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This article discusses an iterative transformation method via fuzziness that mixtures the Laplace transform with the iterative
iterative method. Using Caputo derivative operator, the proposed technique demonstrates the inherent reliability of fractional
fuzzy biological population equations with initial fuzzy conditions. The obtained results to the fuzzy fractional biological
equations are more general and apply to a broad variety of problems. A parametric description of the solutions is obtained by
translating the fuzzy fractional differential equation into an equivalent system of corresponding fractional differential
equations. The proposed method is numerically tested against crisp solutions and those produced by other methods,
demonstrating that it is a convenient and remarkably accurate way to solve a tool for solving a wide variety of physics and
engineering problems.

1. Introduction

Fuzzy set theory is a very useful technique for simulating
uncertain problems. As a result, fuzzy notions have been
used to represent a wide variety of natural events. The
fractional fuzzy differential equation is a model that is exten-
sively used in a range of scientific domains, including the
evaluation of weapon systems, electro hydraulics, population
modeling, and civil engineering problems. In fuzzy calculus,
therefore, the concept of the fractional derivative is essential.
Consequently, fuzzy fractional differential equations have
attracted a great deal of interest in the domains of science
and mathematics [1–3]. The first is an Agarwal et al. [4]
work on fuzzy fractional differential equations. In order to
analyze fractional fuzzy differential equations, under the
Hukuhara notion, they developed the Riemann-Liouville
idea. The reality is that we still reside in a world of confusion
and ambiguity. Many individuals are susceptible to ques-
tioning everything around them and pondering why this is
for them or others. Because their reports are poor or incor-
rect and lack clarity [5], assume we are in a situation where
there is a great deal of incorrect information and uncer-

tainty. Many of our reasonable questions cannot be
answered because they are found on inaccurate facts. This
mind set, characterized by an acceptance of ambiguity, is
crucial for scientists [3, 6–8].

Recent emphasis has been placed on fractional calculus
as a helpful tool for getting actual answers to science and
math problem including as communication systems, aero-
dynamic and process control, and bio mathematical prob-
lems [9, 10]. In addition, several scholars have examined
fractional differential equations under fuzzy conditions and
solved them utilizing a different technique [11–13]. Hoa used
[14] to investigate fractional fuzzy differential equations with
Caputo gH-differentiability. Concurrently, Agarwal et al.
undertook research on the identical topic in [15] to illustrate
its applicability to optimal control problems. Long et al.
[16] demonstrated the solvability of fuzzy fractional differ-
ential equations, while Salahshour et al. [17] implemented
Laplace fuzzy transform to investigate the problems and so
on [18–20].

Biological scientists believe that emigration and disper-
sion are important factors in the formation of species popu-
lations. Three independent position functions Φ = ðζ, χÞ in
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the area C with ϑ [21] are used to denote the spread of a bio-
logical species. Diffusion velocity uðΦ, ϑÞ, population supply
pðζ, ϑÞ, and population density vðζ, ϑÞ are the three variables.
The rate at which humans are provided per unit volume by
birth and death is defined as pðζ, ϑÞ, while the quantity of
individuals is provided by vðζ, ϑÞ. Furthermore, uðζ, ϑÞ rep-
resents the population’s and individuals’ average velocity
movement from one location to the next. The v, u, and p
for each D ⊂ C subregion must be consistent with

dμ

dϑμ

ð
D
vdU +

ð
∂D
vu · n̂dA = , ð1Þ

where n̂ is the unit normal extending outward from the
boundary ∂D result [22].

p = p vð Þ,
u = −λ vð Þ∇,

ð2Þ

where λðvÞ > 0 for v > 0 and ∇ is the Laplace nonlinear
degenerated parabolic partial differential equation can be
obtain and which is presented as

Dδ
ϑv =

∂2ϕ vð Þ
∂ζ2

+ ∂2ϕ vð Þ
∂χ2 + p vð Þ: ð3Þ

In this case, the fractional order is taken into account in
the Caputo sense. Furthermore, Gurney and Nisbet [23]
used ðvÞ as a special example in order to simulate and assess
the animal population. The preparations are generally per-
formed by young animals who want to create their own
breeding area after reaching maturity and migrating adult
animals who have strayed from their natal territory who
are threatened by mature intruders. It is far more likely that
they will be directed toward the neighbouring unoccupied
land in any of these two scenarios. The size of the population
density gradient between these two possibilities resolves the
probability distribution on the mesh side [24–26].

