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In this article, we investigate the fractional-order Fokker-Planck equations with the help of the Yang transform decomposition
method (YTDM). The YTDM combines Yang transform, Adomian decomposition method, and Adomian polynomials into
one method. In the Caputo sense, fractional derivatives of space and time are studied. The convergent series form solution
demonstrates the method’s efficiency in resolving several types of fractional differential equations. Compared to other methods
of finding approximate and exact solutions for nonlinear partial differential equations, this technique is more efficient and
time-consuming.

1. Introduction

Fractional calculus, which can be thought of as a general-
ization of integer-order differentiation and integration, has
received much attention in recent decades. Many defini-
tions have been proposed for fractional derivatives, includ-
ing Riesz, Grunwald-Letnikov, Caputo, Riemann-Liouville,
and conformable fractional definitions [1–4]. Noninteger
order integral and differential operators contain all histor-
ical conditions of the function in a weighted form known
as the memory effect. In any case, fractional differential
equations (FDEs), specifically fractional partial differential
equations, are used to analyze a broad range of physical
systems (FPDEs). FPDEs have gained attention due to
their widespread application in electrical circuits, electro-
chemistry, quantum physics, and theoretical biology
[5–8]. Furthermore, the nonlocal property of FPDEs is
the most important feature for using them in such and
other applications, whereas the differential operator having
order integer is local. In this light, the next state of a frac-
tional system is determined by both its current and histor-
ical states. This ensures that the mathematical model
components in physical processes and dynamic systems

are highly consistent. However, it is not easy to solve those
FDEs, particularly for numerical calculations [9–11]. To
handle partial differential equations (PDEs), having order
fraction is of physical importance, and effective, trustwor-
thy, and appropriate numerical methods are required
[12–14]. Several major strategies have been utilized in this
regard, including the fractional operational matrix method
(FOMM) [15], Elzaki transform decomposition method
(ETDM) [16, 17], homotopy analysis method (HAM)
[18], homotopy perturbation method (HPM) [19, 20], iter-
ative Laplace transform method [21], and variational iter-
ation method (FVIM) [22].

The Fokker-Planck equation is a well-known statistical
physics equation that Fokker and Planck first proposed to
describe a particle’s Brownian motion and the change in
probability of a random function in time and space [23].
An uncontrolled, second-order truncation of the Kramers-
Moyal expansion of the chemical master equation can also
be used to obtain the chemical Fokker-Planck equation. This
equation proves to be more accurate than the chemical mas-
ter equation’s linear-noise approximation. The Fokker-
Planck equation appears in many natural science phenom-
ena, such as probability flux, polymer dynamics, electron
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relaxation, solid-state systems, quantum optics, and other
practical and theoretical models [24].

We have studied Fokker-Planck equations of fractional-
order having general form as

φ
γ
I μ,Ið Þ = L φμ μ,Ið Þ + φμμ μ,Ið Þ

� �
+Nφμμ μ,Ið Þ, μ,I > 0, γ ∈ 0, 1ð �,

ð1Þ

with the initial condition

φ μ, 0ð Þ = ζ μð Þ: ð2Þ

In biological molecules, chemical physics, energy con-
sumption, and engineering, the fractional Fokker-Planck
equation (F-FPE) has been successfully applied. Indeed, frac-
tional diffusion, a special kind of F-FPE, has also been used
in numerous scenarios such as frequency-dependent damp-
ing behaviour of materials, viscoelasticity, and diffusion pro-
cesses [17]. Unfortunately, finding an accurate solution for
FDEs, in general, is difficult. To approximate these solutions,
various numerical and analytical techniques are used. Some
of the advanced numerical and approximate methods used
for F-FPEs include the Laplace transform method [18], the
multistep reduced differential transform method [25], the
predictor-corrector approach [26], the Adomian decomposi-
tion method (ADM) [27], and the variational iteration
method (VIM) [28].

In this research, we used the Yang transform decompo-
sition method (YTDM) to solve time-fractional F-FPEs.
The Yang transform was proposed by Xiao-Jun Yang and
can be utilized to solve a variety of differential equations
with constant coefficients. The Adomian decomposition
method [29] is a well-known methodology to solve linear
and nonlinear differential and partial differential equations
and integrodifferential and FDEs that yield accurate solu-
tions in a concurrent series form. The results of the sug-
gested strategy are convincing and offering specific
solutions to the problems at work. The fractional problem
results obtained through the given approach are also used
to analyze the problems fractionally. It has been confirmed
that the proposed technique can be implemented to solve
various fractional PDEs and related systems.

2. Preliminaries

We covered several fundamental definitions of fractional
calculus as well as Yang transform theory features in this
part.

