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Our main aim is to describe the entire solutions of several systems of {

{ (@0f,/02,)" + aafy(z + )] = 1, { (@19f,/02,)" + [af (2 + ©) + e fy ()] =1,
(B10f,1020)* + [Bofy (2 + OF =1, L (B,0/,102) + [y (2 + )+ Bofy ()] =1,

[@fi@F +[mfylz+ ) =1, { (@3,/02)" + [afyfe+ " =1 o g

Bufo@ + [Bofy(z+ O =1, L (B10f2102))" + B,y (2 + )™ =1,

where ocj,ﬁj(j: 1,2,3) are nonzero constants in C and mj, nj(j:1,2) are

positive integers. We obtain several theorems on the existence and the forms of solutions for these systems, which are some
improvements and supplements of the previous theorems given by Xu and Cao, Gao, and Liu and Yang. Moreover, we give
some examples to explain the existence of solutions for such systems.

1. Introduction

As everyone knows, the study of the existence of solutions
for Fermat type equations has always been an important
and interesting problem. The famous Fermat’s Last Theorem
has attracted the attention of many mathematical scholars
[1, 2]. About 60 years ago or even earlier, Montel [3] and
Gross [4] had considered the equation f™ + g™ =1 and
obtained that the entire solutions of f>+ g?> =1 are f = cos
{(z), g =sin {(z) for the case m =2, where {(z) is an entire
function, and this equation does not admit any nonconstant
entire solution for any positive integer m > 2.

With the establishment and rapid development of
Nevanlinna value distribution theory for meromorphic
functions and theirs difference [5-7], Liu [8] in 2009, Liu
et al. [9] in 2012, and Liu and Yang [10] in 2013 studied
some complex Fermat type difference and Fermat type dif-
ferential difference equations and obtained some results.

Theorem 1 (see [9], Theorem 1.1). The transcendental entire
solutions with finite order of

f2) +f(z+c)=1 (1)

must satisfy f(z) =sin (Az + B), where B is a constant and
A = (4k + 1)1t/ 2c, with k an integer.

Theorem 2 (see [9], Theorem 1.3). The transcendental entire
solutions with finite order of

i@ +fz+o’=1 (2)

sin (z + Bi), where B is a constant and ¢ = 2

must satisfy f(z) =
+ 17, with k an integer.

km or c= (2k

After that, Gao [11] in 2016 extended Theorem 2 from
complex differential difference equation to the system of
complex differential difference equations.

Theorem 3 (see [11], Theorem 1.1). Suppose that (f,, f,) is a
pair of finite-order transcendental entire solutions for the sys-
tem of differential difference equations

{ [fr@] +fi(z+0)=1,
[y @) +fiz+0)=1.
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Then, (f,,f,) satisfies
(f1pf2) = (sin (2 = bi), sin (2 = b;1)), (4)

or

() = (sin (z + bi),sin (2 + b)), (5)
where b, b, are constants and c = km, where k is an integer.

In recent, Xu and Cao [12, 13] further discussed the
solutions for some Fermat type PDDEs and obtained the
following:

Theorem 4 (see [13], Theorem 1.4). Let c € C" — {0}. Then,
any nonconstant entire solution with finite order of the equa-
tion

f2)+f(z+e)=1 (6)

has the form of f(z) =cos (L(z) + B), where L is a linear
function of the form L(z) =a,z, + ---+a,z, on C" such that
L(c) =-n/2 - 2kn, k € Z, and B is a constant on C.

Theorem 5 (see [13], Theorem 1.1). Let c=(c,,c,) € C°.
Then,

(—af(gé’IZZ)) +f(z+cpz+6)" =1 (7)

does not have any transcendental entire solution with finite
order, where m and n are two distinct positive integers.

Theorem 6 (see [13], Theorem 1.2). Let c=(c;,c,) € C°.
Then, any transcendental entire solution with finite order of
the PDDE

(g_i)z+f(z,+c1,z2+c2)2=1 (8)

has the form of f (z,, z,) = sin (Az; + B), where A is a constant
on C satisfying AeA = I and B is a constant on C; in the spe-
cial case whenever c; = 0, we have f(z;,z,) = sin (z; + B).

By analyzing Theorems 3-6, a natural question is as fol-
lows: What will happen about the transcendental entire solu-
tions for the system of the PDDEs of Fermat type? Although
many scholars have paid considerable attention to the com-
plex difference equation with a single variable and the com-
plex Fermat type difference equation in recent years, a series
of important and meaningful results (including [7, 14-22])
were obtained, however, to our knowledge, there were not
much results about the complex difference equation in sev-
eral complex variables. Of course, the references involving
the results of systems of complex PDDEs are even less.

This manuscript is aimed at studying the solutions of several
Fermat type systems involving both difference operator and par-
tial differential. We establish four theorems on the forms of solu-
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tions for several systems of Fermat type PDDEs, which are
improvement of the previous theorems given by Liu et al., Gao,
and Xu and Cao [8, 9, 11, 13]. We mainly employ the Nevan-
linna value distribution theory and difference Nevanlinna theory
of several complex variables in this article, and the readers can
refer to [23, 24]. Now, we start to state our main results below.

Theorem 7. Let c¢=(c;,c,) € C%, a, Bi(j=1,2) e C- {0},
and mj, n;(j=1,2) € N,. If the Fermat type PDDE system

(“’ gi> "+ lfizr o =, i
(ﬁl 2_2>”2 +[Bof (2 + Q)™ =1

satisfies one of the conditions
(i) mym,>n;n,
(ii) n;>m;/m;— 1 and m;>2j=12

then system (9) does not exist any pair of finite-order
transcendental entire solution.

Remark 8. Here, we say that (f, g) is a pair of finite-order
transcendental entire solution for

{fnl S (10)

frrgh=1

if f,g are transcendental entire functions satisfying the
above system and p = max {p(f), p(g)} < co.