Now, Equation (3) with ϕðvÞ = v2 leads to

Dδ
ϑv =

∂2v2

∂ζ2
+ ∂2v2

∂χ2 + p vð Þ, ϑ ≥ 0, ζ, χ ∈ℝ, ð4Þ

with the initial point vðζ, χ, 0Þ. For μ = 1, equation (III) sim-
plifies the conventional concept of biological population:

∂v
∂ϑ

= ∂2v2

∂ζ2
+ ∂2v2

∂χ2 + p vð Þ, ϑ ≥ 0, ζ, χ ∈ℝ: ð5Þ

For pðvÞ, the following are illustrations of governing
equations (i) pðvÞ = cv, c = constant, Malthusian law [21].
(ii) pðvÞ = c1v − c2v

2, c1, c2 = positive constant, Verhulst law
[22]. (iii) pðvÞ = cvγ, ðc > 0, 0 < γ < 1Þ, porous media [27, 28]

Several academics have recently developed more pre-
cise and effective strategies for finding and analyzing
solutions to nonlinear and complicated issues. George
Adomian, an American mathematician and aeronautical

engineer, invented the Adomian decomposition technique
(ADM) [29] in response to this. ADM has been success-
fully used to investigate the behaviour of nonlinear sys-
tems without the need of linearization or perturbation.
ADM, on the other hand, needs a lot of time and com-
puter memory for computational effort. Rawashdeh and
Al-Jammal created and nurtured the natural decomposi-
tion method [30, 31], which is a hybrid of natural trans-
form and Adomian decomposition method, to meet these
needs. FNDM does not need pertubation, linearization, or
discretization because it is an enhanced version of ADM.
Many mathematicians and physicists have recently used
FNDM to comprehend physical behaviour in a variety
of complicated situations due to its dependability and
efficacy [32, 33]. The considered technique is unique in
that it uses a simple method to assess the result and is
based on Adomian polynomials, which allows for quick
convergence of the found solution for the nonlinear sec-
tion of the issue. With the arbitrary external parameter,
these polynomials generalise to a Maclaurin series. Many
writers have solved the given biological population model
using various numerical and analytical approaches in
order to examine the behaviour and demonstrate the
effectiveness of the algorithms [34–36].

2. Basic Definitions

Definition 1. Consider a fuzzy continuous function ~υ on
½0, ω� ∈ R; fuzzy fractional Riemann-Liouvilli integral is
defined as

Iϱ~υ =
ðφ
0

φ − ηð Þϱ−1~υ ηð Þ
Γ ϱð Þ dη, ϱ, η ∈ 0,∞ð Þ: ð6Þ

Moreover, if ~υ ∈ CF ½0, ω� ∩ LF ½0, ω�, where CF ½0, ω�
represents the universes of fuzzy continue function and
LF ½0, ω� represents the continuous fuzzy space function.
If the functions are Lebesgue integrable, then the fuzzy
fractional integral is defined as

Iϱ~υ φð Þ½ �σ = Iϱυσ, Iϱ�υσ½ �, 0 ≤ σ ≤ 1, ð7Þ

such that

Iϱυσ =
ðφ
0

φ − nð Þϱ−1υσ ηð Þ
Σ ϱð Þ η, ϱ, η ∈ 0,∞ð Þ,

Iϱ�υσ =
ðφ
0

φ − nð Þϱ−1�υσ ηð Þ
Σ ϱð Þ η, ϱ, η ∈ 0,∞ð Þ:

ð8Þ

Definition 2. For a term ~υ ∈ CF ½0, ω� ∩ LF ½0, ω�, such that
~υ = ½wσðφÞ, �υσðφÞ�, σ ∈ ½0, 1�, and φ0 ∈ ð0, ωÞ, then the
fuzzy Caputo fractional derivative is define as

