove the global positivity of solution for (1), we use
Lyapunov analysis method. For this, consider Ω given by

Ω = S∗,I ∗,R∗ð Þ ∈ℝ3
+ :

b
y + d0

≤ S∗ +I ∗ +R∗ ≤
b
y

� �
⊂ℝ3

+:

ð7Þ

The following lemma gives the proof for the existence of
solution of model (1).

Lemma 1. For ðS∗,I ∗,R∗Þð0Þ ∈ℝ3
+, one and one positive

solution exists for (1) on t ≥ 0 in ℝ3
+ with probability equals

to one.

Proof. Since (1) fulfills the local Lipschitz condition, then for
ðS∗,I ∗,R∗Þð0Þ ∈ℝ3

+, we have ðS∗,I ∗,R∗Þ ∈ℝ3
+ as a

unique local solution on the semiopen interval ½0, τÞ, in
which τ is the explosion time. Now, our aim is to prove that
τ =∞ for the global solution of (1). For this, we assume k0
≥ 0 to be a very large number provided that ðS∗,I ∗,R∗Þ
ð0Þ lies in ½1/k0, k0�. For k ≥ k0, we define

I ∗
k = inf t ∈ 0½ ,I ∗

eÞ: min S∗ tð Þ,I ∗ tð Þ,R∗ tð Þf gf
≤
1
k
or max S∗ tð Þ,I ∗ tð Þ,R∗ tð Þf g ≤ kgg:

ð8Þ

Let us assume that inf∅ =∞. Since T ∗
k is increasing for

k⟶∞, let ℘∞ = limk⟶∞℘k; then, we have ℘∞ ≤ ℘e a.s.
Further, we need to investigate ℘∞ =∞ a.s. If this assertion
is not valid, then there exist a constant T > 0 and ζð0, 1Þ with
ℙf℘∞ ≤ Tg > ζ. As a result, we have k1 ≥ k0 with ℙf℘k ≤ Tg
≥ ζ, ∀k ≥ k1. For t ≤ ℘k, we write

d S∗ +I ∗ +R∗ð Þ = b − y S∗ +I ∗ +R∗ð Þ − d0I
∗½ �dt

≤ b − y S∗ +I ∗ +R∗ð Þ: ð9Þ

This implies

S∗ +I ∗ +R∗ð Þ tð Þ ≤

b
y
if S∗ +I ∗ +R∗ð Þ 0ð Þ ≤ b

y
,

S∗ 0ð Þ +I ∗ 0ð Þ +R∗ 0ð ÞifS∗ 0ð Þ +I ∗ 0ð Þ +R∗ 0ð Þ > b
y + d0

,

8>>><
>>>:

ð10Þ

where

K =max b
y + d0

, S∗ 0ð Þ +I ∗ 0ð Þ +R∗ 0ð Þ
� �

: ð11Þ

We assume that

max ∣S∗∣,∣I ∗∣,∣R∗∣,f g =M, ð12Þ

for M > 0. We introduce a C2-function V : ℝ3
+ ⟶ℝ+, by

the following formulation:

V S∗,I ∗,R∗ð Þ = S∗ − 1 − ln S∗ð Þ + I ∗ − 1 − ln I ∗ð Þ
+ R∗ − 1 − ln R∗ð Þ:

ð13Þ
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In the light of the Ito’s formula, we get

dV S∗,I ∗,R∗ð Þ
=LV + σ1 β2 − β

� 	
k2α20S

∗I ∗2 − d0 + γð Þkα0σ1I ∗S∗
h i

� dB1 + d0 + γð Þσ2I ∗dB2,
ð14Þ

where

LV = 1 − 1
S∗


 �
dS∗ + 1 − 1

I ∗


 �
dI ∗ + 1 − 1

R∗


 �
dR∗

+ σ21α
2
0k2S

∗2I ∗2 + σ2I ∗2

= 1 − 1
S∗


 �
b − k 1 − α0S

∗I ∗ð Þð Þ − α0kβS
∗I ∗ − yS∗

+ 1 − 1
I ∗


 �
k 1 − α0S

∗I ∗ð Þ + α0kβS
∗I ∗ − d0 + γ + yð ÞI ∗ð Þ

+ 1 − 1
R∗


 �
γI ∗ − yR∗ð Þ + σ2

1α
2
0k2S

∗2I ∗2 + σ2I ∗2

≤ b + α0S
∗I ∗k + k + α0kβS

∗I ∗ + γI ∗

≤ b + α0M
3 + k + α0kβ

2M2 + γM≔K :

