
Research Article
Effective Analytical Computational Technique for Conformable
Time-Fractional Nonlinear Gardner Equation and Cahn-Hilliard
Equations of Fourth and Sixth Order Emerging in
Dispersive Media

Mohammed Al-Smadi ,1,2,3 Shrideh Al-Omari ,4 Yeliz Karaca ,5

and Shaher Momani 2,6

1Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan
2Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 20550, UAE
3College of Commerce and Business, Lusail University, Lusail, Qatar
4Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan
5University of Massachusetts Medical School, Worcester, MA 01655, USA
6Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan

Correspondence should be addressed to Shrideh Al-Omari; shridehalomari@bau.edu.jo

Received 8 July 2022; Accepted 8 September 2022; Published 23 September 2022

Academic Editor: Yusuf Gurefe

Copyright © 2022 Mohammed Al-Smadi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The aim of this paper is to investigate the approximate solutions of nonlinear temporal fractional models of Gardner and
Cahn-Hilliard equations. The fractional models of the Gardner and Cahn-Hilliard equations play an important role in
pulse propagation in dispersive media. The time-fractional derivative is observed in the conformable framework. In this
orientation, a reliable computationally algorithm is designed and developed by following a residual error and multivariable
power series expansion. Basically, the approximate solutions of pulse wave function of the fractional higher-order Gardner
and Cahn-Hilliard equations are obtained in the form of a conformable convergent fractional series. Relevant consequences
are theoretically and numerically investigated under the conformable sense. Besides, the analysis of the error and
convergence of the developed technique are discussed. Some of the unidirectional homogeneous physical applications of
the posed models in a finite compact regime are tested to confirm the theoretical aspects, demonstrate different
evolutionary dynamics, and highlight the superiority of the novel developed algorithm compared to other existing
analytical methods. For this purpose, associated graphs are displayed in two and three dimensions. Growing and decaying
modes of the fractional parameters are analyzed for several α values. From a numerical viewpoint, the simulations and results
declare that the proposed iterative algorithm is indeed straightforward and appropriate with efficiency for long-wavelength
solutions of nonlinear partial differential equations.

1. Introduction

Nonlinear parabolic partial differential equations are super-
able mathematical tools for describing different evolutionary
dynamics, long-wave propagation, growing and decaying
modes, and phase separation of many nonlinear physical
system [1–4]. Many applications of nonlinear temporal evo-

lution and phase field models may be obtained from various
engineering topics, for instance, cosmology, gravity waves,
aerodynamics, blood flow, thermodynamics, incompressible,
and inviscid fluid [5–9]. On the other aspect as well, the
fractional partial systems play out a significance role in
modeling several fascinating nonlinear physical complex
systems and realizing the interactions of particles, basic
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physics, phase transition, and the process of dynamic that
rule such systems. Indeed, they, in the recent past, have been
witnessed by scientists owing to its excellent applications
in different fields of sciences, including magneto-acoustic
propagation in plasma, electromagnetic, chemical kinetics,
control theory, quantum mechanics, dissipative systems,
gas-solid flows, granular fluids, and hydrodynamics [10–18].
Nevertheless, different types of fractional operators have
been moderated by Riemann-Liouville, Atangana-Baleanu,
Erdelyi-Kober, Riesz-Caputo, Hadamard, Grünwald-
Letnikov, and local-fractional derivatives and conform-
able. Although the concept of the nonlocal fractional is
more acceptable because of the physical long-term fea-
tures, a deficiency is there as chain, quotient, and Leibniz
rules. In this point, the local fractional operators are
based on natural generalization of fractional derivatives
to avoid the violation of nonnormal rules, keep the local
nature of the derivatives, and explore features of certain
convergence [19–23].

So long, many effective techniques have been success-
fully developed and implemented to deal with various cate-
gories of temporal fractional nonlinear evolution equations,
such as variational iteration method, differential transform
method, homotopy perturbation method, reproducing
kernel method, operational matrix method, and Galerkin
finite element method, in addition to many traveling
wave techniques, including tan(ϕðξÞ/2)-expansion method,
generalized Kudryashov method, tanh-coth method, and
expð−ϕðϵÞÞ method [24–31]. Finding exact traveling wave,
approximate and soliton solutions of higher order temporal
fractional partial differential equations in nonlinear wave
situations are an issue for knowing the dynamics system of
dispersive waves in the phase fields. In this framework, we
plan to build approximate and accurate analytical solution
for a class of nonlinear homogeneous time-fractional para-
bolic partial differential equations of higher order equipped
with appropriate initial conditions in terms of conformable
sense using a novel analytical-computational algorithm.
The main contribution lies in designing a superb iteration
algorithm to obtain accurate approximate solutions of the
posed models in the form of a rapid convergence series
at a lower cost of calculations. This algorithm is free of
linearization, perturbation, and any restrictive assump-
tions for handling dispersive and nonlinear terms. To
begin with, we consider the following well-known model
for the nonlinear third-order time fractional Gardner
equation [13, 14]

∂αtu + 6 u − λ2u2� �
ux +uxxx = 0, 0 < α ≤ 1, ð1Þ

where λ is nontrivial constant parameter, α signifies the
order of time-dependent derivatives of fractional order,
and u =uðx, tÞ is wave-profile function scaling spatio-
temporal durations of x ∈ ½a, b� and t ≥ 0. Typically, ∂αt
represents the variance of u with time and fixed location,
and the nonlinear terms uux and u2ux refer to wave
steepening while the linear dispersive term uxxx refers
to wave effects. Therefore, it has a vital role regarding

interactions of dispersion and nonlinearity in soliton theory.
Hereinafter, ∂αt stands to the temporal conformable deriva-
tive. The aforementioned phase-field model is widely used
in several practical applications, such as phase incompress-
ible and inviscid fluids, quantum field theory, curvature
flows, quantum mechanics, and gravitational field. Further,
it describes a variety of nonlinear wave propagation phenom-
ena in plasma and solid states [13].

In this investigation as well, we focus on the fourth and
sixth order time-fractional Cahn-Hilliard equations [24, 25]:

∂αtu = μux + −uxx −u +u3� �
xx

, 0 < α ≤ 1, ð2Þ

and

∂αtu = μuux + uxx +u −u3� �
xxxx

, 0 < α ≤ 1, ð3Þ

where μ is constant parameter with μ ≠ 0: Herein, the non-
linear terms denote the chemical potential of the model,
while uxxxx and uxxxxxx denote the dispersive wave
effects of the fourth and sixth order system, respectively.
This model is profitably used in multiphase incompressible
fluid flows, phase ordering dynamics, tumor growth simu-
lation, surface reconstruction, phase separation, image
inpainting, spinodal decomposition, and microstructures
with elastic inhomogeneity, see [24, 32] for a detailed discus-
sion. Furthermore, the posed models (1)–(3) are involved
with initial condition

u x, 0ð Þ = f0 xð Þ,x ∈ a, b½ �, ð4Þ

where f0ðxÞ is a smooth analytic function of x.
Several types of nonlinear temporal fractional evolution

equations have been established in the literature, but several
do not assume soliton solutions [33]. Anyhow, the nonlinear
time-fractional Gardner and Cahn-Hilliard models are prof-
itably used to describe many nonlinear dispersive wave phe-
nomena arising in nonlinear optics, capillary waves, and
plasma physics [34–41]. In [34], nonlocal fourth-order frac-
tional Cahn-Hilliard equation with advection and reaction
terms has been considered in the sense of Caputo to investi-
gate the approximate solutions using the homotopy analysis
method. Using the new iterative method and q-homotopy
analysis method [24], Akinyemi et al. successfully obtained
analytical-approximate solutions of the nonlinear fourth
and sixth order time-fractional Cahn-Hilliard equations. In
[25], homotopy perturbation method has been applied to
solve fourth-order Cahn-Hilliard equation with Caputo frac-
tional derivative. Akagi et al. discussed the existence and
uniqueness of weak solutions to space-fractional Cahn-
Hilliard equation in a bounded domain [35]. Ran and Zhou
constructed an implicit difference scheme for the fourth-
order time-fractional Cahn-Hilliard equations [36]. In [37],
Fourier spectral method has been implemented for time-
fractional nonlinear Allen-Cahn and Cahn-Hilliard phase-
field models. Prakasha et al. [13] proposed two computa-
tional methods for time-fractional Gardner equation and
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fourth-order Cahn-Hilliard equation in light of Caputo's
concept. Arafa and Elmahdy [38] designed residual power
series algorithm to solve fractional nonlinear Gardner and
Cahn-Hilliard equations under Caputo sense. Hosseini
et al. [39] proposed a new technique based on expansion
method for finding exact solutions of time-fractional Con-
formable Cahn-Hilliard equation. Moreover, Jafari et al.
[40] developed the fractional subequation method to con-
struct exact-analytical solutions for fractional Cahn-Hilliard
model.