Dϱ~υ φ0ð Þ� �
σ
= Dϱυ φ0ð Þ,Dϱ�υ φ0ð Þ� �

, 0 < ϱ ≤ 1, ð9Þ
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where

Dϱυσ φ0ð Þ =
ðφ
0

φ − nð Þm−ϱ−1 dm/dηmð Þυσ ηð Þ
Σ ϱð Þ η

" #
φ=φ0

,

Dϱ�υσ φ0ð Þ =
ðφ
0

φ − nð Þm−ϱ−1 dm/dηmð Þ�υσ ηð Þ
Σ ρð Þ η

" #
φ=φ0

,

ð10Þ

in integrating convergence occurs and m = dϱe. Since ϱ ∈
ð0, 1�, m = 1.

Definition 3. The fuzzy Laplace transform for f ð℘Þ, where
f ð℘Þ is the fuzzy value function, is given as

G ℘ð Þ =L f ℘ð Þ½ � =
ð∞
0

expð Þ−℘φ f φð Þdφ, φ > 0: ð11Þ

Definition 4. In fuzzy convolution function, a Laplace fuzzy
transform is define as

L f1 ∗ f2½ � =L f1½ � ∗L f2½ �, ð12Þ

where f1 ∗ f2; define the fuzzy convolution between f1 and
f2, i.e.,

f1 ∗ f2 =
ð℘
0
f1 φð Þ∗f2 ℘−φð Þdφ: ð13Þ

Definition 5. The “Function Mittag-Leffler” EρðpÞ is
defined as

Eρ φð Þ = 〠
∞

n=0

φn

Σ nρ + 1ð Þ , ð14Þ

where ρ > 0.

Definition 6. Let κ : R⟶ ½0, 1� be a count with the appro-
priated fuzzy quality

(i) κ is an upper semicontinue numbers

(ii) κfμðχ1Þ + μðχ2Þg ≥min fκðχ1Þ, κðχ2Þg
(iii) ∃χ0 ∈ R such that κðχ0Þ = 1, i.e., v is normal

(iv) clfχ ∈R, κðχÞ > 0g is compact

The fuzzy set number is shown by the symbol E.

Definition 7. The preceding number can be expressed in
parametric representation as ½κðσÞ, �κðσÞ�, so that σ ∈ ½0, 1�
in addition to the values

(i) κðσÞ from the left is a continue, and bound func-
tions are growing across the range ½0, 1�

(ii) κðσÞ from right is continue, and bound functions
decrease over ½0, 1�

(iii) κ ≤ �κ.

Theorem 8. Let ℏ′ðψÞ be a fuzzy integrable value function,
and ℏðψÞ is the primitives of ℏ′ðψÞ on ½0,∞Þ. Then,
L½ℏ′ðψÞ� = p ⊙L½ℏðψÞ�−gℏð0Þ where ℏ is (i)-differentiable
or L½ℏ′ðψÞ� = ð−ℏð0ÞÞ−gð−p ⊙L½ℏðψÞ�Þ where ℏ is (ii)-
differentiable [37].

Proof. For arbitrary fixed σ ∈ ½0, 1�, we have

p ⊙L ℏ ψð Þ½ �ð Þ−gℏ 0ð Þ = pℓ −ℏ ψ, σð Þ
h i� �

− ℏ 0, σð Þpℓ ℏ ψ, σð Þ
h i

,

ð15Þ

since ℓ½ℏ′ðψ, σÞ� = pℓ½ℏðψ, σÞ� − ℏð0, σÞ and ℓ½ℏ′ðψ, σÞ� =
pℓ½ℏðψ, σÞ� − ℏð0, σÞ then

p ⊙L ℏ ψð Þ½ �ð Þ−gℏ 0ð Þ = ℓ ℏ′ ψ, σð Þ
h i

, ℓ ℏ′ ψ, σð Þ
h i� �

, ð16Þ

by linearity of L,

p ⊙L ℏ ψð Þ½ �ð Þ−gℏ 0ð Þ = ℓ ℏ′ ψ, σð Þ, ℏ′ ψ, σð Þ
� �h i

: ð17Þ

Since ℏ is (i)-differentiable, it follows that

p ⊙L ℏ ψð Þ½ �ð Þ−gℏ 0ð Þ =L ℏ′ ψð Þ
�h i

: ð18Þ

Now, we assume that ℏ is the (ii)-differentiable; for
arbitrary fixed σ ∈ ½0, 1�, we have