ð15Þ

Therefore, we have

dV tð Þ =Kdt − σ1 β2 − β
� 	

k2α20S
∗I ∗2 − d0 + γð Þkα0σ1I ∗S∗

h i
� dB1 + d0 + γð Þσ2I

∗dB2:

ð16Þ

Integrating (16) from 0 to τ∧℘k and taking expectation, we
can get

EV S∗ τ∧℘kð Þ,I ∗ τ∧℘kð Þ,R∗ τ∧℘kð Þð Þ
≤V S∗ 0ð Þ,I ∗ 0ð Þ,R∗ 0ð Þð Þ +Kτ <∞:

ð17Þ

Set Ωk = f℘k ≤ tg for k ≥ k1 where P ðΩkÞ ≥ ζ; that is, ∀ω
∈Ωk, and at least one of ðS∗ð℘k, ωÞ,I ∗ð℘k, ωÞ,R∗ð℘k, ωÞÞ
exists so that equals to k or 1/k. Consequently,

V S∗ ℘k, ωð Þ,I ∗ ℘k, ωð Þ,R∗ ℘k, ωð Þð Þ
≥ k − 1 − log kð Þ∧ 1

k
− 1 + log k


 �
,

ð18Þ

in which a∧b stands for the minimum of a and b. In view of
(17) and (18), we have

V S∗ 0ð Þ,I ∗ 0ð Þ,R∗ 0ð Þð Þ + KT

≥ E I ∗
Ωk
V S∗ ℘k, ωð Þ,I ∗ ℘k, ωð Þ,R∗ ℘k, ωð Þð Þ� �

≥ ζ k − 1 − log kð Þ∧ 1
k
− 1 + log k


 �� �
,

ð19Þ

in which I ∗
Ωk

stands for the indicator function of Ωk. By k
⟶∞, we arrive at the following contradiction.

∞>V S∗ 0ð Þ,I ∗ 0ð Þ,R∗ 0ð Þð Þ + Kτ =∞: ð20Þ

Therefore, ℘∞ =∞ is valid. In view of system (1), we have

dS∗ + dI ∗ + dR∗ = bdt − y S∗ +I ∗ +R∗ð Þdt − d0I
∗ð Þdt,

dN + yN = bdt − d0I
∗ð Þdt:

ð21Þ

Solving the above equation, we obtain that

eytN = b
y e

yt − d0

ðt
0
eytI ∗dt, ð22Þ

which implies that

N ≤
b
y : ð23Þ

On the other hand,

dN + yN = bdt − d0I
∗ð Þdt: ð24Þ

This implies

dN + yN ≥ bdt − d0Nð Þdt, ð25Þ

that is,

dN + y + d0ð ÞN ≥ bdt: ð26Þ

Solving the above inequality,

N ≥
b

y + d0
+
ðt
0
N e− yt+d0ð Þtdt: ð27Þ

For the larger time, we have

N ≥
b

y + d0
, ð28Þ

and the proof is ended.

Theorem 2. Consider ðS∗ðtÞ,I ∗ðtÞ,R∗ðtÞÞ as the solution
of the stochastic epidemic model (1). Then, the disease will
die out exponentially with probability 1. In other words,

S∗ tð Þ,I ∗ tð Þ,R∗ tð Þ⟶ 0 and S∗ tð Þ⟶ b − t, ð29Þ

as t⟶∞.
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Proof. In the light of (1), we have

d log Qð Þ = 1
Q

dQð Þ + σ1α0βkS
∗I ∗ − σ1α0βkS

∗I ∗ð ÞdB1½

+ σ2I
∗ − σ2I

∗ð ÞdB2� +
1

2Q2 σ21α
2
0β

2k2S∗2I ∗2
h

+ σ22I
∗2 − σ21α

2
0β

2k2S∗2I ∗2 − σ22I
∗2
i
dt

= 1
Q

dQð Þ b − yN − d0I
∗ð Þdt:

ð30Þ

Integrating (1) implies that

Q −Q0
t

= 1
t

ðt
0

b
Q
dt − y

ðt
0
N dt − d0

ðt
0
I ∗dt

� �
: ð31Þ

This gives

Q
t
≤
Q0
t

+ 1
t

ðt
0

b
Q
dt −H tð Þ, ð32Þ

as t⟶∞, and we have Q⟶ 0. By putting I ∗ = 0 and
R∗ = 0 in (1), we have

dS∗ + yS∗dt = b − kð Þdt: ð33Þ

Solving this equation, we have

ðt
0
d eytS∗� 	

=
ðt
0
eyt b − kð Þdt, ð34Þ

which yields

S∗ = b − k 1 − e−yt
� 	

+ e−ytS∗ 0ð Þ, ð35Þ

and so

S∗ = b − k for t⟶∞: ð36Þ

This ends the argument.