By and large, no conventional approach can be found
to produce analytical solutions, soliton solutions, or travel-
ing wave solutions of closed-form for such nonlinear
fractional-types dispersive PDEs. So, there have been found
demand for sophisticated reliable methods to find analytical
and approximate solutions to such problems. This paper
formulates an iterative computational algorithm for creating
analytical-approximate solutions of a class of nonlinear
higher-order time-fractional parabolic partial differential
equations by utilizing a novel fractional parameter, the
conformable derivative. Estimation of errors for the said
algorithm is derived as well. Indeed, several numerical exam-
ples have been checked in one-dimensional space to verify
the great flexibility and efficiency of the novel developed
algorithm, among which the third-order homogeneous
time-fractional Gardner equation and fourth and sixth-
order homogeneous time-fractional Cahn-Hilliard equa-
tions. For this purpose, a comparison study is performed
between the presented method and other existing methods.
Hereinafter, some notations and auxiliary results are
retrieved. In Section 3, an analytical algorithm is expanded
to solve nonlinear time-fractional parabolic partial differen-
tial equations. In Section 4, certain applications are stated
to back up the theoretical concept. Further, several numerical
techniques and discussions are reported. In Section 5, some
concluding remarks are given.

2. Preliminaries and Principal Results

Fractional calculus has been introduced and developed an
interesting tool to explain the memory and characteristics
of many processes in a variety of fields of pure and applied
science. In recent literature, it has been used to formulate
many nonlinear partial differential equation systems and
exploited to provide a comprehensive and clear explanation
of dynamics, dispersion, wave propagation, and evolutionary
models in view of spacetime change. In this direction, differ-
ent fractional derivatives have been suggested to handle such
partial equations like Feller, Riemann-Liouville, Caputo-
Fabrizio, Riesz, Grünwald, Mittag-Leffler, and conformable
concepts [41–44]. Consequently, the conformable operator
has been modified as a natural generalization of the standard
notation of derivatives [45]. In this portion, the primary
concept of conformable fractional derivative and some inter-
esting properties is highlighted. It also briefly illustrates the
concept and characteristics of the residual series expansion
under the conformable operator to complete the theoretical
aspect of this work.

Definition 1 (see [45]). Given a real-valued function uðtÞ on
½0,∞Þ, the conformable derivative of uðtÞ at α ∈ ð0, 1Þ is
given by

∂αtu tð Þ = lim
ε⟶0

u t + εt1−α
� �

−u tð Þ
ε

, t > 0, ð5Þ

where ∂αtuð0Þ is understood to mean ∂αtuð0Þ = lim
t⟶0+

∂αtuðtÞ:

Definition 2 (see [46]). Given a real-valued function uðtÞ on
½s,∞Þ, if uðtÞ is α-differentiable; then, the α-fractional
integral is given by

I α
su tð Þ =

ðt
s

u ξð Þ
ξ1−α

dξ, t > s ≥ 0, α ∈ 0, 1ð �, ð6Þ

provided that the integral is Riemann improper.

The following results are some of the basic characteris-
tics gained in terms of ∂αtuðtÞ. For additional properties,
we refer to [47–50] and the references therein.

Lemma 3. Let α ∈ ð0, 1� and the functions vðtÞ, uðtÞ be α-
differentiable at a point t ∈ ½0,∞Þ: Then, for all real constants
a1, a2, a3, a4, the following properties hold:

(i) ∂αtðℯ1vðtÞ + ℯ2uðtÞÞ = ℯ1∂
α
tvðtÞ + ℯ2∂

α
tuðtÞ

(ii) ∂αt½vðtÞuðtÞ� = vðtÞ∂αtuðtÞ +uðtÞ∂αtvðtÞ
(iii) ∂αt½vðtÞ/uðtÞ� = ðuðtÞ∂αtvðtÞ − vðtÞ∂αtuðtÞÞ/

u2ðtÞ, uðtÞ ≠ 0

(iv) ∂αtðta3Þ = a3t
a3−α

(v) ∂αtða4Þ = 0

(vi) If uðtÞ is differentiable, then it also holds that
∂αtuðtÞ = t1−αduðtÞ/dt

Lemma 4 (see [46]). Given the real-valued functions uðtÞ
and vðtÞ on ½0,∞Þ, let α ∈ ð0, 1�, uðtÞ be first order differen-
tiable and α-differentiable and let vðtÞ be first order differen-
tiable on the range of uðtÞ. So, the use of the known chain
rule yield

∂αt u ∘ vð Þ tð Þ = t1−αv′ tð Þu′ v tð Þð Þ: ð7Þ

Definition 5 (see [47]). Given a real-valued function uðx, tÞ
on ½a, b� × ½s,∞Þ, the αth order conformable partial deriva-
tive at a point t ∈ ½0,∞Þ is defined as

∂αtu x, tð Þ = lim
ε⟶0

u x, t + ε t − sð Þ1−α� �
−u x, tð Þ

ε
, α ∈ 0, 1ð �:

ð8Þ
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Definition 6 (see [47]). Given a real-valued function uðx, tÞ
on ½a, b� × ½s,∞Þ, the αth order conformable integral is
defined as

I α
su x, tð Þ =

ðt
s

u x, ξð Þ
ξ − sð Þ1−α

dξ, α ∈ 0, 1ð �: ð9Þ

Definition 7 (see [47]). The fractional series expansion at t0
can be defined as follows

〠
∞

i=0
Ci xð Þ t − t0ð Þiα =C0 xð Þ +C1 xð Þ t − t0ð Þα

+C2 xð Þ t − t0ð Þ2α+⋯,t0 > 0,
ð10Þ

where α ∈ ð0, 1�, CiðxÞ is the ith unknown coefficient, t ∈
½t0, t0 + γ1/αÞ, γ > 0, and γ1/α is the radius of convergence.

Theorem 8 (see [47]). Given a real-valued function uðx, tÞ
on ½a, b� × ½t0, t0 + r1/αÞ, let uðx, tÞ has many conformable
partial derivatives at any point t ∈ ½0,∞Þ with the following
fractional series expansion at t0:

u x, tð Þ = 〠
∞

i=0
Ci xð Þ t − t0ð Þiα, α > 0, t0 > 0: ð11Þ

Then, CiðxÞ, i = 0, 1, 2,⋯, can be calculated by

Ci xð Þ = ∂iαt0u x, t0ð Þ
i!αi

, ð12Þ

in which ∂iαt0uðx, t0Þ is the ith conformable partial deriva-

tive of uðx, tÞ about t0 so that ∂iαt0uðx, t0Þ = ∂αt0 :∂
α
t0
⋯

∂αt0uðx, t0Þ (i-times).

3. Fundamentals of Conformable Fractional
Residual Series Approach

Conformable fractional residual series (CFRS) technique is a
semianalytic computational algorithm specifically developed
to deal with emerging partial differential equations in vari-
ous nonlinear dynamical phenomena. This technique is
based on extending the generalized arbitrary order Taylor
series and minimizing the residual errors to detect the
unknown compounds. It possesses many attractive and
stimulating features and remarkable ability to deal with
nonlinear terms profitably without putting any constraints
or transformation of the governing models. Consequently,
it has gained wide popularity and has recently become an
exciting focus of research and a hot tool used in various
applied and computational sciences [41–44]. In this por-
tion, a new algorithm is developed to obtain accurate
approximate solutions of the nonlinear homogeneous
higher-order time-fractional parabolic partial differential
equation involving initial conditions in a limited space
time domain. In this context, let us see the nonlinear gen-

eralized time fractional sixth order partial differential
equation as follows

∂αtu x, tð Þ +N u,u2,u3,ux,uxx,u3x,u4x,u2
x,u2

xx

� �
+u6x x, tð Þ = 0, 0 < α ≤ 1,

ð13Þ

along with the condition

v x, 0ð Þ = f0 xð Þ, ð14Þ

x ∈ ½a, b�, t ≥ 0, α is the order of conformable time-
fractional index, uix = ∂iuðx, tÞ/∂xi, i = 3, 4, 5, 6, f0ðxÞ
is a given analytical function, and uðx, tÞ is an unknown
sufficiently differentiable wave-profile function. Herein, N
indicates the nonlinear operator from a Banach space B

to itself in terms of uux, uu2
xx, u2

xuxx, uuxu3x, and
u2u4x over a one-dimensional spatiotemporal domain.