Remark 9. We list an example to demonstrate that the con-
dition m; > 2 in Theorem 7 cannot be removed. Let

1 1 c ;
fi=f=1+ Zcf - sz + (iz2 +b+ e(zm/cl)zz> (zy—¢1)
2

2
2! 2milcy )z
— | (2, - ¢,) + b+ )2 | |

(11)

where ¢, b€ C and ¢, #0. Thus, (f}, f,) satisfies the system
(9) with ny =n, =2, my=my=1,and a;=f,;=1,j=1,2.

Theorem 10. Let c=(c;, c,) € C? and apBi(j=1,2)eC-
{0}. If the system of Fermat type difference equations

{ [anfy(2)] + [z + ) = 1, (12)

[ﬁzfz(z)]z +[B,f;(z+ c)]2 =1

admits a pair of finite-order transcendental entire solu-
tion (f,,f,), then a2/f5=pla2=1, and (f, f,) have the
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following forms

2)+By 4 o=(L(z

(1) fo(2)) = (

)+Bo) ﬁz Azle (2)+By +A226‘(L(Z)+Bo)
2a, "B, 2a, ’

(13)

where L(z) = a,z, + a,z,, a;,a,, By € C, and A,,, A,,, ¢ satisfy
one of the following cases.

(i) L(c) =kmi, A, =
—i, k is a integer

(i) L(c) = (2k + 1/2)mi, A,,
land A,,=1.

—iand Ay, =ior Ay, =iand A,, =

=—land A,,=-1, 0r A, =

Remark 11. From Theorem 10, we can conclude that f,, f,
have the following relationships

) f,=nf,

(i) f, = me Z>+B ~(LE+B) 124, , where 17 = +f3,/B, and
fi(2) = eHIBr 4 e (M@*B) g

Now, two examples can verify the existence of solutions
for (12).

Example 1. Let ¢, ¢, and L(z) = a,z; + a,z, satisfy L(c) =a,
¢, + ayc, = (2k £ 1/2)mi, and B, € C. Then, the function

eL(z)+BU + e—L(z)—B0 eL<Z>+BO + e—L(z)—B0
O

(14)

satisfies the system (12) with & =2, &, =1, and f§;

:ﬁzzl'

Example 2. Let ¢, ¢, and L(z) = a,z, + a,z, satisfy L(c) =a,
¢, + ayc, = kmi, and B, € C. Then, the function

GL@)+By 4 o-L(2)-By 1 pL(2)+By _ p-L(2)-By
e se) = ()

(15)

satisfies the system (12) with ¢, =1=f, and a, =3 = f3,.

Theorem 12. Let c= (¢, ¢c,) € C? and apPi(j=1,2)eC-
{0}. If the system of Fermat type PDDEs

(cx1 2_2)2 +[afy(z+0) =1, o

¢ b) +Bufy(z+ o) =

admits a pair of finite-order transcendental entire solution

(fi f2), then (a,0,)° = (B,B,)” and (f,, f,) is the form of

+B, + Alze’(L(ZHBO) a,a, gL(Z)+B0 — e(L(Z)+B(J))
yH—— >
2B, @, 2B,
(17)

L(z)
(fof)= (A“e

where L(z) =
Ay Ajp 1 satisfy af =
lowing cases

a,z; +a,z, B, is a constant in C, and a,,c,
~B5la2 =—a2/f: and one of the fol-

(i) L(c) = 2kmi, and n=—-1, A;; =—i, A, =10, or n=1,
Ap=b Ap=-i
(ii) L(c) = (2k + )mi, and n=—-1, A;; =i, A, =—i, or g

—LA,=—i,A,=i

(iii) L(c) = 2k + 1/2)mi, and n=1, A;; =-1, A, =—1, or
n=-LA;=1A;=1

(iv) L(c) = (2k—1/2)mi, and n=1, A;; =1, Aj, =1, or i
=—LA,=-1,A,=-1

Here, two examples can verify the existence of solutions

for (16).

Example 3. Let (a,a,) =
B, € C. That is, L(z) =

(i,m), Ay =
iz, + mz, and

—-i, A, =i,n=-1, and

) _ o (L2)+By)

L2+ -
O

Thus, (f,, f,) satisfies the system (16) with (¢;, ¢,) =
a=2,6=1a,=1,and 3, =2.

_( ) 1n=

— miz, and

(. ),

Example 4. Let (a,, a,

= 1, A12 =
and B, € C. That is, L(z)

_1) ’1: la

LBy 4 (L) LBy _ o~(L(2)+B)
s = (- ).
(19)

Thus, (f,, f,) satisfies the system (16) with (c,, ¢,) = (i,
1/2), y =2, B, =1, a, =i, and 3, = 2i.
Example 5. Let (a,, a,) = -1, and
B, € C. That is, L(z) =

(2i,0), Ay =i, A =—i, =
2izy + iz, and

MOy _ o (L2)B)) L) By _ o-(L(2)4By)
(@) = (I ),
(20)
Thus, (f,, f,) satisfies the system (16) with (¢, ¢,) = (71,—7),

a =16 =2,a,=4,and 3, =2.



Example 6. Let (aj,a,)=(3,1), A;; =1, A, =1, n=1i, and
B, € C. That is, L(z) =3z, + z, and

L(@)*Bo 4 o~(L(2)+By)  pL(2)+By _

R e ]

Thus, (f,f,) satisfies the system (16) with (¢, ¢,) = (7,
-n), & =i, &, =9, §, =34, and 3, =3.