−ℏ 0ð Þð Þg −p ⊙L ℏ φð Þ½ �ð Þ
= −ℏ 0, σð Þ + pℓ ℏ ψ, σð Þ

h i
,−ℏ 0, σð Þ + pℓ ℏ ψ, σð Þ½ �

� �
:

ð19Þ

This is equivalent to the following:

pℓ ℏ ψ, σð Þ
h i

− ℏ 0, σð Þ, pℓ ℏ ψ, σð Þ½ � − ℏ 0, σð Þ
� �

, ð20Þ

since ℓ½�ℏ′ðψ, σÞ� = pℓ½ℏðψ, σÞ� − ℏð0, σÞ and ℓ½ℏ′ðψ, σÞ� =
pℓ½ℏðψ, σÞ� − ℏð0, σÞ then

−ℏ 0ð Þð Þ−ℏ −peL ℏ φð Þ½ �ð Þ = ℓ �ℏ′ ψ, σð Þ
h i

, ℓ ℏ′ ψ, σð Þ
h i� �

,

−ℏ 0ð Þð Þ−g −peL ℏ φð Þ½ �ð Þ = ℓ �ℏ′ ψ, σð Þ, ℏ′ ψ, σð Þs
� �h i

,

ð21Þ

since ℏ is (ii)-differentiable then it follows that ð−ℏð0ÞÞ
−gð−peL½ℏðφÞ�Þ =L½ℏ′ðψÞÞ�:

Theorem 9. Let ℏðψÞ, gðψÞ be continuous fuzzy-valued func-
tions suppose that c1, c2 are constant, then L½ðc1 ⊙ ℏðψÞÞ ⊕
ðc2 ⊙ gðψÞÞ� = ðc1 ⊙L½ℏðψÞ�Þ ⊕ ðc2 ⊙L½gðψÞ�Þ [37].
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Proof.

L c1 ⊙ ℏ ψð Þð Þ ⊕½ c2 ⊙ g ψð Þð Þ�
=
ð∞
0

c1 ⊙ ℏ ψð Þð Þ ⊕ c2 ⊙ g ψð Þð Þð Þ
⊙ e−pxdxL c1 ⊙ ℏ ψð Þð Þ ⊕ c2 ⊙ g ψð Þð Þ½ �

=
ð∞
0

c1 ⊙ ℏ ψð Þ ⊕ c2 ⊙ g ψð Þð Þ ⊙ e−pψdψ

=
ð∞
0
c1 ⊙ ℏ ψð Þ ⊙ e−pψdψ ⊕

ð∞
0
c2 ⊙ g ψð Þ ⊙ e−pψdψ

= c1 ⊙
ð∞
0
ℏ ψð Þ ⊙ e−pψdψ

� �
⊕ c2 ⊙

ð∞
0
g ψð Þ ⊙ e−pψdψ

� �
= c1 ⊙L ℏ ψð Þ½ � ⊕ c2 ⊙L g ψð Þ½ �:

ð22Þ

Hence, L½ðc1 ⊙ ℏðψÞÞ ⊕ ðc2 ⊙ gðψÞÞ� = ðc1 ⊙L½ℏðψÞ�Þs
⊕ ðc2 ⊙L½ssgðψÞ�Þ:

Remark 10. Let ℏðψÞ be continuous fuzzy-value function on
½0,∞Þ and λ ≥ 0; then, L½λ ⊙ ℏðψÞ� = λ ⊙L½ℏðψÞ�:

Proof. Fuzzy Laplace transform λ ⊙ ℏðψÞ is denoted as
L½λ ⊙ ℏðψÞ� = Ð∞0 λ ⊙ ℏðψÞ ⊙ e−pψdψ (p > 0 and integer), and
also, we have

ð∞
0
λ ⊙ ℏ ψð Þ ⊙ e−pψdψ = λ ⊙

ð∞
0
ℏ ψð Þ ⊙ e−pψdψ, ð23Þ

then L½λ ⊙ ℏðψÞ� = λ ⊙L½ℏðψÞ�.