Based on the proposed algorithm, the solution uðx, tÞ
of (13) has following form of fractional series expansion at
t0 = 0:

u x, tð Þ = 〠
∞

i=0
Ci xð Þ t

iα

i!αi
, t ≥ t0, ð15Þ

provided that vðx, 0Þ =C0ðxÞ = f0ðxÞ. So, the n-term
truncated series solution unðx, tÞ of uðx, tÞ in view of
the initial condition (14) can be described as

un x, tð Þ =C0 xð Þ + 〠
n

i=1
Ci xð Þ t

iα

i!αi
: ð16Þ

Basically, the residual error Rsðx, tÞ of model (13) is
defined as

Rs x, tð Þ = ∂αtu x, tð Þ
+N u,u2,u3,ux,uxx,u3x,u4x,u2

x,u2
xx

� �
+u6x x, tð Þ,

ð17Þ

and thus the n-term truncated residual of Rsðx, tÞ is
expressed by

Rn
s x, tð Þ = ∂αtun x, tð Þ +N un,u2

n,⋯,u2
nxx

� �
+un6x x, tð Þ,

ð18Þ

where unkx = ∂kunðx, tÞ/∂xk , Rsðx, tÞ = 0 = ∂ðn−1Þα
t Rs

ðx, tÞ, n = 1, 2, 3,⋯,x ∈ ½a, b�, 0 ≤ t <T , T ≡ t0 + r1/α,
and ∂ðn−1Þα

t Rn
s ðx, tÞjt=0 ≡ 0 for each n = 1, 2, 3,⋯:

To demonstrate the main steps of the residual series
algorithm in finding out the values of unknown parameters
CiðxÞ of the n-term truncated solution (16), set n = 1
and equate R1

sðx, tÞ to zero at t = 0, so that C1ðxÞ can
be acquired. Thereafter, by applying the operator ∂αt on both
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sides of the resulting relevant equation for n = 2, and solving
∂αtR

2
sðx, 0Þ = 0, the coefficient C2ðxÞ can be acquired as

well. Continuing likewise, the rest of coefficients CiðxÞ for
each i ≥ 3 of the fractional series expansion (16) can be
acquired. To complete the presentation and clarification,
the underlying algorithm is dedicated.

Lemma 9. Let uðx, tÞ be the solution of PDEs (13) and (14)
that has nth order partial derivatives in conformable sense at
any point t ∈ ½t0, t0 + r1/αÞ and the fractional expansion
of equation (15) at t0 = 0. If there exist ηðxÞ > 0 so that

j∂ðn+1Þα
t uðx, ξÞj ≤ ηðxÞ for all 0 < ξ < t, then, the remain-

der term holds the underlying inequality

P k x, tð Þj j ≤ η xð Þ
n + 1ð Þ!αn+1 t

n+1ð Þα, ð19Þ

in which P kðx, tÞ =∑∞
k=n+1ð∂kαt uðx, ξÞ/αkk!Þtkα:

Corollary 10. Let uðx, tÞ and unðx, tÞ be respectively the
analytic and approximate solutions of PDEs (13) and (14).
If there exists ξ ∈ ½0, 1� so that kun+1ðx, tÞk ≤ ξkunðx, tÞk
for each ðx, tÞ ∈ ½a, b� × ½t0,T Þ, and k f0ðxÞk <∞ for
x ∈ ½a, b�. Then, unðx, tÞ converges to uðx, tÞ as soon
as n⟶∞.

Proof. Since kun+1ðx, tÞk ≤ ξkunðx, tÞk for each ðx, tÞ ∈
½a, b� × ½t0,T Þ, then, ku1ðx, tÞk ≤ ξku0ðx, tÞk = ξk f0ðxÞk,
and then, ku2ðx, tÞk ≤ ξ2k f0ðxÞk. Subsequently, we have
kunðx, tÞk ≤ ξnk f0ðxÞk. This leads to ∑∞

k=n+1kukðx, tÞk
≤ k f0ðxÞk∑∞

k=n+1λ
k. Thus, it can be observed that

u x, tð Þ −un x, tð Þk k = 〠
∞

k=n+1
uk x, tð Þ

�����
�����

≤ 〠
∞

k=n+1
uk x, tð Þk k

≤ 〠
∞

k=n+1
λk f0 xð Þk k

= λn+1

1 − λ
f0 xð Þk k⟶ 0 forn⟶∞:

ð20Þ

4. Numerical Experiments and Discussion

Temporal fractional evolution equations are efficient
approaches for modeling nonlinear waves and knowing the
basic physics, phase separation properties, and evolutionary
dynamics that govern these equations. The fractional Gard-
ner and Cahn-Hilliard equations are unidirectional temporal

Consider the nonlinear generalized time fractional sixth order partial differential equation (13) along with the initial condition (14).
Let uðx, tÞ be a solution of model (13) and (14) that has nth order partial derivatives in conformable sense at any point t ∈ ½t0,T Þ.
Then, to obtain the nth approximation, execute the underlying steps:
Step A. Expand the solution uðx, tÞ of model (13) about t0 = 0 as follows
uðx, tÞ =∑∞

i=0CiðxÞðtiα/i!αiÞ, t ≥ t0:
Step B. Give a definition of the nth-truncated solution of uðx, tÞ in view of the initial condition (14) as follows
unðx, tÞ =C0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞ:
Step C. Do truncate the nth residual error of Rsðx, tÞ so
Rn

s ðx, tÞ = ∂αtunðx, tÞ +N ðun,u2
n,⋯,u2

nxxÞ +un6xðx, tÞ,
where unkx = ∂kunðx, tÞ/∂xk .
Step D. Invoke the series solution obtained in Step B to the nth-truncated residual error obtained in Step C as follows

Rn
s ðx, tÞ = ∂αtðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ +N ½ðC0ðxÞ +∑n
i=1CiðxÞðtiα/i!αiÞÞ, ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ2,⋯,
ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ2xx
� + ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ6x:
Step E. Employ ∂ðn−1Þα

t for every n = 1, 2, 3,⋯ to the obtained equation in Step D to get

∂ðn−1Þα
t Rm

s ðx, tÞ = ∂nα
t ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ + ∂ðn−1Þα
t N ½ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ,
ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ2,⋯, ðC0ðxÞ +∑n
i=1CiðxÞðtiα/i!αiÞÞ2xx

� + ∂ðn−1Þα
t ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ6x:
Step F. To obtain the first few terms for CiðxÞ with the aid of ∂ðn−1Þα

t Rn
s ðx, 0Þ = 0 execute the following subroutine:

F1. In Step E, put n=1, compute R1
sðx, tÞ and find solution for R1

sðx, 0Þ = 0 to get C1ðxÞ.
F2. Once again, in Step E, set n=2, compute ∂αtR

2
sðx, tÞ and find solution for ∂αtR

2
sðx, 0Þ = 0 to get C2ðxÞ.

F3. Once again, n Step E, set n = 3, compute ∂2αt R3
sðx, tÞ and find solution for ∂2αt R3

sðx, 0Þ = 0 to get C3ðxÞ.
F4. Proceed for arbitrary order k by setting n = k, computing ∂ðk−1Þαt Rk

sðx, tÞ, and establishing the new equation ∂ðk−1Þαt Rk
sðx, 0Þ = 0

to get the kth coefficients CkðxÞ.
Step G. Keep the new components in an infinite series form. In fact, the closed form of the solution can be established in such way,
that is, uðx, tÞ = lim

k⟶∞
ukðx, tÞ, if the relation of the pattern is very regular. If it was not the case, the solutions ukðx, tÞ can be

approximately obtained. Then, Stop.

Algorithm 1
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nonlinear parabolic partial differential equations, describe
nonlinear wave propagation phenomena, and phase-field
separation models [13, 24]. It balances the dispersion and
nonlinearity effects of the soliton dynamics. In this portion,
the conformable power series algorithm in view of the resid-
ual error functions is applied to solve the homogeneous
third-order time-fractional Gardner equation as well as the
homogeneous fourth and sixth-order time-fractional Cahn-
Hilliard equations, which are very common species of
higher-order fractional temporal evolution. The simulation
of such models is investigated as well. More representative
results are introduced with physical interpretations for vari-
ous fractional parameters to hold up the theoretical frame-
work and produce visualization of wave function behavior.
Moreover, different comparisons are produced to justify
the effect of our new method. Calculations are performed
by Mathematica 12.2 computing system [51].