Theorem 13. Let c=(c;,c,) € C* and a,Bi(j=1,2,3)€C
—{0}. Let (f,, f,) be a pair of transcendental entire solutions
of finite order for the system

of\’ 2
& 3z, +afy(z+c) +aafy (2)] = 1,
e 22)
2
(Bio2) + B+ +A(a =1
Then, (f,, f,) is one of the forms
iL(2)+B, _ ,~iL(z)-B, iL(z)+B, _ ,~iL(z)-B,
(fofa)= <% +e2G, (Zz)i% + EWZQGz(Zz))
(23)
or
iL(z)+B, _ ,~iL(z)-B, iL(z)+B, —iL(z)-B,
Uh)= (g HEG e Gz ),
(24)

where L(z) = a,z; + a,z,, a,(#0), a,, By € C, and G,(z,)
, G,(z,) are entire period functions of finite order with period
2¢,, and ay, az o, B, 11, €, ¢ satisfy ') = I and the follow-
ing conditions

(C)) n=0if ayB, = a3pBs and n=log (a,,) - log (as;)
12¢, if a3, # asBs

(C) [Bylay(a; - “3/0‘1)]2 = [ /B(a; - /33//31)]2 =1, or
[Bi/ay(a; - ala,)]’ = (o)1, (a, + ﬁ3/[31)}2 =1

(f1(2). f2(2)) = <eIOg H)/ZCZZZGJ (22) + Dy, e HWCZZ}Gz(Zz) + Dz)x

(25)

where D; = a,§, — B38,/20,f3,, D, = B,8; — a3§,/2a,B,, &, =
+1, and &, =+1;

(o2 Fo(2)) = (bzz1 it Gile) bz + e+ Gz<z2>),
(26)

where G,(z,), G,(z,) are stated as in ((23)) and ((24)),
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and b (#0),y,,y, satisfy

y, = ayb; = B3by — (a8, + a3B3)b ¢,

27
! 2a,3,¢, 27)
b, —ab;+ (a3, + B.a,)b;c
y2=ﬁ22 3bs + (a3, + 5 2)11, (28)
20, 35¢,

o 2

) =08 (B0 =1 09
2

Here, five examples can verify the existence of solutions

for (22).

Example 7. Let B, € C, a, =1, a, =1, and

— i(zy+2y)+By _ ,=i(2,+2,)~By 144 iz, i(z,+2z,)+B
(f1(2). /,(2)) = (e e /4i+e™, e
— i) By 4e"22) .
(30)

Thus, (f,,f,) satisfies system (22) with (¢, ¢,) = (7, 7),
o =2,B=La=-10,=40a;=4,and B,=1.

Example 8. Let By € C, a, =i, a, =1, and
fl (Zl’ Zz) — ei(izl+zz)+Bo _ e—i(izl+zz)—Bo/_2 + elog [—(1+2i)]/27'rzz€izz’

i(iz)+2,)+B, —i(iz,+2z,)~B, H . .
fr(z1,2,) = e ke T + %ebg [-(+20))1272, iz,
(31)

=2
Thus, (f,, f,) satisfies the system (22) with (¢, ¢,) = (1/2m
), =16 =ha,=2,8,=i—-2,a;=—i,and 3, = 2.

Example 9. Let a; €C and (f,(2),f,(2)) = (™= +1,
e%) . Thus, (f,,f,) satisfies the system (22) with (c;, c,)
=(c,1),¢€Cay=2,a,=1,3,=1,and B, =-2.

Example 10. Let (f,, f,) be of the forms

i1 1-i 1+
A e

2 2
(32)

Thus, (f, f,) satisfies the system (22) with (¢;, ¢,) = (¢,
1), ¢, €Ca,=1, a3 =2, B, =2i, f; =1, and «, B, € C.

Example 11. Let

1 V15-4y/3-4 :
fl(zl,zz):521+%22+62m22,
1z z)——lz . 8—\/15+4\/§Z —leZ”"Zz+4\/§+‘/15
2\*1>*2) — 1 2 .
4 32 2 32
(33)
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Thus, (f}, f,) satisfies system (22) with ¢=(¢;,¢,) = (1,
1),a,=1,6=La,=2,3,=2,a;=1,and 5, =4.

2. Proof of Theorem 7
Proof. Let (f,,f,) be a pair of finite-order transcendental
entire functions satisfying (9). Here, let us consider two cases

below. O

Case 1. m;m, > nyn,. Owing to Refs. [23, 24], we have the
following facts that

fi(2) ,
m(r,fj(12+c)> :S(r,fj>,]:1,2 (34)

hold for all 7> 0 outside of a possible exceptional set E;
C [1,+00) of finite logarithmic measure [, dt/t <co. Due
]

to the above fact, we have

r(r.f) = m(ns) <m (;(‘“)) m(rf(z+0) +log2
(r,f]z+c)+5(7’,
T(nf e+ ) +S(nf,).i=

(35)

for all reE = E, U E,. By the Mokhon’ko theorem ([25],
Theorem 3.4) and the Logarithmic Derivative Lemma [26],
it yields from (35) that

m T(r, f,) <m T(r, f(z +¢)) + S(r. f,)
=T(r, [arf,(z+0)]™) +S(r. £,)

) )

(7 52} #8050 #5001
(7 52) #s(rs) #5010

aff ) + mmfl)) +8(rfi) +S(r.f2)

S(r. f1) +S(r. 1)

=mT(r, f,)+
(36)

for all reE. Similarly, we also get

myT(r, f) SmT(r, fy) +S(r /1) + (. f), reE. (37)
Thus, we conclude from (36) and (37) that

(mym, — nlnz)T(r,fj) <S(r, fy) +S(r. f,), reE. ~ (38)

By combining with the condition that m,m, > n,n, and
fi»f, Dbeing transcendental functions, we obtain a
contradiction.

Case 2. n;>m;/m; -1 and m; > 2, j=1,2. Thus, it is easy to

get that m;>n;/n;— 1. In view of the Nevanlinna second

fundamental theorem, the difference logarithmic derivative
lemma in several complex variables [23, 24], we thus obtain
from (9) that

=07 (n gh) N (r 32
¢ S ﬁ) +5(r32)

SN( ((xlafl/azl —1> ( )

(fz( )>+S(’>f1) T(r, fr(z+¢))

+8(r. f1) + (. f2),
(39)

where w, is a roots of w" — 1 = 0. Similarly, we also have

(ns - 1>T( o ) ST(rfi(2+0) 450 ;) + (o).
(0)

In addition, by applying the Mokhon’ko theorem in sev-
eral complex variables ([25], Theorem 3.4) for (9), we can
conclude

mT(r, f,(z+¢)) = T(r, [ayf,(z + 0)]™) + S(r. f,)
ofi\"
= T(r, (oc1 821> - 1) +8(r,.f,) (41)

0
= n1T<r, 6_2) +8(r, f1) +S(1, f)-
Similarly, we also get
(0 fi e+ 0) =T (1 52) #S(0f) +S(0L). (42

Due to m; > n;/n; -1, it follows from (39)-(42) that

J

(= 25 ) Tt 25052 5001,

(43)

(mz - 1) T(rfi(z+)) <8(r 1) +S(r. f3),

2

and this is a contradiction with f,, f, being transcendental
functions.