Remark 11. Let ℏðψÞ be continuous fuzzy-value function and
gðψÞ ≥ 0. Suppose that ðℏðψÞ ⊙ gðψÞÞ ⊙ e−pψ is improper
fuzzy Rimann-integrable on ½0,∞Þ, then

ð∞
0

ℏ ψð Þ ⊙ g ψð Þð Þ ⊙ e−pψdψ

=
ð∞
0
g ψð Þℏ ψ, σð Þe−pψdψ,

ð∞
0
g ψð Þℏ ψ, σð Þe−pψdψ

� �
:

ð24Þ

Theorem 12. Let ℏ is continuous fuzzy-value function and
L½ℏðψÞ� = GðpÞ, then [37]

L eaψ ⊙ ℏ ψð Þ½ � = G p − að Þ, ð25Þ

where eaψ is real value function and p − a > 0.

Proof.

L eaψ ⊙ ℏ ψð Þ½ � =
ð∞
0
eaψ−pψ ⊙ ℏ ψð Þ

=
ð∞
0
eaψ−pψℏ ψ, σð Þdψ,

ð∞
0
eaψ−pψℏ ψ, σð Þdψ

� �

=
ð∞
0
e− p−að Þψ ⊙ ℏ ψð Þ =G p − að Þ:

ð26Þ

3. Road Map of the Current Method

Consider the fuzzy partial differential equation is given as

Dϱ
φ~υ ϖ, ψ, φð Þ =D2

ϖ~υ ϖ, ψ, φð Þ + ~υ ϖ, ψ, φð Þ + ~κ σð Þ, 0 < ϱ ≤ 1,
ð27Þ

with the initial fuzzy conditions

~υ ϖ, ψ, 0ð Þ = ~g ϖð Þ: ð28Þ

In this situation, we apply the Laplace transformation to
(27) as follows:

L Dϱ
ϖ~υ ϖ, ψ, φð Þ� �

=L D2
ϖ~υ ϖ, ψ, φð Þ + ~υ ϖ, ψ, φð Þ + ~κ

� �
,
ð29Þ

using the initial condition

sϱL ~υ ϖ, ψ, φð Þ½ � = sϱ−1~g ϖð Þ +L D2
ϖ~υ ϖ, ψ, φð Þ + ~υ ϖ, ψ, φð Þ + ~κ

� �
,

L ~υ ϖ, ψ, φð Þ½ � = ~g ϖð Þ
s

+ 1
sϱ
L D2

ϖ~υ ϖ, ψ, φð Þ + ~υ ϖ, ψ, φð Þ + ~κ
� �

:

ð30Þ

Suppose that the result as ~υðϖ, ψ, φÞ =∑∞
n=0Unðϖ, ψ, φÞ,

then (30) defines

L 〠
∞

n=0
~υn ϖ, ψ, φð Þ

" #
= ~g ϖð Þ

s
+ 1
sρ
L D2

ϖ 〠
∞

n=0
~υn ϖ, ψ, φð Þ

"

+ 〠
∞

n=0
~υn ϖ, ψ, φð Þ + ~κ

#
,

ð31Þ
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comparisons on both sides, we have

L ~υ0 ϖ, ψ, φð Þ½ � = ~g ϖð Þ
s

+ 1
sϱ
L ~κ½ �,

L ~υ1 ϖ, ψ, φð Þ½ � = 1
sϱ
L D2

ϖ~υ0 ϖ, ψ, φð Þ + ~υ0 ϖ, ψ, φð Þ� �
,

L ~υ2 ϖ, ψ, φð Þ½ � = 1
sϱ
L D2

ϖ~υ1 ϖ, ψ, φð Þ + ~υ1 ϖ, ψ, φð Þ� �
,

⋮

L ~υn+1 ϖ, ψ, φð Þ½ � = 1
sϱ
L D2

ϖ~υn ϖ, ψ, φð Þ + ~υn ϖ, ψ, φð Þ� �
, n ≥ 0:

ð32Þ

Applying Laplace inverse transform, we get

~υ0 ϖ, ψ, φð Þ = ~g ϖð Þ +L−1 1
sϱ
L ~κ½ �

� 	
,

~υ1 ϖ, ψ, φð Þ =L−1 1
sϱ
L D2

ϖ~υ0 ϖ, ψ, φð Þ + ~υ0 ϖ, ψ, φð Þ� �� 	
,

⋮

~υn+1 ϖ, ψ, φð Þ =L−1 1
sϱ
L D2

ϖ~υn ϖ, ψ, φð Þ + ~υn ϖ, ψ, φð Þ� �� 	
, n ≥ 0:

ð33Þ

The series type solution is obtained as

~υ ϖ, ψ, φð Þ = ~υ0 ϖ, ψ, φð Þ + ~υ1 ϖ, ψ, φð Þ + ~υ2 ϖ, ψ, φð Þ+⋯:

ð34Þ

3.1. Numerical Results

Example 1. Consider the fractional fuzzy biological popula-
tion model

∂ϱ~υ
∂φϱ

= ∂2

∂ϖ2 ~υ2

 �

+ ∂2

∂ψ2 ~υ2

 �

+ h~υ−1 1 − r~υð Þ, 0 < ρ ≤ 1, ϖ, ψ ∈R, φ > 0,
ð35Þ

with the fuzzy initial condition

~υ ϖ, ψ, 0ð Þ = ~κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
r

, ð36Þ

where ~κðσÞ = ½κðσÞ, �κðσÞ� = ½σ − 1, 1 − σ�, 0 ≤ σ ≤ 1. Apply-
ing the abovementioned methodology as defined in (33),
we achieved the following solutions.

υ0 ϖ, ψ, φð Þ = κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
r

, �υ0 ϖ, ψ, φð Þ

= �κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
r

,

υ1 ϖ, ψ, φð Þ = κ σð Þh hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
� �−1/2

 !
φρ

Σ ρ + 1ð Þ ,

�υ1 ϖ, ψ, φð Þ = �κ σð Þh hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
� �−1/2

 !
φρ

Σ ρ + 1ð Þ ,

υ2 ϖ, ψ, φð Þ = −κ σð Þ2h2 hr
4 ζ2 + hr

4 ψ2 + ψ + 5
� �−3/2

 !
φ2ρ

Σ 2ρ + 1ð Þ ,

�υ2 ϖ, ψ, φð Þ = −�κ σð Þ2h2 hr
4 ζ2 + hr

4 ψ2 + ψ + 5
� �−3/2
 !

φ2ρ

Σ 2ρ + 1ð Þ :

ð37Þ

We can write the series form solution

~υ ϖ, ψ, φð Þ = ~υ0 ϖ, ψ, φð Þ + ~υ1 ϖ, ψ, φð Þ + ~υ2 ϖ, ψ, φð Þ+⋯,
ð38Þ

such that

υ ϖ, ψ, φð Þ = υ0 ϖ, ψ, φð Þ + υ1 ϖ, ψ, φð Þ + υ2 ϖ, ψ, φð Þ+⋯,
�υ0 ϖ, ψ, φð Þ + �υ1 ϖ, ψ, φð Þ + �υ2 ϖ, ψ, φð Þ+⋯:

ð39Þ

In general, we can write as follows:

υ ϖ, ψ, φð Þ = κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
r

+ κ σð Þh hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
� �−1/2

 !
φϱ

Σ ϱ + 1ð Þ

− κ σð Þ2h2 hr
4 ζ2 + hr

4 ψ2 + ψ + 5
� �−3/2

 !

� φ2ϱ

Σ 2ϱ + 1ð Þ+⋯,

�υ ϖ, ψ, φð Þ = �κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
r

+ �κ σð Þh hr
4 ϖ2 + hr

4 ψ2 + ψ + 5
� �−1/2

 !
φϱ

Σ ϱ + 1ð Þ

− �κ σð Þ2h2 hr
4 ζ2 + hr

4 ψ2 + ψ + 5
� �−3/2

 !