4.1. Solution of Nonlinear Third-Order Fractional Gardner
Equation. The one-dimensional nonlinear third-order frac-
tional Gardner equation (FGE) considered in this portion
can be presented in view of the conformable time derivative
as follows [13, 14]:

∂αtu = −6 u − λ2u2� �
ux −uxxx, 0 < α ≤ 1, ð21Þ

along with the underlying initial condition

u x, 0ð Þ = 1
2 + 1

2 tanh x

2
� �

, ð22Þ

where λ is constant, λ ≠ 0, x ∈ ½a, b�, t ≥ 0, u =uðx, tÞ is a
sufficiently differentiable function representing the wave-
profile scaling spatiotemporal duration of wave propagation
in dispersed media. Typically, the nonlinear terms in this
model refer to wave steepening, and uxxx refers to wave
scattering. The aforementioned equation defines an indis-
pensable model for different nonlinear physical applications
in plasma, surface tension, hydrodynamics, etc. [14]. The
exact solution of the posed model when α = 1 and λ = 1 is
given by

u x, tð Þ = 1
2 + 1

2 tanh x − t

2

� �
: ð23Þ

According the CFRS algorithm, the fractional series
solution uðx, tÞ of the FGE (21) about t = 0 can be estab-
lished as follows

u x, tð Þ = 〠
∞

i=0
Ci xð Þ t

iα

αii!
, ð24Þ

provided that C0ðxÞ =uðx, 0Þ = 1/2ð1 + tanh ðx/2ÞÞ: Sub-
sequently, the nth fractional series unðx, tÞ in view of the
initial condition (22) can be truncated as follows

un x, tð Þ = 1
2 + 1

2 tanh x

2
� �

+ 〠
n

i=1
Ci xð Þ t

iα

αii!
, ð25Þ

and the residual error functionRsðx, tÞ can be expressed as

Rs x, tð Þ = ∂αtu + 6 u − λ2u2� �
ux +uxxx, 0 < α ≤ 1,

ð26Þ

in whichRsðx, tÞ = 0 = ∂ðn−1Þα
t Rsðx, tÞ, n = 1, 2, 3,⋯, for

each x ∈ ½a, b� and t ≥ 0:
In this direction as well, the nth truncated error

Rn
s ðx, tÞ of Rsðx, tÞ can be expressed as

Rn
s x, tð Þ = ∂αtun + 6 un − λ2u2

n

� �
unx +unxxx, ð27Þ

provided that Rn
s ðx, tÞ⟶Rsðx, tÞ as n⟶∞, and

∂ðn−1Þα
t Rn

s ðx, tÞjt=0 ≡ 0 for each n = 1, 2, 3,⋯:

By viewing the representation of the truncated series (25)
and minimizing the residual error (27) of the governing
equation, the unknown coefficients CiðxÞ can be computed
for each value of i = 1, 2,⋯,n in order to obtain the nth
approximate solution unðx, tÞ. To begin with, the first
fractional series solution at n = 1 assumes the form

u1 x, tð Þ = 1
2 + 1

2 tanh x

2
� �

+ 1
α
C1 xð Þtα, ð28Þ

as well as the first residual function assumes the form

R1
s x, tð Þ = ∂αtu1 + 6 u1 − λ2u2

1
� �

u1x +u1xxx: ð29Þ

Consequently, putting u1ðx, tÞ into R1
sðx, tÞ to get

R1
s x, tð Þ =C1 xð Þ + 6

α3
αC0 xð Þ +C1 xð Þtαð Þ

� αC0′ xð Þ +C1′ xð Þtα
� �
� α − λ2 αC0 xð Þ +C1 xð Þtαð Þ� �
+ 1
α

αC
3ð Þ
0 xð Þ +C

3ð Þ
1 xð Þtα

� �
:

ð30Þ

Herein, with the aid of R1
sðx, tÞjt=0 = 0, it yields

C1 xð Þ + 6C0 xð Þ 1 − λ2C0 xð Þ� �
C0′ xð Þ +C

3ð Þ
0 xð Þ = 0, ð31Þ

which implies

C1 xð Þ = −
1
8 1 + 4 − 3λ2

� �
cosh xð Þ + 3 1 − λ2

� �
sinh xð Þ� �

� sech4 x

2
� �

:

ð32Þ
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Hence, the first series solution u1ðx, tÞ can be read as

u1 x, tð Þ = 1
2 + 1

2 tanh x

2
� �

−
1
8α 1 + 4 − 3λ2

� �
cosh xð Þ + 3 1 − λ2

� �
sinh xð Þ� �

� sech4 x

2
� �

tα:

ð33Þ

Sequentially, the second truncated series u2ðx, tÞ can be
computed for n = 2 in (27) such that

R2
s x, tð Þ = ∂αtu2 + 6 u2 − λ2u2

2
� �

u2x +u2xxx, ð34Þ

where u2ðx, tÞ =u1ðx, tÞ + ð1/2α2ÞC2ðxÞt2α: By employ-
ing the conformable operator ∂αt on both sides of equation
(34), we get that

∂αtR
2
s x, tð Þ =C2 xð Þ + 6∂αt u2 − λ2u2

2
� �

u2x

+ 1
α

C
3ð Þ
1 xð Þ +C

3ð Þ
2 xð Þtα

� �
:

ð35Þ

Consequently, solving the term ∂αtR
2
sðx, tÞjt=0 = 0 in

the aforementioned equation with the help of Mathematica's
symbolic architecture [51] leads to

C2 xð Þ = −
1
64 sech7 x

2
� �

24 1 − λ2
� �

cosh x

2
� ��

− 6 22 − 37λ2 + 15λ4
� �

cosh 3x
2

� �

+ 24 − 42λ2 + 18λ4
� �

cosh 5x
2

� �

+ 206 − 204λ2
� �

sinh x

2
� �

− 129 − 222λ2 + 90λ4
� �

sinh 3x
2

� �

+ 25 − 42λ2 + 18λ4
� �

sinh 5x
2

� ��
:

ð36Þ

Hence, the solution u2ðx, tÞ can be given as

u2 x, tð Þ = 1
2 + 1

2 tanh x

2
� �

−
1
8α 1 + 4 − 3λ2

� �
cosh xð Þ�

+ 3 1 − λ2
� �

sinh xð Þ� sech4 x

2
� �

tα

−
1

128α2 sech7 x

2
� �

24 1 − λ2
� �

cosh x

2
� ��

− 6 22 − 37λ2 + 15λ4
� �

cosh 3x
2

� �

+ 24 − 42λ2 + 18λ4
� �

cosh 5x
2

� �

+ 206 − 204λ2
� �

sinh x

2
� �

− 129 − 222λ2 + 90λ4
� �

sinh 3x
2

� �

+ 25 − 42λ2 + 18λ4
� �

sinh 5x
2

� ��
t2α:

ð37Þ

Continuing in this manner, the truncated series u3ðx, tÞ
of the series expansion (25) may be computed by applying
n = 3 in (27), allowing ∂2αt to act on both sides of the new rel-
evant equation then establishing ∂2αR3

sðx, tÞ/∂t2jt=0 = 0
with the aid of Mathematica. To finish our process, we can
assume that u2ðx, tÞ is our approximate solution of the
FGE (21) along with condition (22). Moreover, the values
of CnðxÞ for each n ≥ 3 may be counted likewise. In what
follows, the achieved n terms in the form of an infinite series
leads to the solution uðx, tÞ of the FGEs (21)–(22). Espe-
cially, the solution of FGEs (21) and (22) at α = 1 and λ = 1
can be written in the form

u x, tð Þ = 1
2 + 1

2 tanh x

2
� �

−
1
4 sech2 x

2
� �

t

− csch3 xð Þ sinh4 x

2
� �

t2

+ 1
48 2 − cosh xð Þð Þ sech4 x

2
� �

t3

−
1
384 sinh 3x

2

� �
− 11 sinh x

2
� �� �

� sech5 x

2
� �

t4+⋯,

ð38Þ

which agrees with the analytical solution acquired by
q-homotopy analysis transform method (q-HATM), frac-
tional natural decomposition method (FNDM) [13], and q
-homotopy analysis method (q-HAM) [14], so that

u x, tð Þ = 1
2 + 1

2 tanh x − t

2

� �
: ð39Þ

In what follows, some graphic representations achieved
by the presented algorithm for FGEs (21) and (22) are dis-
played in Figures 1 and 2. At lease three-dimensional surface
plots of the exact solution whereas the fourth approximate
solution are depicted in Figure 1 for diverse values of α with
λ = 1 over a large enough spatio temporal domain ½−20, 20�
× ½0, 3�. In Figure 2, the moving and evolutionary dynamics
of fractional wave function of FGEs (21) and (22) are pro-
vided in 2D graph over ½−10, 10� versus t at λ = 1 based on
different values of α that are given as α = 1, 0:75, 0:5, and
0:25, respectively. From these graphs, it can be observed the
tremendous influence of the fractional parameters α on the
solutions’ consistency with respect to the time t. By measur-
ing the absolute error ju −u3j, the achieved numerical solu-
tions of FGEs (21) and (22) are given in Table 1 for distinct
values of x and fixed t = 0:2 when α = 1 and λ = 1 and
compared with absolute errors obtained in [13] as well. The
efficiency of our method is straightforward from these
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Figure 1: Surface wave behavior of u4ðx, tÞ of FGEs (21) and (22) with λ = 1 for diverse α: (a) exact, (b) α = 0:75, (c) α = 0:5, and
(d) α = 0:25.
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Figure 2: Elevation of wave surface of u4ðx, tÞ of FGEs (21) and (22) with λ = 1 and fixed t for various values of α, in which exact blue,
α = 1 red, α = 0:75 green, α = 0:5 yellow, and α = 0:25 gray.
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results. Moreover, Table 2 provides the absolute errors
between the exact solutions and the third approximate solu-
tions of FGEs (21) and(22) for different values of fractional
order α such as α = f1, 0:95, 0:75, 0:5,0:25g at t = 0:2 and
λ = 1. These results show good agreement between the
solutions when the fractional values differ.