Theorem 3. For each arbitrary initial value ðS∗ð0Þ,I ∗ð0Þ,
R∗ð0ÞÞ ∈ℝ3

+, the disease is persistent and

I ∗h i ≥ b
d0 + γ + yð Þ > 0: ð37Þ

Proof. From system (1), we have

dS∗ + dI ∗ + dR∗ = b − y S∗ +I ∗ +R∗ð Þ − d0I
∗: ð38Þ

Integrating the above equation, we have

1
t
S∗ tð Þ − S∗ 0ð Þ +I ∗ tð Þ −I ∗ 0ð Þ +R∗ tð Þ −R∗ 0ð Þ½ �
= b − y <S∗>+<I ∗>+<R∗ >ð Þ − d0 <I ∗ > :

ð39Þ

Also, integrating the third equation of (1), we obtain

1
t
R∗ tð Þ −R∗ 0ð Þ½ � = γ <I ∗ > −y <R∗ > , ð40Þ

which implies

y <R∗ > = γ <I ∗ > −
1
t
R∗ tð Þ −R∗ 0ð Þ½ �: ð41Þ

From (27) and (28),

H tð Þ = b − y < S∗ > −y <I ∗ > −γ

<I ∗ > + 1
t
R∗ tð Þ −R∗ 0ð Þ½ �,

ð42Þ

and also,

<S∗ > = 1
y b − y + γ + d0ð Þ <I ∗>+ R∗ tð Þ −R∗ 0ð Þð Þ +H tð Þ½ �:

ð43Þ

We construct a real-valued C2-function V on ℝ by the
following formulation.

V = ln I ∗: ð44Þ

Thus,

dV = 1
I ∗ k 1 − α0S

∗I ∗ð Þ + α0kβS
∗I ∗ − d0 + γ + yð ÞI ∗ð Þdt½

+ kα0σ1S
∗I ∗dB1 − σ2I

∗dB2�
−

1
2I ∗2 kα0σ1S

∗2I ∗2 + σ2I
∗2

h i
dt

= k
I ∗ − α0kS

∗ 1 − βð Þ − d0 + γ + yð Þ +B∗:

ð45Þ

By integrating on both sides of above relation, we get

1
t
ln I ∗ − ln I ∗ 0ð Þð Þ = 1

t

ðt
0

k
I ∗ dt − kα0 1 − βð Þ < S∗ > − d0 + γ + yð Þ

= 1
t

ðt
0

k
I ∗ dt − kα0 1 − βð Þ b

y −
1
y d0 + γ + yð Þ +H∗

� �
− d0 + γ + yð Þ

+ 1
t

ðt
0
B∗dt = 1

t

ðt
0

k
I ∗ dt − kα0 1 − βð Þ b

y −
1
y d0 + γ + yð Þ <I ∗>+H∗

� �

− d0 + γ + yð Þ + 1
t

ðt
0
B∗dt = 1

t

ðt
0

k
I ∗ dt − kα0 1 − βð Þ by

+ 1
y d0 + γ + yð Þkα0 1 − βð Þ <I ∗ > −kα0 1 − βð ÞH∗ − d0 + γ + yð Þ

+ 1
t

ðt
0
B∗dt:

ð46Þ
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This further implies that

k
y α0 d0 + γ + yð Þ 1 − βð Þ <I ∗ > ≥

1
t
ln I ∗ − ln I ∗ 0ð Þð Þ

−
1
t

ðt
0

k
I ∗ dt +

k
y α0 1 − βð Þbkα0 1 − βð ÞH∗

+ 1
t

ðt
0
B∗dt,

ð47Þ

and for t⟶∞, it becomes

<I ∗ > ≥
b

d0 + γ + yð Þ > 0: ð48Þ

This ensures the persistence of the illness.