Therefore, Theorem 7 is proved.



3. The Proof of Theorem 10

Let (f},f,) be a pair of finite-order transcendental entire
functions satisfying (12). We firstly rewrite the system (12)
as

{ [ f; +i0sf, (2 + )] [oy fr — iy fr(z +¢)] = 1, (44)

[Bufo +iBofi (2 + O[Buf, — iBafi(z )] =1

By applying the Hadamard factorization theorem (can
be found in [27, 28]), then there exist two polynomials p,,
P, such that

af) +iayf,(z+c) =€,
i, f,(z+c)=¢eP,
a fi —iayfr(z+¢) (45)
Bifs +iPyfi(z+c) =€,
Bifs—iPyfi(z+c) =€t
Thus, we have from (45) that
eP1 +e P
ofi=—5—
P1 — p~P1
0 fr(z+c)= %>
o ! (46)
el + P2
Pifo= ——
el — P2
Bofilz+o= ",
which implies
X pi(ere)tpy 4 KL b (et py _ p2pi(e%0) = 1, 47
/32’ ﬁz (47)
/3_1.61’2(“5)*1’1 + &iepzwf)fpl — e2Pa(zte) = 1 (48)

Qi a,

By applying [29], Lemma 3.1 (can be found in [30]), for
(47) and (48), we have that

a,iehF) P = B ora e T = B,
49
ﬁliePZ(z+C)_P1 =a,, orﬁlepz (z+e)+p, = 0(21. ( )
Here, four cases will be discussed below.
Case 1.
o ief1 (z+0)=p, = ﬁZ’ (50)
B,ierFP = g,

Thus, we can conclude from (50) that p, (z + ¢) - p,(2) =C
and p,(z+c) —p,(z) = Cy; here and below, C,, C, are con-
stants. So, this leads to p,(z) = L(z) + By, p,(z) =L(z) + B,
where L(z) = a,z; + a,2, and a,, a,, B;, B, are constants. Thus,
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by virtue of (47)-(50)), it yields that

oy ie BB = B
-B,+B
Byiet? PEw,
~L(c)-B,+B, — 3 :
ae 1 = B,

B, LUIBB: = g

(51)

which implies

“% ﬁl

]

In view of (46), let

= 1,60 =1, BB

= & e, (52)
o

eL(2)+B; 4 o~L(2)-B,

204

eL(2)+B, | o=L(2)-B,

fa(z) = 28 (53)

If 1) =1, ie, L(c)=2knmi, ke Z, then e!Bi=q /B,i.
Thus,

fi(z) =

f (Z) B eL(2)+By 4 o=L(2)-B, B eL(2)+B1 pBy=By | o=L(2)-B; pB1-B,
’ 2P, 2P,
‘82 ieL(z)+B1 _ l-e—L(z)—B1
By 20
(54)

If M) = —1, ie, L(c) =
a,/3,i. Thus,

(2k + 1)7i, k € Z, then eP2"Bi = —

eL(2)+B1 pBy=By | o=L(2)-B; ;B =B, ﬁz iel(2) By _ joL(2)-B,

fZ(Z): 2[;] :_ﬁ_l 2061

(55)

If ¢! =i, i, L(c) =
a,/3,. Thus,

(Zk + 1/2)7‘[i, keZ, then eBBi=—

/3 eL(Z)+B1 +e—L(z)—B1

fi@) =3

T O NCY

If M) = i, i, L(c) =
a,/3,. Thus,

(2k = 1/2)mi, k € Z, then eBBi =

lgz eL(Z)+31 + e—L(z)—Bl

L=t =%mn (57)

B 20
Case 2.
o iepl Z+C ,
1 ﬁz (58)
ﬁ1€p17p2<Z+c) = ‘le.
Thus, it yields from (58) that p, (z + ¢) — p,(z) = C, and p,

(2) + p,(z + ¢) = C,. Hence, we obtain that p, (z + 2¢) + p, ()
= C, + C,, and this is a contradiction with p, is not a constant.
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Case 3.
ne A )
ﬁllepz (z+¢)=p) = a,.
Thus, it yields from (59) that p,(z+¢) + p,(z) =C, and

p,(z+¢) —p,(z) = C,. Hence, we obtain that p,(z +2c) +p,
(z)=C, +C,, and this is a contradiction with p, is not a
constant.

Case 4.
o e (FFe) P = i
1 =B, (60)
ﬂllepz (zHe)tp) = a,.
Thus, it yields from (60) that p,(z) —p,(z+¢) =C, and
P1(2) = py(z +¢) = C,. Hence, we obtian that p, (z) = L(z) +

By, p,(z) =-L(z )+B2’ where L(z) =a,z, +a,2,, a;,a,, B,
B, are constants. By virtue of (47),(48), (60), it yields that

a e c)+B,+B, _ ﬁ l,

~L(c)+B,+B, —
ﬁ e =a,i,
! : (61)

(xeL ~B,-B, _ /31,

which implies
2 2 ;
o _ B —1, M0 = ], BitB = &e—L(c) =%l e (62)
ﬂg 5 ai B

In view of (46), let

eL(z)JrBl + e—L(z)—B

2a,

e—L(z)+B2 + €L(Z) -B,

fr(z) = 28 (63)

=2kmi, k € Z, then %% = B, /)i =

fi(2) =

If i =1, ie, L(c)
a,/f,i. Thus,

LB BBy y o L) BigBitBy B _jplle)+Bi y jgmL(e)B,

fi(2)= 28, = ﬁ_j 2,

(64)