4.2. Solution of Nonlinear Fourth-Order Time-Fractional
Cahn-Hilliard Equation. The one-dimensional nonlinear
fourth-order fractional Cahn-Hilliard (FCH4) equation
considered in this portion can be presented in terms of the
conformable time derivative as follows [24, 25]:

∂αtu = μux + 6uu2
x + 3u2 − 1
� �

uxx −uxxxx, 0 < α ≤ 1,
ð40Þ

along with the underlying initial condition

u x, 0ð Þ = tanh xffiffiffi
2

p
� �

, ð41Þ

where μ is aconstant, μ ≠ 0, x ∈ ½a, b�, t ≥ 0, u =uðx, tÞ is
sufficiently differentiable function representing the wave-
profile scaling spatiotemporal duration of wave propagation
in dispersed media. Herein, the nonlinear terms in this
model refer to chemical potential dynamics, and uxxxx

refers to wave scattering. This equation has various applica-
tions in topology optimization, surface reconstruction, phase
separation, phase ordering dynamics, magneto-acoustic
propagation in plasma, multiphase incompressible fluid
flows, image inpainting, and so forth [25, 32]. The exact
solution of the posed model when α = 1 and μ = 1 is given by

u x, tð Þ = tanh x + tffiffiffi
2

p
� �

: ð42Þ

By performing the CFRS algorithm, the fractional series
solution uðx, tÞ of the FCH4 equation (40) about t = 0
can be constructed as follows

u x, tð Þ = 〠
∞

i=0
Ci xð Þ t

iα

αii!
, ð43Þ

provided that C0ðxÞ =uðx, 0Þ= tanh ðx/
ffiffiffi
2

p Þ: Subse-
quently, the nth fractional series unðx, tÞ in view of the
initial condition (41) can be truncated by

un x, tð Þ = tanh xffiffiffi
2

p
� �

+ 〠
n

i=1
Ci xð Þ t

iα

αii!
, ð44Þ

and the error function Rsðx, tÞ can be expressed as

Rs x, tð Þ = ∂αtu − μux − 6uu2
x − 3u2 − 1
� �

uxx

+uxxxx, 0 < α ≤ 1,
ð45Þ

in whichRsðx, tÞ = 0 = ∂ðn−1Þα
t Rsðx, tÞ, n = 1, 2, 3,⋯, for

each x ∈ ½a, b� and t ≥ 0:
In this orientation as well, the nth truncated error

Rn
s ðx, tÞ of Rsðx, tÞ can be expressed as

Rn
s x, tð Þ = ∂αtun − μunx − 6unu

2
nx

− 3u2
n − 1

� �
unxx +unxxxx,

ð46Þ

provided that Rn
s ðx, tÞ⟶Rsðx, tÞ as n⟶∞, and

∂ðn−1Þα
t Rn

s ðx, tÞjt=0 ≡ 0 for each n = 1, 2, 3,⋯:

By viewing the representation of the truncated series (44)
and minimizing the residual error (46) of the governing
equation, the unknown coefficients CiðxÞ can be computed
for each value of i = 1, 2,⋯,n in order to obtain the nth

Table 1: Comparison of numerical outcomes for FGEs (21) and (22) with = 0:2,α = 1, and λ = 1.

xi u x, tð Þ u3 x, tð Þ u −u3j j u −u3j j uj j−1 FNDM [13] q-HATM [13]

0:1 0:475021 0:475020 9:95627 × 10−7 2:09596 × 10−6 9:95627 × 10−7 9:95627 × 10−7

0:2 0:500000 0:499997 2:61331 × 10−6 5:22661 × 10−6 2:61331 × 10−6 2:61331 × 10−6

0:3 0:524979 0:524975 4:12217 × 10−6 7:85207 × 10−6 4:12217 × 10−6 4:12217 × 10−6

0:4 0:549834 0:549829 5:46303 × 10−6 9:93579 × 10−6 5:46303 × 10−6 5:46303 × 10−6

0:5 0:574443 0:574436 6:58827 × 10−6 1:14690 × 10−5 6:58827 × 10−6 6:58827 × 10−6

Table 2: Absolute errors ju −u3j for different values of fractional order α at t = 0:2,λ = 1 of FGEs (21) and (22).

xi α = 1 α = 0:95 α = 0:75 α = 0:5 α = 0:25
0:1 9:95627 × 10−7 1:33546 × 10−6 3:56984 × 10−6 8:10067 × 10−6 2:05633 × 10−5

0:2 2:61331 × 10−6 3:01435 × 10−6 5:77678 × 10−6 3:93725 × 10−5 1:30242 × 10−4

0:3 4:12217 × 10−6 5:86542 × 10−6 2:67443 × 10−5 3:11823 × 10−5 1:65983 × 10−4

0:4 5:46303 × 10−6 6:13259 × 10−6 3:87654 × 10−5 1:92139 × 10−4 3:65432 × 10−4

0:5 6:58827 × 10−6 8:43010 × 10−6 1:65438 × 10−5 1:00045 × 10−4 3:76543 × 10−4
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approximate solution unðx, tÞ. To begin with, the first frac-
tional series solution at n = 1 has the form

u1 x, tð Þ = tanh xffiffiffi
2

p
� �

+ 1
α
C1 xð Þtα, ð47Þ

as well as the first residual function has the form

R1
s x, tð Þ = ∂αtu1 − μu1x − 6u1u

2
1x

− 3u2
1 − 1

� �
u1xx +u1xxxx:

ð48Þ

Consequently, putting u1ðx, tÞ into R1
sðx, tÞ to get

R1
s x, tð Þ =C1 xð Þ − μ C0′ xð Þ +C1′ xð Þ t

α

α

� �

−
3 αC0 xð Þ +C1 xð Þtαð Þ

α3

� 2 αC0′ xð Þ +C1′ xð Þtα
� �2�

+ αC0 xð Þ +C1 xð Þtαð Þ αC0′′ xð Þ +C1′′ xð Þtα
� ��

+C0′′ xð Þ +C1′′ xð Þ t
α

α
+ C

4ð Þ
0 xð Þ +C

4ð Þ
1 xð Þ t

α

α

� �
:

ð49Þ

Hence, by using R1
sðx, tÞjt=0 = 0, it yields

C1 xð Þ − μC0′ xð Þ − 6C0 xð ÞC0′ xð Þ2 +C0″ xð Þ
− 3C0″ xð ÞC0 xð Þ2 +C

4ð Þ
0 xð Þ = 0,

ð50Þ

which yields

C1 xð Þ = μffiffiffi
2

p sech2 xffiffiffi
2

p
� �

: ð51Þ

Hence, the solution u1ðx, tÞ is obtained as

u1 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tα: ð52Þ

Sequentially, we can compute the series u2ðx, tÞ by
assuming n = 2 in the nth truncated error (46) such that

R2
s x, tð Þ = ∂αtu2 − μu2x − 6u2u

2
2x

− 3u2
2 − 1

� �
u2xx +u2xxxx,

ð53Þ

where u2ðx, tÞ = tanh ðx/ ffiffiffi
2

p Þ + ðμ/ ffiffiffi
2

p
αÞ sech2ðx/

ffiffiffi
2

p Þtα
+ ð1/2α2ÞC2ðxÞt2α: Then, by employing the conformable

differential operator ∂αt on both sides of equation (53), we
get that

∂αtR
2
s x, tð Þ =C2 xð Þ − μC1′ xð Þ − μC2′ xð Þ t

α

α
− ∂αt 6u2u

2
2x + 3u2

2 − 1
� �

u2xx

� �
+C1″ xð Þ +C2″ xð Þ t

α

α
+C

4ð Þ
1 xð Þ +C

4ð Þ
2 xð Þ t

α

α
:

ð54Þ

Now, solving the term ∂αtR
2
sðx, tÞjt=0 = 0 in the above

equation with the help of Mathematica's symbolic architec-
ture [51] leads to

C2 xð Þ = −μ2 tanh xffiffiffi
2

p
� �

sech2 xffiffiffi
2

p
� �

: ð55Þ

Hence, the solution u2ðx, tÞ can be given by

u2 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tα

− μ2 tanh xffiffiffi
2

p
� �

sech2 xffiffiffi
2

p
� �

t2α

2α2 :
ð56Þ

Similarly, the truncated series u3ðx, tÞ of the series
expansion (44) can be calculate by assuming n = 3 in (46),
then, by solving the term ∂2αR3

sðx, tÞ/∂t2jt=0 = 0 with the
aid of Mathematica's symbolic architecture [51], we get

C3 xð Þ = μ3ffiffiffi
2

p Cosh
ffiffiffi
2

p
x

� �
− 2

� �
sech4 xffiffiffi

2
p
� �

, ð57Þ

which reveals that u3ðx, tÞ has the form

u3 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tα

−
μ2

2α2 tanh xffiffiffi
2

p
� �

sech2 xffiffiffi
2

p
� �

t2α

+ μ3

6
ffiffiffi
2

p
α3

Cosh
ffiffiffi
2

p
x

� �
− 2

� �
sech4 xffiffiffi

2
p
� �

t3α:

ð58Þ

Proceeding likewise, the solution u4ðx, tÞ will have the
form

u4 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tα

−
μ2

2α2 tanh xffiffiffi
2

p
� �

sech2 xffiffiffi
2

p
� �

t2α

+ μ3

6
ffiffiffi
2

p
α3

Cosh
ffiffiffi
2

p
x

� �
− 2

� �
sech4 xffiffiffi

2
p
� �

t3α

−
μ4

48α4 sinh 3xffiffiffi
2

p
� �

− 11 sinh xffiffiffi
2

p
� �� �

sech5 xffiffiffi
2

p
� �

t4α:

ð59Þ
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To close this method, it is assumed that u4ðx, tÞ is an
approximate solution, and CnðxÞ, n ≥ 5 can be followed
likewise. Later, by gathering the terms, uðx, tÞ of the posed
model (40) and (41) may be predicted. In particular, the
solution of FCH4 equation (40) and (41) at α = 1 and μ = 1
can be written in the form

u x, tð Þ = tanh xffiffiffi
2

p
� �

+ 1ffiffiffi
2

p sech2 xffiffiffi
2

p
� �

t

−
1
2 tanh xffiffiffi

2
p
� �

sech2 xffiffiffi
2

p
� �

t2

+ 1
6
ffiffiffi
2

p Cosh
ffiffiffi
2

p
x

� �
− 2

� �
sech4 xffiffiffi

2
p
� �

t3

−
1
48 sinh 3xffiffiffi

2
p
� �

− 11 sinh xffiffiffi
2

p
� �� �

� sech5 xffiffiffi
2

p
� �

t4+⋯,

ð60Þ

which agrees with the analytical solution acquired by homo-
topy perturbation method (HPM) [25], q-HAM, and new
iterative method (NIM) [24], so that

u x, tð Þ = tanh x + tffiffiffi
2

p
� �

: ð61Þ

In the following, 3D graphical simulation of u4ðx, tÞ of
FCH4 model (40) and (41) with respect to different frac-
tional parameter α are shown in Figure 3 for μ = 1 over
½−20, 20� × ½0, 2�: In Figure 4, 3D surface plots of FCH4

model (40) and (41) are depicted with fix α = 0:75 versus
μ such that μ = 1 and μ = 0:75 over the spatiotemporal
domain ½−6, 6� × ½0, 3�. Further, the obtained absolute errors
ju −u4j are reported in Table 3 and compared to those
results provided in [24] at μ = 1 and α = 1. The superiority
of the present method follows from those results.

(i) Exponential wave solution of FCH4 equation

This segment is an attempt to gain an effective approxi-
mate solution to FCH4 equation (40) with the initial condi-
tion [24]

u x, 0ð Þ = ⅇλx, ð62Þ

where λ is an arbitrary constant with λ ≠ 0:
According the CFRS algorithm, the nth fractional series

solution unðx, tÞ of the FCH4 equation (40) about t = 0 in
view of the initial condition (62) can be expressed as

un x, tð Þ = eλx + 〠
n

i=1
Ci xð Þ t

iα

αii!
: ð63Þ

With the aid of the nth truncated error Rn
s ðx, tÞ of

(46), the unknown coefficients CiðxÞ of the series expan-
sion (63) can be computed for each value of i = 1, 2,⋯,n.
To achieve this goal, let the first fractional series solution
of FCH4 equations (40) and (62) at n = 1 takes the form

u1 x, tð Þ = ⅇλx + 1
α
C1 xð Þtα: ð64Þ
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Figure 3: Surface wave behavior of u4ðx, tÞ of the FCH4 model (40) and (41) with μ = 1 for diverse α: (a) exact, (b) α = 0:75, (c) α = 0:5,
and (d) α = 0:25.
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Now, substitute u1ðx, tÞ into R1
sðx, tÞ and then solve

R1
sðx, tÞjt=0 = 0 to get

C1 xð Þ = λ μ − λ 1 − 9ⅇ2λx + λ2
� �� �

ⅇλx: ð65Þ

Hence, the solution u1ðx, tÞ is

u1 x, tð Þ = ⅇλx + λ

α
μ − λ 1 − 9ⅇ2λx + λ2

� �� �
ⅇλxtα: ð66Þ

Sequentially, substitute u2ðx, tÞ into the second trun-
cated residual errorR2

sðx, tÞ, apply the conformable opera-
tor ∂αt on both sides of the resulting equation, and solve

∂αtR
2
sðx, tÞjt=0 = 0 with the aid of Mathematica's symbolic

architecture [51] to get

C2 xð Þ = λ2 675λ2ⅇ4λx + λ + λ3 − μ
� �2�

− 54λ 2 λ + 7λ3
� �

− μ
� �

ⅇ2λx
�
ⅇλx,

ð67Þ

which implies that the second series solution is

u2 x, tð Þ = ⅇλx 1 + λ

α
μ − λ 1 − 9ⅇ2λx + λ2

� �� �
tα

�

+ λ2

2α2 675λ2ⅇ4λx + λ + λ3 − μ
� �2�

− 54λ 2 λ + 7λ3
� �

− μ
� �

ⅇ2λx
�
t2α
�
:

ð68Þ
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Figure 4: Surface plots of FCH4 model (40) and (41) with fix α = 0:75 versus μ: (a) μ = 1 and (b) μ = 0:75.

Table 3: Comparison of numerical results for FCH4 model (21)-(22) with λ = 1 and α = 1.

ti xi u x, tð Þ u4 x, tð Þ u −u4j j u −u4j j uj j−1 q-HAM [24] NIM [24]

0:01

0:0 0:007071 0:007071 2:35697 × 10−12 3:33332 × 10−10 2:356975 × 10−12 1:151971 × 10−7

0:1 0:077625 0:077625 2:25475 × 10−12 2:90466 × 10−11 2:823765 × 10−10 1:810671 × 10−7

0:2 0:147411 0:147411 1:96920 × 10−12 1:33586 × 10−11 5:749512 × 10−11 6:167394 × 10−8

0:3 0:215758 0:215758 1:53980 × 10−12 7:13667 × 10−12 3:757261 × 10−11 1:165205 × 10−9

0:05

0:0 0:035341 0:035341 7:36197 × 10−9 2:08315 × 10−7 7:713501 × 10−8 4:940148 × 10−5

0:1 0:105670 0:105670 7:00209 × 10−9 6:62637 × 10−8 1:124520 × 10−6 8:990891 × 10−5

0:2 0:174958 0:174958 6:07535 × 10−9 3:47246 × 10−8 2:387229 × 10−7 3:218897 × 10−5

0:3 0:242555 0:242555 4:70990 × 10−9 1:94178 × 10−8 1:516340 × 10−7 4:548965 × 10−7

0:08

0:0 0:056508 0:056508 7:71350 × 10−8 1:36502 × 10−6 7:361971 × 10−9 1:306675 × 10−5

0:1 0:126596 0:126596 7:30464 × 10−8 5:77003 × 10−7 1:736922 × 10−7 2:224480 × 10−5

0:2 0:195443 0:195443 6:30668 × 10−8 3:22687 × 10−7 3:622408 × 10−8 7:794449 × 10−6

0:3 0:262415 0:262415 4:85727 × 10−8 1:85099 × 10−7 2:328496 × 10−8 1:257660 × 10−7

0:10

0:0 0:070593 0:070592 2:35226 × 10−7 3:33214 × 10−6 2:352262 × 10−7 9:109940 × 10−5

0:1 0:140486 0:140486 2:22113 × 10−7 1:58103 × 10−6 2:722916 × 10−6 1:740220 × 10−4

0:2 0:209006 0:209006 1:91136 × 10−7 9:14497 × 10−7 5:848640 × 10−7 6:321236 × 10−5