3. Numerical Scheme and Results

In this part of the research, we provide a numerical scheme
for the suggested stochastic COVID-19 epidemic model (1).
We have the parametric values d0 = 0:02, β = 0:0009 to 0:009
, α0 = 0:0009 to 0:009, y = 0:0062, b = 10:7, k = 0:00761, γ =
0:0003, S∗ð0Þ = 220 millions, I ∗ð0Þ = 0, and R∗ð0Þ = 0.

This data was taken from the literature given in [28]. For
the numerical results, we discretize the suggested stochastic
mathematical model (1). The discretization yields the fol-

lowing numerical scheme:

S∗
k+1 = S∗

k + b − k 1 − α0S
∗
kI

∗
kð Þ − α0kβS

∗
kI

∗
k − yS∗

kð ÞΔt

− σ1α0kS
∗
kI

∗
k

ffiffiffiffiffi
Δt

p
℘k −

σ21
2 α0kS

∗
kI

∗
k ℘2

k − 1
� 	� 	

Δt,

I ∗
k+1 =I ∗

k + k 1 − α0S
∗
kI

∗
kð Þ + α0kβS

∗
kI

∗
k − d0 + γ + yð ÞI ∗

kð ÞΔt

+ σ1α0kS
∗
kI

∗
k

ffiffiffiffiffi
Δt

p
℘k +

σ2
1
2 α0kS

∗
kI

∗
k ℘2

k − 1
� 	� 	

Δtσ2I
∗
k℘k

ffiffiffiffiffi
Δt

p

−
σ22
2 I ∗

k ℘2
k − 1

� 	
Δt,

R∗
k+1 =R∗

k + γI ∗
k − yR∗ð ÞΔt + σ2I

∗
k℘k

ffiffiffiffiffi
Δt

p
+ σ2

2
2 I ∗

k ℘2
k − 1

� 	
Δt:

ð49Þ

This scheme is utilized for the numerical results of the
stochastic model (1). The numerical results are presented
via three graphs which show a comparative analysis of the
deterministic and stochastic models.

The graphical explanation of model (1) is given onward.
The numerical simulations are presented with the help of the
graphs. In the graphs, we have numerical data for the differ-
ent values of the white noise σ1, σ2. In Figure 1, we have the
susceptible class of model (1) for σ1 = σ2 = 0:0,0:02, 0:025,
0:03. Figure 2 represents numerical data for the infection
rate in the model as per given initial and parametric values
while varying the white noise for σ1 = σ2 = 0:0,0:02, 0:025,
0:03. Figure 3 shows simulations for the recovered class of
model (1), changing the white noise for σ1 = σ2 = 0:0,0:02,
0:025, 0:03.
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Figure 1: Joint solution of the given model (1) of COVID-19 for the order 1.0.

6 Journal of Function Spaces



4. Conclusions

We provided and analyzed a novel stochastic mathematical
model for the COVID-19 spread with white noise in this
work. The model was mathematically examined for the exis-

tence of a solution and other factors such as disease persis-
tence and disease extinction. We presented the numerical
scheme for the computational analysis of the model after
the mathematical analysis, and the scheme was then tested
for the available parametric and initial data in the literature.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Re
co

ve
ry

 at
 d

iff
er

en
t v

al
ue

s o
f w

hi
te

 n
oi

se
 σ

1, 
σ2

Time in days
0 10 20 30 40 50 60 70 80 90 100

σ1 = σ2 = 0.02
σ1 = σ2 = 0.025

σ1 = σ2 = 0.03
σ1 = σ2 = 0.0

The recovery R(t) at σ1 = σ2 = 0.0, 0.02, 0.025, 0.03
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The computed findings clarified us with more realistic facts.
Several diagrams were used to illustrate the numerical anal-
ysis. We mostly used two parameters in the graphs. We gave
a graphical explanation of model (1) for different values of
the white noise σ1, σ2. Also, We plotted all classes for differ-
ent orders. The numerical simulations are presented with the
help of the graphs. In the graphs, we have numerical data for
the different values of the white noise σ1, σ2. In Figure 1, we
have the susceptible class of model (1) for σ1 = σ2 =
0:0,0:02, 0:025, 0:03. Figure 2 represents numerical data for
the infection rate in the model as per given initial and para-
metric values while varying the white noise for σ1 = σ2 =
0:0,0:02, 0:025, 0:03. Figure 3 shows simulations for the
recovered class of model (1), changing the white noise for
σ1 = σ2 = 0:0,0:02, 0:025, 0:03. For future work as a continu-
ation of the study, we aim to analyze model (1) in the frac-
tional order settings.
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