If 19 =1, ie, L(c) =
—B,/ayi=—a,/B,i. Thus,

(2k+ 1)7‘[i, k € Z, then eBitB —

ﬁz ze Z)+B; _ le_L(Z)_Bl

/31 2a, (65)

f(2) =

Ifeld =iie, L(c) =
=—a,/B,. Thus,

(2k + 1/2)mti, k € Z, then €15 = B,/

/32 eL(z)+Bl + e—L(z)—B1
By 20

f2)= - ﬁ—f (). (66)

If !9 = —i ie., L(c) =
B,la; = a,/f3,. Thus,

(2k = 1/2)7i, k € Z, then 81752 = —

ﬁz (2)+B1 4 p=L(2)-B,

fo) =

Py @)

Therefore, this completes the proof of Theorem 10.
4. The Proof of Theorem 12

Proof. Let (f},f,) be a pair of finite-order transcendental
entire functions satisfying (16). Firstly, (16) may be repre-
sented as the following form:

o 2o s [ 2

[ f: of

—ioyf,(z + c)] =1,

cipafie+0)| [ B 02 - iBif 2+ 0] -1
(68)
By the Hadamard factorization theorem (can be found in
[27, 28]), there are two nonconstant polynomials p,, p, satis-

fying

8 +io,f,(z+c)=el,
o % —ioyfy(z+c)=el1,
0z,
f (69)
B +iﬁzf1(z+c) = e,
BII2 ~iBofi(e ) =™
In view of (69), it yields that
of, e +e™h
061 = = — >
0z, 2
P1 — e P1
afy(z+e)=
i
B of, er+eh (70)
la_Zl - 2 4
epz — e pZ
Bofier= "

which implies

a4 aPz el (z+c)=p, _ (z+0) = 1
B,ioz,

@y apz el z+c)+p2

ﬁzzazl (71)

ﬁl plep2 z+c)—p,

ﬁl pl ep2 (z+c) +p1
a,i 0z,

2p, (z+c) =1. 72
a,i 0z, ¢ (72)

Obviously, dp,/0z,=0. Otherwise, e?2(**) = 1. This leads



to a contradiction with p, is not a constant. Similarly, dp,/
0z,=0. Thus, due to [29], Lemma 3.1 (can be found in
[30]), (71), and (72), we obtain that

& P2 ey, = 1o 202 i (eropae) =

=lor—
ioz ioz
B,ioz, 210z, 73)
ﬁ% ep2(2+c)+p1 = 10rﬁ_1.%ep2(z+c)ipl =1.
o,i 0z, a,i 0z,
O
Hence, four cases will be discussed below.
Case 1.
3Py gy
B,ioz,
(74)
B opy perern = g
a,i 0z,

Thus, it follows from (74) that p,(z +¢) + p, = C, and p,
(z+¢)+p, =C,. These lead to p,(z + 2¢) - p, =C, — C, and
p,(z+¢)—p,=C, - C,. Hence, we obtain that p,(z) = L(z)

e*L(z) +B,+L(c) _ f(,L(z)fBz ~L(c)
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+ By, p,(z) =—-L(z) + B,, where L(z) = a,z, + a,2,, a,(#0),
a,, B,, B, are constants. By combining with (71)-(74), we have

aay .
11 leL(c)+Bl+Bz =1,

2

51“.1 e HOB+By — 1

a,i
: (75)
o a, i LOBi-By = 1

B,

a _B,—
B 1 LO-Bi-By = 1
o,

and this leads to

o 4L(c) — . GBitBs — B, e L© %Gl 1

-—=,€
b
B

2—_
a;=

Q|R

—D

Subcase 1. If e = 1, then L(c) = 2krni and ef1*%2 = B, /o, a, i
= a,i/B,a,. Due to (70), we have that

LBy _ L(@)+,

= - =i
A 2B, 2B,
_ eL(z)JrBlfL(c) _ e*L(z)fBlJrL(c) _ eL(z)JrBl _ efL(z)fB1 _ eL(z)fBZeBlJrB2 _ efL(z)JrI%efBlfB2 _ _ﬁzi/alaleL(z)fBz _ ﬁzi/_oclalefL(z)JrBZ _ meL(z)fBz _ e*L(Z)‘FBZ
2 20, 20,0 20,0 20,0 a, 2B,
(77)
Subcase 2. If €19 = -1, then L(c) = (2k + 1)mi, k€ Z and
ebB = —B Jaja,i = —a,i/f3,a,. Due to (70), we have that
f e—L(z)+Bz+L(c) _ eL(z)—BZ—L(c) .eL(z)—BZ _ e—L(z)JrB2
= . =—i ,
' 2B, 23, (78)
HEIBILE) _ o L) BiHL(e)  _oL(@1Bi 4 L@ By _ol(@)BagBitBy 4 o L) tBag BBy g g el2)-By _ g LI2)4Es
fa= 20, B 20, B 20, o 28,
Subcase 3. If /) =i, then L(c) = (2k + 1/2)7i, k € Z, and
ebtB = —B jaya, = —a,/f,a,. Due to (70), we have that
f e—L(z)+BZ+L(c) _ eL(z)—BZ—L(c) eL(z)—Bz + e—L(z)JrB2
1 = - = >
25,1 2
A A )

eL(z)JrBl ~-L(c) _ e—L(z)—B1 +L(c)