0:3 0:275534 0:275534 1:46559 × 10−7 5:31908 × 10−7 3:686350 × 10−7 8:108096 × 10−7
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In the same fashion, the third and fourth series solutions
of FCH4 equations (40) and (62) can be obtained succes-
sively as follows

u3 x, tð Þ = ⅇλx 1 + λ

α
μ − λ 1 − 9ⅇ2λx + λ2

� �� �
tα

�

+ λ2

2α2 675λ2ⅇ4λx + λ + λ3 − μ
� �2�

− 54λ 2 λ + 7λ3
� �

− μ
� �

ⅇ2λx
�
t2α

+ λ3

6α3 123039λ3ⅇ6λx
�

− 675λ2 41λ + 713λ3 − 15μ
� �

ⅇ4λx

+ μ − λ 1 + λ2
� �� �3 + 81λ 3μ2 − 12μ λ + 7λ3

� ��
+ λ2 13 + 194λ2 + 757λ4

� ��
ⅇ2λx

�
t3α
�
,

ð69Þ

u4 x, tð Þ =u3 x, tð Þ + λ4

24α4 972λ μ − 2 λ + 7λ3
� �� ��

� μ2 − 4μ λ + 7λ3
� ��

+ λ2 5 + 82λ2 + 365λ4
� ��

ⅇ2λx

+ 1350λ2 75μ2 − 10λμ 41 + 713λ2
� ��

+ λ2 613 + 22898λ2 + 226477λ4
� �Þⅇ4λx

− 15876λ3 732λ + 23484λ3 − 217μ
� �

ⅇ6λx

+ 39110121λ4ⅇ8λx + λ + λ3 − μ
� �4�ⅇλxt4α:

ð70Þ

To close the process, we assume that u4ðx, tÞ is the
approximate solution. Following the same procedure, the
values of CnðxÞ, n ≥ 5 can be also computed. Thus, the
expression of the series solution uðx, tÞ of the FCH4 equa-
tion (40) along with condition (62) at α = 1 and μ = 1 can be
written in the form

u x, tð Þ = ⅇλx 1 + λ 1 − λ 1 − 9ⅇ2λx + λ2
� �� �

t

�

+ λ2

2! λ + λ3 − 1
� �2 − 54λ 2 λ + 7λ3

� �
− 1

� �
ⅇ2λx

�
+ 675λ2ⅇ4λx

�
t2 + λ3

3! 123039λ3ⅇ6λx
�

− 675λ2 41λ + 713λ3 − 15
� �

ⅇ4λx

+ 1 − λ 1 + λ2
� �� �3 + 81λ 3 − 12 λ + 7λ3

� ��
+ λ2 13 + 194λ2 + 757λ4

� ��
ⅇ2λx

�
t3

+ λ4

4! 972λ 1 − 2 λ + 7λ3
� �� �

1 − 4 λ + 7λ3
� ���

+ λ2 5 + 82λ2 + 365λ4
� ��

ⅇ2λx

+ 1350λ2 75 − 10λ 41 + 713λ2
� ��

+ λ2 613 + 22898λ2 + 226477λ4
� ��

ⅇ4λx

− 15876λ3 732λ + 23484λ3 − 217
� �

ⅇ6λx

+ 39110121λ4ⅇ8λx + λ + λ3 − 1
� �4�

t4+⋯
�
:

ð71Þ

In the following, the 3D behaviors of surface wave func-
tion u4ðx, tÞ of FCH4 model (40) and (62) are displayed in
Figure 5 for the parameters μ = 1 and λ = −0:05 with respect
to α = 1 and α = 0:75 on ½−10, 10� × ½0, 1�. While the frac-
tional level curves of u3ðx, tÞ for FCH4 model (40) and
(62) are shown in Figure 6 compared to the third approxi-
mate solutions obtained in [24] for fix t = 1 on ½−15, 15�
for various α values when λ = −0:05 and λ = 0:05. Error esti-
mate for the third approximate solutions of FCH4 model
(40) and (62) is provided in Table 4 by computing the abso-
lute errors ju3 −uqHAMj and ju3 −uNIMj based on the
results achieved by q-HAM and NIM [24] for α = 1, μ = 1,
and λ = 0:01. From this comparison, it is evident that the
results obtained by CFRS are in good agreement with those
presented in the literature.

4.3. Solution of Nonlinear Sixth-Order Time-Fractional
Cahn-Hilliard Equation. The one-dimensional nonlinear
sixth-order fractional Cahn-Hilliard (FCH6) equation
considered in this portion can be presented in terms of the
conformable time derivative as follows [24]:

∂αtu = μuux − 18uu2
xx − 36u2

xuxx − 24uuxuxxx

− 3u2 − 1
� �

uxxxx +uxxxxxx,
ð72Þ

with the condition

u x, 0ð Þ = tanh xffiffiffi
2

p
� �

, ð73Þ

0 < α ≤ 1, μ is a constant, μ ≠ 0, x ∈ ½a, b�, t ≥ 0, u =u

ðx, tÞ is sufficiently differentiable function representing the
wave-profile scaling spatiotemporal duration of wave prop-
agation in dispersed media. Herein, the nonlinear terms in
this model refer to chemical potential dynamics, and
uxxxxxx refers to wave scattering. This equation has
applications in topology optimization, surface reconstruc-
tion, phase separation, phase ordering dynamics, magneto-
acoustic propagation in plasma, multiphase incompressible
fluid flows, image inpainting, and so forth [32].

According the CFRS algorithm, the nth fractional series
solution unðx, tÞ of the FCH6 equation (72) about t = 0 in
view of the initial condition (73) can be expressed as

un x, tð Þ = tanh xffiffiffi
2

p
� �

+ 〠
n

i=1
Ci xð Þ t

iα

αii!
, ð74Þ
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and the residual error function Rsðx, tÞ is

Rs x, tð Þ = ∂αtu − μuux + 18uu2
xx + 36u2

xuxx

+ 24uuxuxxx + 3u2 − 1
� �

uxxxx

−uxxxxxx:

ð75Þ

For this purpose, the nth truncated error of Rsðx, tÞ
can be expressed in the form

Rn
s x, tð Þ = ∂αtun − μununx + 18unu

2
nxx + 36u2

nxunxx

+ 24ununxunxxx + 3u2
n − 1

� �
unxxxx

−unxxxxxx:

ð76Þ

Thus, by minimizing the residual error (76) of the gov-
erning equation, the unknown coefficients CiðxÞ of series
expansion (74) for each value of i = 1, 2,⋯,n can be com-
puted. Subsequently, the series solution atn = 1 has the form

u1 x, tð Þ = tanh xffiffiffi
2

p
� �

+ 1
α
C1 xð Þtα, ð77Þ

whereas the first residual function has the form

R1
s x, tð Þ = ∂αtu1 − μu1u1x + 18u1u

2
1xx + 36u2

1xu1xx

+ 24u1u1xu1xxx + 3u2
1 − 1

� �
u1xxxx

−u1xxxxxx:

ð78Þ
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Figure 5: Surface plots of FCH4 model (40)-(62) at μ = 1 and λ = −0:05 for diverse α: (a) α = 1 and (b) α = 0:75.
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Figure 6: Fractional level curves of u3ðx, tÞ of FCH4 model (40) and (62) with t = 1 and μ = 1: blue for q-HAM [24], red α = 1, pink
α = 0:75, green α = 0:5, yellow α = 0:25, gray α = 0:1 ; (a) λ = −0:05 and (b) λ = 0:05.