� φ2ϱ

Σ 2ϱ + 1ð Þ+⋯:

ð40Þ
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Figure 1: (a) A two-dimensional fuzzy upper and lower branch graph of an analytical series solution. (b) Different fractions of ρ.

The exact result is

~υ ϖ, ψ, φð Þ = ~κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr
4 ϖ2 + hr

4 ψ2 + ψ + 2hφ + 5
r

: ð41Þ

We have given simulation of problem 1 at different noninte-
ger order ð0 < ρ ≤ 1Þ for lower and upper portions of fuzzy
solutions given in Figure 1 in two-dimensional form, respec-
tively. The two similar color legends show the lower and
upper branches of fuzzy solutions, respectively.

Example 2. Consider the fractional fuzzy biological popula-
tion model

∂ϱ~υ
∂φϱ

= ∂2

∂ϖ2 ~υ2

 �

+ ∂2

∂ψ2 ~υ2

 �

+ h~υ, ð42Þ

with the fuzzy initial condition

~υ ϖ, ψ, 0ð Þ = ~κ σð Þ ffiffiffiffiffiffiffi
ϖψ

p
, ð43Þ

where ~κðσÞ = ½κðσÞ, �κðσÞ� = ½σ − 1, 1 − σ�, 0 ≤ σ ≤ 1. Apply-
ing the abovementioned methodology as expressed (33),
we achieved the following solutions.

υ0 ϖ, ψ, φð Þ = κ σð Þ ffiffiffiffiffiffiffi
ϖψ

p
, �υ0 ϖ, ψ, φð Þ = �κ σð Þ ffiffiffiffiffiffiffi

ϖψ
p

,

υ1 ϖ, ψ, φð Þ = κ σð Þh ffiffiffiffiffiffiffi
ϖψ

p φϱ

Σ ϱ + 1ð Þ ,

�υ1 ϖ, ψ, φð Þ = �κ σð Þh ffiffiffiffiffiffiffi
ϖψ

p φϱ

Σ ϱ + 1ð Þ ,

υ2 ϖ, ψ, φð Þ = κ σð Þh2 ffiffiffiffiffiffiffi
ϖψ

p φ2ϱ

Σ 2ϱ + 1ð Þ ,

�υ2 ϖ, ψ, φð Þ = �κ σð Þh2 ffiffiffiffiffiffiffi
ϖψ

p φ2ϱ

Σ 2ϱ + 1ð Þ : ð44Þ

We can write the series form solution

~υ ϖ, ψ, φð Þ = ~υ0 ϖ, ψ, φð Þ + ~υ1 ϖ, ψ, φð Þ + ~υ2 ϖ, ψ, φð Þ+⋯,
ð45Þ

such that

υ ϖ, ψ, φð Þ = υ0 ϖ, ψ, φð Þ + υ1 ϖ, ψ, φð Þ + υ2 ϖ, ψ, φð Þ+⋯,
�υ ϖ, ψ, φð Þ = �υ0 ϖ, ψ, φð Þ + �υ1 ϖ, ψ, φð Þ + �υ2 ϖ, ψ, φð Þ+⋯:

ð46Þ

In general, we can write as follows:

υ ϖ, ψ, φð Þ = κ σð Þ ffiffiffiffiffiffiffi
ϖψ

p
+ κ σð Þh ffiffiffiffiffiffiffi

ϖψ
p φϱ

Σ ϱ + 1ð Þ
+ κ σð Þh2 ffiffiffiffiffiffiffi

ϖψ
p φ2ϱ

Σ 2ϱ + 1ð Þ+⋯,

�υ ϖ, ψ, φð Þ = �κ σð Þ ffiffiffiffiffiffiffi
ϖψ

p
+ �κ σð Þh ffiffiffiffiffiffiffi

ϖψ
p φϱ

Σ ϱ + 1ð Þ
+ �κ σð Þh2 ffiffiffiffiffiffiffi

ϖψ
p φ2ϱ

Σ 2ϱ + 1ð Þ+⋯:

ð47Þ
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Figure 2: (a) A two-dimensional fuzzy upper and lower branch graph of an analytical series solution. (b) Different fractions of ϱ.