fo= - -

_el(@+Bi _ poL(@)-B;  _pL(z)-B, gB\+B, _ ,~L(2)+B, ;~B,-B,

_ a,a, eL(z)’Bz — e*L(Z)JrBz

20,1 2a,

2a, %) 2B,
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Subcase 4. If €9 = —i, then L(c) = (2k — 1/2)mi, k € Z, and
e? BB o a, = a,/B,a,. Due to (70), we have that
f e—L(z)+B2+L(c) _ eL(z)—BZ—L(c) eL(Z)‘Bz + e—L(z)+B2
- 2B . o)
eL(z)JrB]—L(c) _ e—L(z)—B]+L(c) eL(z)JrBl + e—L(z)—B] eL(z)—Bz eB]+B2 + e—L(z)+B2 e—Bl—B2 aa, eL(z)—BZ _ e—L(z)+B2
fa= 20, B 2a, B 2a, T q 28,
Case 2. (72), and (83), we have
%1 L(e)+B,-B, —
ﬁ%epl(erc)erz =1 ﬁ_ziale =1,
B,i oz, ’ (81) 5
P1 o L(0)-B+B, _
ﬁ%epz(ﬁc)iﬂl =1 (Xziale trel
0,10z ' (84)
2102 o
ﬁ_l‘ale—L(c)—BﬁBz =1,
N
Thus, it yields from (81) that p,(z+¢)+p,=C, and B
— — LeS —L(c)+B,-B, 1
p,(z+¢)—p, =C,. We have that p,(z+2¢c)+p,=C, +C,, i
and this leads to a contradiction with p, being not g
constant.
which implies
Case 3. a2 = _é _ _“j, 4L(c) — 1 pBi-B, B, -L(c) _ By, O
o 2 o a, ayi
0 9P2 p (v py = (85)
B,ioz, ) (82)
&%epz(zﬂ)ﬂh . Subcase 4.1. If €9 =1, then L(c)=2kmi, keZ, and
i 0z, = ebB = Bilaja, = B,a,/a,i. By virtue of (70), it follows that

Since p, (2), p,(z) are polynomials, then from (82), it fol-
lows that p,(z+¢)—p,(z)=C, and p,(z+c)+p,(z) =C,.
This means p, (z + 2¢) + p, (z) = C, + C,, and this is a contra-
diction because p, (z) is not a constant.

Case 4.

% 0P py(er)p, =

B,ioz, v

By o, e (#t)=p = 1
a,i 0z,

(83)

Then, from (83), it yields that p,(z+c)-p,=C, and
py(z+¢)—p, =C,, and this leads to p,(z+2c)-p,=C,
+C, and p,(z+2c)-p,=C,+C,. Thus, it follows that
p1(z2) =L(z) + By, p,(2) = L(z) + B,, where L(z)=a,z, +a,
z,, a,(#0),a,, B, B, are constants in C. In view of (71),

eL(z)+B2—L(c) _ e—L(z)—BZ+L(c) eL(Z>+Bz _ e—L(z)—B2

fl = Zﬁzl =i 2‘82 ?

eL(z)+B1—L(c) _ e—L(z)—BlJrL(c) eL(z)JrBl _ e—L(z)—B1

f= =

20,1 20,1
eL(2)+B2 pBi=B; _ ,=L(2)-B, =B, +B,

20,1
L(z)+B, _ /3214/(xla1‘2—L(z)—B2
20,1
aa, eL(@)+By _ o~L(2)-B,

- %) 2B,

_ Bilaae

Subcase 4.2. If M) =1, then L(c) = (2k + 1)7i, k € Z,
and e#175: = B i/a a, = —B,a,/a,i. By virtue of (70), it fol-
lows that

eL(z)+B2—L(c) _ e—L(z)—BZ+L(c) eL(z)+B2 _ e—L(z)—B2

he 25 T
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f B eL(z)JrBl—L(c) _e—L(z)—Bl+L(5) ~ _eL(z)JrB1 + e—L(z)—B
2 20, - 20,
- oL2)+B, BB, | e'—L(z)—BZ e Bi+B; (&)
2051
o a eL(Z)+Bz — e’L(z)’Bz
o 23, .

Subcase 4.3. If €L
P = Byloya, =

=i, then L(c)=(2k+1/2)mi and
a,/f3,a,. By virtue of (70), we have that

eL(z)JrBZ—L(c) _ e—L(z)—B2+L(c) eL(z)JrBZ + e—L(z)—B2

he 2Py BT

eL(z)+Bl—L(c) _ e—L(z)—Bl+L(c)

eL(z)+B1 + e—L(z)—B

fa= 2a,i T 2a,
oL(2)4By pB1 =By | o-L(2)-B, p=B,+B, _wa oL(2)+By _ p-L(2)-B,
20y & 2,
(88)

Subcase 4.4. If eF
BB =—B laja, =

() =i, then L(c)=(2k—1/2)mi and
—a,/B,a,. By virtue of (70), we have that

eL(2)+B,=L(c) _ o=L(2)=B,+L(c) eL(2)=B, 4 o=L(2)+B,
he 25 R
eL(z)+B1—L(c) _ e—L(z)—Bl+L(c) eL(z)+Bl + e—L(z)—B1

f= - =

20,1 2a,
eL@BrgBioBy o L&) Bog-BitBy o g oL(@)+By _ o-L(2)-B

2a, * 2, '
(89)

Hence, the proof of Theorem 12 is completed.
5. The Proof of Theorem 13

Proof. Assume that (f}, f,) is a pair of finite-order transcen-
dental entire functions satisfying (22). Thus, let us discuss
two following cases.

(i) Suppose that 0f,/0z, is transcendental, then a,f,(z
+¢) +a,f; is transcendental. Noting that a; ﬁj are

nonzero constants, we next prove that 3,f,(z +¢) +
B.f, and f,0f,/0z, are transcendental

Suppose that «,0f,(z +¢)/0z, + a;0f,/0z, is not tran-
scendental. Since 0f,/0z, is transcendental, then 0f, (z + ¢)/
0z, and 0f,(z)/0z, are transcendental. By observing the sec-
ond equation of (22), we can conclude that ,f;(z +¢) + 3,
f, is transcendental.

Suppose that «,0f,(z +¢)/0z, + a;0f,/0z; is transcen-
dental. If Of,(z +¢)/0z, is transcendental, similar to the
above argument, B,f (z+c)+ B,f, and 0f,/0z, are tran-
scendental. If 0f,(z + ¢)/0z; is not transcendental, it thus
leads to that 0f,/0z, is not transcendental. From (22), we
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thus get that f3,f,(z +¢) + ,f, is not transcendental. Thus,
it yields that f3,0f,(z +¢)/0z, + 3,0f,/0z, is not transcen-
dental. This is a contradiction with 0f,(z + ¢)/0z, is tran-
scendental and 0f,/0z, is not transcendental.

Hence, if 0f,/0z, is transcendental, then a,f,(z+¢c) +
asf>, Bofi(z+¢) + Bsf,, and 0f,/0z; are transcendental.
Hence, system (22) can be represented as

{al i +ilayfr(z+c) + rxSfl}} {0‘1 2—2

{ o, of

~ifofy(z )+ aam} -1,

B Sz e+ B B 52 ~ B+ A - 1.