Table 4: Comparison of absolute errors of FCH4 model (40) and (62) with = 1,μ = 1, and λ = 0:01.

ti
x = 1 x = 5 x = 20

u3 −uqHAM



 

 u3 −uNIMj j u3 −uqHAM



 

 u3 −uNIMj j u3 −uqHAM



 

 u3 −uNIMj j
0:5 8:8741 × 10−9 7:7088 × 10−8 1:0333 × 10−8 8:7056 × 10−8 1:8620 × 10−8 1:4221 × 10−7

1:0 7:0993 × 10−8 6:1670 × 10−7 8:2659 × 10−8 6:9645 × 10−7 1:4896 × 10−7 1:1377 × 10−6

1:5 2:3960 × 10−7 2:0814 × 10−6 2:7898 × 10−7 2:3505 × 10−6 5:0274 × 10−7 3:8396 × 10−6

2:0 5:6794 × 10−7 4:9336 × 10−6 6:6128 × 10−7 5:5716 × 10−6 1:1917 × 10−6 9:1012 × 10−6

2:5 1:1093 × 10−6 9:6360 × 10−6 1:2916 × 10−6 1:0882 × 10−5 2:3275 × 10−6 1:7776 × 10−5
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Now, putting u1ðx, tÞ into R1
sðx, tÞ to get

R1
s x, tð Þ =C1 xð Þ − μ

α2
αC0 xð Þ +C1 xð Þtαð Þ

� αC0′ xð Þ +C1′ xð Þtα
� �
+ 36
α3

αC0′ xð Þ +C1′ xð Þtα
� �2

� αC0′′ xð Þ +C1′′ xð Þtα
� �
+ 18
α3

αC0 xð Þ +C1 xð Þtαð Þ

� αC0′′ xð Þ +C1′′ xð Þtα
� �2
+ 24
α3

αC0 xð Þ +C1 xð Þtαð Þ
� αC0′ xð Þ +C1′ xð Þtα
� �
� αC

3ð Þ
0 xð Þ +C

3ð Þ
1 xð Þtα

� �
+ 3
α3

αC0 xð Þ +C1 xð Þtαð Þ2

� αC
4ð Þ
0 xð Þ +C

4ð Þ
1 xð Þtα

� �
−
1
α

αC
4ð Þ
0 xð Þ +C

4ð Þ
1 xð Þtα

� �
−
1
α

αC
6ð Þ
0 xð Þ +C

6ð Þ
1 xð Þtα

� �
:

ð79Þ

By utilizing the fact R1
sðx, tÞjt=0 = 0, it yields

C1 xð Þ + 36C0′ xð Þ2C0′′ xð Þ +C0 xð Þ
� 18C0′ ′ xð Þ2 −C0′ xð Þ μ − 24C 3ð Þ

0 xð Þ
� �� �

+ 3C0 xð Þ2C 4ð Þ
0 xð Þ −C

4ð Þ
0 xð Þ −C

6ð Þ
0 xð Þ = 0,

ð80Þ

which implies that

C1 xð Þ = μffiffiffi
2

p sech2 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

: ð81Þ

Therefore, the solution u1ðx, tÞ is

u1 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tanh xffiffiffi
2

p
� �

tα:

ð82Þ

Sequentially, the second truncated series u2ðx, tÞ can be
obtained by setting n = 2 in (76) such that

R2
s x, tð Þ = ∂αtu2 − μu2u2x + 18u2u

2
2xx + 36u2

2xu2xx

+ 24u2u2xu2xxx + 3u2
2 − 1

� �
u2xxxx

−u2xxxxxx,
ð83Þ

where u2ðx, tÞ = tanh ðx/
ffiffiffi
2

p Þ + ðμ/ ffiffiffi
2

p
αÞ sech2ðx/ ffiffiffi

2
p Þ

tanh ðx/ ffiffiffi
2

p Þtα + ð1/2α2ÞC2ðxÞt2α: By employing the oper-
ator ∂αt on both sides of equation (83), we get

∂αtR
2
s x, tð Þ =C2 xð Þ − μ C0 xð Þ +C1 xð Þ t

α

α
+C2 xð Þ t

2α

2α2
� �

� C0′ xð Þ + C1′ xð Þtα
α

+ C2′ xð Þt2α
2α2

 !

− ∂αt 18u2u
2
2xx + 36u2

2xu2xx

�
+ 24u2u2xu2xxx + 3u2

2 − 1
� �

u2xxxx

�
−C

6ð Þ
0 xð Þ − C

6ð Þ
1 xð Þtα

α
−
C

6ð Þ
2 xð Þt2α
2α2 :

ð84Þ

Solving the term ∂αtR
2
sðx, tÞjt=0 = 0 with the aid of

Mathematica's symbolic architecture [51] leads to

C2 xð Þ + 36C0′ xð Þ 2C1′ xð ÞC0″ xð Þ +C0′ xð ÞC1″ xð Þ
� �

+C0 xð Þ 36C0″ xð ÞC1″ xð Þ −C1′ xð Þ μ − 24C 3ð Þ
0 xð Þ

� ��
+ 24C0′ xð ÞC 3ð Þ

1 xð ÞÞ −C1 xð Þ C0′ xð Þ μ − 24C 3ð Þ
0 xð Þ

� ��
+ 6 3C0″ xð Þ2 +C0 xð ÞC 4ð Þ

0 xð Þ
� ��

−C
4ð Þ
1 xð Þ + 3C0 xð Þ2C 4ð Þ

1 xð Þ −C
6ð Þ
1 xð Þ = 0,

ð85Þ

which implies that

C2 xð Þ = μ

2 ζ1 xð Þ sech4 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

, ð86Þ

in which ζ1ðxÞ = μð3 − cosh ð ffiffiffi
2

p
xÞÞ − 3

ffiffiffi
2

p
sech4ðx/ ffiffiffi

2
p Þ

ð249 − 163 cosh ð ffiffiffi
2

p
xÞ + 8 cosh ð2 ffiffiffi

2
p

xÞÞ:
Therefore, the series solution u2ðx, tÞ can be given as

u2 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tanh xffiffiffi
2

p
� �

tα

+ μ

4α2 ζ1 xð Þ sech4 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

t2α:

ð87Þ

Following the same procedure, the series u3ðx, tÞ of
(74) can be computed through setting n = 3 in (76) and
solving the term ∂2αR3

sðx, tÞ/∂t2jt=0 = 0 to get C3ðxÞ as
follows

C3 xð Þ = μ

8 ζ2 xð Þ sech6 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

, ð88Þ
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where

ζ2 xð Þ =
ffiffiffi
2

p
μ2 35 − 24 cosh

ffiffiffi
2

p
x

� �
+ cosh 2

ffiffiffi
2

p
x

� �� �
− 18

ffiffiffi
2

p
−28600273 + 33907584 cosh

ffiffiffi
2

p
x

� ��
− 7525233 cosh 2

ffiffiffi
2

p
x

� �
+ 585152 cosh 3

ffiffiffi
2

p
x

� �
− 12286 cosh 4

ffiffiffi
2

p
x

� �
+ 32 cosh 5

ffiffiffi
2

p
x

� ��
� sech8 xffiffiffi

2
p
� �

− 48μ 2499 − 96 cosh
ffiffiffi
2

p
x

� ��

− 20 −89 + 184 cosh
ffiffiffi
2

p
x

� �� �
sech4 xffiffiffi

2
p
� ��

,

ð89Þ

which implies that u3ðx, tÞ has the form

u3 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tanh xffiffiffi
2

p
� �

tα

+ μ

4α2 ζ1 xð Þ sech4 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

t2α

+ μ

48α3 ζ2 xð Þ sech6 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

t3α:

ð90Þ

To close the process, we suppose that u3ðx, tÞ is the
approximate solution. Then, CnðxÞ, n ≥ 4, can be com-
puted similarly. Anyhow, the n-term sequential solution
can be written in the form Unðx, tÞ =∑n

k ukðx, tÞ as well
as the solution uðx, tÞ of the FCH6 equation (72) along
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Figure 9: Surface of absolute error for FCH6 model (72) and (73) at μ = 0:01 and α = 0:5: (a) ju2 −uqHAMj and (b) ju2 −uNIMj.
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Figure 8: Surface of absolute error for FCH6 model (72) and (73) at μ = 0:01 and α = 0:75: (a) ju2 −uqHAMj and (b) ju2 −uNIMj.
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Figure 7: Surface wave behavior of u3ðx, tÞ of FCH6 model (72) and (73) with μ = 0:01 for diverse α: (a) α = 0:75 and (b) α = 0:5.
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with condition (73) can be predicted as uðx, tÞ = lim
n⟶∞

Un

ðx, tÞ:
In Figure 7, the behaviors of surface wave function

u3ðx, tÞ for FCH6 model (72) and (73) are presented in
3D with μ = 0:01 for diverse α such that α = 0:75 and α =
0:5. While the surface plots of absolute error for FCH6 model
(72) and (73) based on the results obtained in [24] at μ = 0:01
are depicted in Figures 8 and 9 for α = 0:75 and α = 0:5,
respectively. From these graphs, it is evident that the
achieved results are in good agreement with those obtained
in [24].

5. Concluding Remarks

In this paper, we have investigated the fractional parabolic
partial differential models of Gardner and Cahn-Hilliard
equations in conformable sense. Using the fractional resid-
ual method, the approximate solution has been successfully
acquired of the posed problems without imposing any
unsanctified restrictions. Numerical simulation has been
carried out to highlight the ability of the suggested method.
In this context, it can be concluded that the implemented
approximation algorithm is a superior tool for computa-
tional purposes, it is computer oriented, it is relatively better
compared to the existing numerical methods, and it is a
straightforward and simple methodology that needs a few
iterations to get accurate solutions. From the graphic repre-
sentations, it is noticed that the solution behavior is harmo-
nious for different fractional values and consistent with the
integer value. In future work, multivariate series expansion
based on residual error can be employed for multidimen-
sional fractional evolution models in terms of the conform-
able derivative.
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