The exact result is

~υ ϖ, ψ, φð Þ = ~κ σð Þ ffiffiffiffiffiffiffi
ϖψ

p
ehφ: ð48Þ

We have given simulation of problem 2 at different non-
integer order ð0 < ρ ≤ 1Þ for lower and upper portions of
fuzzy solutions given in Figure 2 in two-dimensional form,
respectively. The two similar color legends show the lower
and upper branches of fuzzy solutions, respectively.

Example 3. Consider the fractional fuzzy biological popula-
tion model

∂ϱ~υ
∂φϱ

= ∂2

∂ϖ2 ~υ2

 �

+ ∂2

∂ψ2 ~υ2

 �

+ ~υ, ð49Þ

with the fuzzy initial condition

~υ ϖ, ψ, 0ð Þ = ~κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p
, ð50Þ

where ~κðσÞ = ½κðσÞ, �κðσÞ� = ½σ − 1, 1 − σ�, 0 ≤ σ ≤ 1. Apply-
ing the above-mentioned procedure as expressed in (33),
we achieved the following solutions.

jυ0 ϖ, ψ, φð Þ = κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p
, �υ0 ϖ, ψ, φð Þ

= �κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p
,

υ1 ϖ, ψ, φð Þ = κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p φϱ

Σ ϱ + 1ð Þ ,

�υ1 ϖ, ψ, φð Þ = �κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p φϱ

Σ ϱ + 1ð Þ ,

υ2 ϖ, ψ, φð Þ = κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p φ2ϱ

Σ 2ϱ + 1ð Þ ,

�υ2 ϖ, ψ, φð Þ = −�κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p φ2ϱ

Σ 2ϱ + 1ð Þ :
ð51Þ

We can write the series form solution

~υ ϖ, ψ, φð Þ = ~υ0 ϖ, ψ, φð Þ + ~υ1 ϖ, ψ, φð Þ + ~υ2 ϖ, ψ, φð Þ+⋯,
ð52Þ

such that

υ ϖ, ψ, φð Þ = υ0 ϖ, ψ, φð Þ + υ1 ϖ, ψ, φð Þ + υ2 ϖ, ψ, φð Þ+⋯,
�υ ϖ, ψ, φð Þ = υ0 ϖ, ψ, φð Þ + �υ1 ϖ, ψ, φð Þ + �υ2 ϖ, ψ, φð Þ+⋯:

ð53Þ

In general, we can write as follows:

υ ϖ, ψ, φð Þ = κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p
+ κ σð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p φϱ

Σ ρ + 1ð Þ
+ κ σð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p φ2ϱ

Σ 2ϱ + 1ð Þ+⋯,

�υ ϖ, ψ, φð Þ = �κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p
+ �κ σð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p
� φϱ

Σ ϱ + 1ð Þ + �κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p φ2ρ

Σ 2ρ + 1ð Þ+⋯:

ð54Þ
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The exact result is

~υ ϖ, ψ, φð Þ = ~κ σð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϖ sinh ψ

p
eφ: ð55Þ

We have given simulation of problem 3 at different non-
integer order ð0 < ϱ ≤ 1Þ for lower and upper portions of
fuzzy solutions given in Figure 3 in two-dimensional form,
respectively. The two similar color legends show the lower
and upper branches of fuzzy solutions, respectively.

4. Conclusion

In this paper, a concept of fuzzy Caputo fractional derivative
was employed and introduced to analysis solutions of fuzzy
biological population equations. An important example val-
idated the conclusion reached. Additionally, we supplied
graphs of the numerical solution in a variety of fractional
order. Moreover, a technique was suggested to analysis
results of fuzzy biological population equations in sense of
Caputo operator. As a result, some concrete applications
are shown to validate the theoretical framework based on
the fuzzy Caputo calculus. Using this notion, we confirm
that the proposed study can be used effectively as an
extended planner in dealing with many sorts of uncertain
situations in engineering and applied mathematics. To sum-
marize, obtaining analytical solutions for many forms of
fuzzy fractional differential equations is difficult. As a result,
future studies must focus on analyzing and solving fractional
fuzzy integro differential equations and fractional fuzzy
dynamical systems based on the different derivative of frac-
tional order ρ.
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