(90)
Thus, by the Hadamard factorization theorem (can be

found in [27, 28]), there are two nonconstant polynomials
D> q such that

o % —ilayfy(z+¢) +azfy] = €77,

af1 (o1)
By 8—22 +i[Bf,(z +¢) + Bof,] = €4,
ﬁ1 afz —i[Bfi(z+¢)+ fafy] =€

In view of (91), it yields that

of, ef+e
o = = ,
0z, 2
eP — e
aafy(z+ ) +anf, = S
o (92)
B of, el+el
19z, 2
el — e
Pofi(z+ )+ Bafy = —5—>

which implies

B (ai _ %) pipraz+o) | P By (ap ‘x3)ei(q(z+c)—p) _ edialze) = 1
1

a, \0z; « 0z, o

(93)
ﬁ (ﬁ ﬁ3> (q+p(z+c)) + ﬂ (ﬁ ﬁ3> 1 (z+¢)—-q) _ eZip(z+c) =1.
B, \oz; B B, \oz; B

(94)

Obviously, dp/0z, # as/a;. Otherwise, we have that —
¢¥(#) =1, and this leads to a contradiction since q is
not a constant. Similarly, 0q/0z, # 3,/3,. Thus, due to

[29], Lemma 3.1 (can be found in [30]), and in view of
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(93) and (94), we can deduce that

& <a_p ) 1[q(z+c -p] = =1,0 ﬁ (ap %) ei[p+q(z+c)] =1
a, \0z;, @& oc2 0z, « ’

ﬁ(aq ﬁ3> [p(z+c)- _1 <aq ﬁ3) ijg+p(z+c)] _1.
B, \oz; B ﬁz oz,

(95)
O
Now, let us consider the following four cases.
Case 1.
B (a_P _ ﬁ) a8l 2 .
o, \0z; o
(96)

o (ﬂ .33) gl = |
B, \0z, B,
Then, (96) can lead to that g(z+¢) —p=C, and p(z+¢

) — q = C,. Thus, we obtain that p(z +2¢) —-p=C, + C; and
q(z+2c¢) —q=C, + C,. Hence, we can conclude that p(z)
=L(z) + B,,q(z) = L(z) + B,, where L(z) =a,z, + a,z,, 4,
a,, B, B, are constants. By combining with (93)-(96), we
have

Pif, _ %), iwers-5)

a, \ '« ’

) (al _ &) HL+B-B,) — |

B\"" B o)
P (al _ “3> i@ BBy _ |

R) o

! ﬁs) ~i(L(c)+B,~B,) —

—|a;— 5 |e =1

ﬁZ < ' ﬁl

This means that
B i s e
(98)
By combining with (92), f,, f, have the following forms:

ei(L(2)+By) _ o=i(L(2)-By)

2ia,q,

i(L(2)+By) _ o=i(L(2)+B;)

fl(z): Zialﬁl

+91(22): f,(2) =

+y(2),
(99)
where ¢, (z,), 9,(2,) are entire functions of finite order in z,.

Substituting the above expressions into (92), we can deduce
that

{“2%(22"'52) +a39,(2,) =0, (100)

By (25 + ¢3) + B39, (2,) = 0.

11
This leads to
a3 a3
2, +26)= =20 (2,),0,(z, +26,) = =320 (z,).
¢1(2, 2) “2ﬁ2¢1( 1) #,(22 2) “2ﬁ2¢2( 2)
(101)
Due to (101), we have
$,(25) = €72G(2,), 9,(2,) = €12 G, (2,), (102)

where G,(z,), G,(z,) are entire period functions of finite
order with period 2¢,, and in (102), =0, if a,3, = a3f3;,
and 7 =1log (a,,) —log (a33;)/2¢c,, if a, 3, # a3 3;. Further,
in view of (100) and (102), we have G,(z,) = —a;/a,G,(z,)
s if o, B, # a3 35, we have G,(z,) = —a3/a, G, (2,).

If ¢19 = 1, it follows from (97) that e/Bi=52) = +1. Thus,
it yields that
l(L(2)+B,) _ o=i(L(2)+B,)
fr(2) = 2ia, B, +¢,(2,)
o el (L(2)+B1) pi(B,=By) _ o=i(L(2)+B,) pi(B,=B;) N (Z )
- ﬁ_z 2ia, o Pa\=
o, ei(L(2)+By) _ oi(L(2)-By)
=+ + .
) Ziaya, $,(23)
(103)
If L9 =—1, it follows from (97) that *®Bi5) =1,

Thus, similar to the above argument, we obtain that

o, LB _ (i(Le)-B) .
f@=rp I ) (o)
If L9 =i, it follows from (97) that e*(Bi-B) =_1,

Thus, we obtain that

| LEBY) 4 oill(a)B)

o
+ -
B, 2a,0

fi(2) = (105)

+¢,(2,).

If ¢ =—j it follows from (97) that e*Bi-B) =_1,
Thus, we obtain that

1 ei(L(2)+By) 4 p=i(L(2)-B,)

o
fz(z)=iﬁ— 2aa, +¢,(2,)- (106)
2
Case 2
B (9P _ %) aererpen 2,
a, \0z; o
(107)
=1.

ﬂ <ﬁ ﬁS) z)+p(z+c))
Jz; B
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We thus get from (107) that p(z+c¢) +q(z) =C, and
q(z+¢c)—p=C,. This means q(z+2c)+q(z)=C,+C,,
and this yields a contradiction with g being not a constant.

Case 3.

& o elrraal = ¢
o, \0z, o
ﬁ(aq ﬁS) 1 (z+¢) q]_l
B, \9z, B,
We thus get from (108) that g(z+c¢) +p(z) =C, and
p(z+¢)—q(z) =C,. So, we conclude that p(z+2c) + p(z)

=C, + C,, and this leads to a contradiction with p being
not a constant.

(108)

Case 4.

By (a_P . %) Gzl =

o, \0z; «
2 1 1 (109)
o (aq _ /33) Glep(eol = 1
B, \%z, B
Then, it follows from (109) that p+ g(z+¢)=C, and ¢q

+p(z+c)=C,. These yield that p(z+2c)-p=C, +C,
and q(z +2c) — q=C, + C,, which leads to p=L(z) + B, q
=-L(z) + B,, where L(z)=a,z,+a,z,, a,,a,,B,B, are
constants. In view of (93), (94), and (109), we have

Pr(a - %o st o)

@ &

% (—al _ &) GLEBE) _ |

AN o
Pra - %) eitersin) 2y,

%) &

) <_a1 _ ﬁa) (LB

ﬁz ﬁl

In view of (110), it follows that
B % 2_ % B; 2_ iL(c) _ 1 ,i(B,+By) _ B X3\ i)
A O e G 3 R A (s D
(111)

By combining with (92), f,, f, are of the following forms

QLB _ gi(L(2)-B,)
file) = +u(22)1o(2)
ia o (112)
Gi(-L(E+By) _ 4i(L(2)By)
- 2ia1ﬁ1 +(P2(ZZ)’

where ¢, (z,), ¢,(z,) are finite-order entire functions in z,.
By using the same argument as in Case 1, we have (102).
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If 109 = 1, it follows from (110) that ¢2(B1*B2) = 1. Thus,
we can deduce that

¢l (-L(2)+By) _ 4ilL(2)-B,)

f(2)= 2ia B, +¢,(2)
0(1 —ei(L(Z)+Bl>e_i<Bl+B2) + e_i(L(Z)+Bl)ei(Bl+Bz)
= /3_ Zia,a, +¢,(2,)
o e i(L(2)+B,) _ e_i(L(z)_Bl)
4L .
_ﬁ 21~a1(x1 +(P2(ZZ)
(113)
If ¢L() = _1, it follows from (110) that ¢2(Bi1+B2) = 1. We
have that
o e( (z)+By) _ e*i(L(z>’Bl)
fz(z):—ﬁ 2ia o +¢,(25). (114)
2

If ¢(9) = i, it follows from (110) that ¢2(Bi1*B:) = —1_ Thus,
we obtain that

o ALEBY) 4 pilL(@)B,)
() =+ =

B, 2a,0

+¢,(2)- (115)

If ¢L) =—j it follows from (110) that (Bi+B) = _1,
Thus, we obtain that

o, SLEB) 1 i) By)

B /32 2a, 0

f(z)==% +¢,(2,). (116)

Therefore, from (102)-(106) and (113)-(116), we can
prove the conclusions (23) and (24) of Theorem 13.
(i)Assume that 0f,/0z, =0. Thus, from (22), it follows

that
f1(2) =91(22), waofy (24 ¢) + @ f (2) =&, & = +1. (117)
This leads to df,/0z, = 0. We thus get from (22) that
£(2)=¢:(22), Bof i (24 €) + Bafy(2) =8, 6, = +1. (118)
By combining with (117) and (118), it yields
b, (2, + ) +asd,(2,) =&,
{ﬁz E . ; . /sflii Z )

which implies that

“3_/;3¢1(Z) %8, - /3351

$1(22+2¢,) = s 9(25 +26,)

“2/32
_« B; B.&1 — 38,
- “zﬁz $alz2) * “2[323

(120)
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If o, 3, = a3 35, then from (120), it follows that

$1(2,+2¢,) =¢,(2,) + “25%15351, $,(2, +26,) = 9,(2,) + ﬁz‘fllxzﬁ‘:afz i
(121)

which implies that

$1(22) = Gi(22) + 1120, $2(22) = Ga(22) + 71220, (122)
where G, (z,), G,(z,) are entire period functions of finite

order with period 2¢,, and

_ 08 — Bié, _ B,&1 —asé, .

- Y, = 123
' 26,03, ’ 26,03, (123)
If &, B, # a3 35, then from (120), it follows that
$,(z,) = €8 (P78 (WRIRRG, (7)) + Dy, ¢, (2,) (124)

— log (a,3,)-log (a3 8;)/2¢,2, G2 (Zz) + DZ’

where Dy = 0,8, — 381/, 3, — a3 5 and D, = B,&; —as
&, la, 3, — a; 3;. Substituting (124) into (119), it follows that
0f, =—a3fs Gi(zy) = B3/B,iGy(2, — ;) and Gy(z,) = ay/
o,iG,(z, — ¢,). Thus, we have

$,(z,) = €8 V292G, (z,) + b Byt s $,(22)

2
“2/32 (125)
— Jog (-1)26z ﬁzfl 238,
=e 2(22) + :
20‘2/32
(ii) Suppose that 0f;(zy,2,)/0z; =b;(#0). Then, it

yields in view of (22) that

=b,, b} + (a,b))* =1,
(126)

f1(2) =byz +y,(2,) o f, (2 + ) + a5y (2)

where v, (z,) is a transcendental entire function of finite
order in z,. Equation (126) leads to 0f,/0z; = —a3/a,b;.
Thus, due to the second equation in (22), we have

2
£6) == 2 h +valen) Bfi e+ 0+ B =bu i+ (P20, ) =1,
(127)
where v, (z,) is a transcendental entire function of finite
order in z,. Combining with (126) and (127), we can deduce
that a, 3, = a3 3, and
b2 + o3¢y,

(128)
= Babicys

{ LY, (2, +6) + o3y, (2,) =
By (2, +6) + B3y, (2,) =

13
This means that

V,(2,) = G1(2,) + V120 ¥, (22) = Gy(2,) + 1,25, (129)

where G, (z,), G,(z,) are entire period functions of finite
order with period 2c, satisfying

b, + azb b, + a,b
Gy(z+6) + —Gl(zz) ﬁzflgjs Gz +6)+ %Gz(zz) &Tﬁjs
_ by = Biby - 2(“2[;2)17151 _ Boby —a3bsy + 203 8,0 151
! 20,56, > 20,56,
(130)

Hence, from (126)-(129), it is easy to get the cases ((26))
and ((27)) of Theorem 13.
Therefore, the proof of Theorem 13 is completed.
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