Definition 1. The fractional Caputo derivative is defined as

Dγ
φφ μ,Ið Þ = 1

Γ k − γð Þ
ðI
0

I − ϑð Þk−γ−1φ kð Þ μ, ϑð Þdϑ, k − 1

< γ ≤ k, k ∈N:

ð3Þ

Definition 2. Xiao-Jun Yang introduced the Yang Laplace

transform in 2018. φðIÞ or MðuÞ determines the Yang
transform for a function φðIÞ and is provided as

Y φ Ið Þf g =M uð Þ =
ð∞
0
e−I/uφ Ið ÞdI,I > 0, u ∈ −I1,I2ð Þ:

ð4Þ

The inverse Yang transform is given as

Y−1 M uð Þf g = φ Ið Þ: ð5Þ

Definition 3. For nth derivatives, the Yang transform is given
as

Y φn Ið Þf g = M uð Þ
un

− 〠
n−1

k=0

φk 0ð Þ
un−k−1

,∀n = 1, 2, 3,⋯: ð6Þ

Definition 4. For derivative having fractional order, the Yang
transform is

Y φγ Ið Þf g = M uð Þ
uγ

− 〠
n−1

k=0

φk 0ð Þ
uγ− k+1ð Þ , 0 < γ ≤ n: ð7Þ

3. Idea of YTDM

The general methodology for solving fractional partial differ-
ential equations is given as

Dγ
Iφ μ,Ið Þ =P 1 μ,Ið Þ +Q1 μ,Ið Þ, 0 < γ ≤ 1, ð8Þ

with initial sources

φ μ, 0ð Þ = φ μð Þ,
∂
∂I

φ μ, 0ð Þ = ζ μð Þ,
ð9Þ

where Caputo fractional derivative having order γ is repre-
sented by Dγ

I = ∂γ/∂Iγ; P 1 and Q1 are linear and nonlinear
functions, respectively.

On employing Yang transform, we get

Y Dγ
Iφ μ,Ið Þ� �

= Y P 1 μ,Ið Þ +Q1 μ,Ið Þ½ �: ð10Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þ − u2φ′ 0ð Þ
n o

= Y P 1 μ,Ið Þ +Q1 μ,Ið Þ½ �:
ð11Þ

From above equation

M φð Þ = uφ 0ð Þ + u2φ′ 0ð Þ + uγY P 1 μ,Ið Þ +Q1 μ,Ið Þ½ �:
ð12Þ
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On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + φ′ 0ð Þ + Y−1 uγ½ Y P 1 μ,Ið Þ +Q1 μ,Ið Þ½ �:
ð13Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ: ð14Þ

Now, the nonlinear terms by means of Adomian polyno-
mials are decomposed as

Q1 μ,Ið Þ = 〠
∞

m=0
Am: ð15Þ

The Adomian polynomials all forms of nonlinearity are
given as

Am = 1
m!

∂m

∂ℓm
Q1 〠

∞

k=0
ℓkμk, 〠

∞

k=0
ℓkIk

 !( )" #
ℓ=0

: ð16Þ

By substituting Equation (35) and Equation (38) into
(34), we have

〠
∞

m=0
φm μ,Ið Þ = φ 0ð Þ + φ′ 0ð Þ + Y−1uγ

� Y P 1 〠
∞

m=0
μm, 〠

∞

m=0
Im

 !
+ 〠

∞

m=0
Am

( )" #
:

ð17Þ

The below terms are derived.

φ0 μ,Ið Þ = φ 0ð Þ +Iφ′ 0ð Þ,
φ1 μ,Ið Þ = Y−1 uγY+ P 1 μ0,I0ð Þ +A0f g½ �,

ð18Þ

thus for m ≥ 1, the general term is given as

φm+1 μ,Ið Þ = Y−1 uγY+ P 1 μm,Imð Þ +Amf g½ �: ð19Þ

Theorem 5. Here, we will study the convergence analysis as
same manner in [30] of the YTDM applied to the fractional
order partial differential equation. Let us consider the Hilbert
space H which may define by H = L2ððα, βÞX½0, T�Þ the set of
applications:

u : α, βð ÞX 0, T½ �⟶with
ð

α,βð ÞX 0,T½ �
u2 x, sð Þdsdθ < +∞:

ð20Þ

Now, we consider the fractional partial differential equa-

tion in the above assumptions and let us denote

Y uð Þ = ∂γu
∂Iγ , ð21Þ

then the fractional partial differential equation becomes in an
operator form

Y uð Þ = −φ
∂ν x,Ið Þ

∂x
−w

∂3ν x,Ið Þ
∂x3

: ð22Þ

The YTDM is convergence if the following two hypotheses
are satisfied:

H1: ðYðuÞ − YðvÞ, u − vÞ ≥ kku − vk2 ; k > 0, ∀u, vεH
H2: whatever may be M > 0, there exist a constant CðM

Þ > 0 such that for u, vεH with kuk ≤M and kvk ≤M we have
ðYðuÞ − YðvÞ, u − vÞ ≤ CðMÞku − vkkwk for every wεH

4. Applications

Here, in this part, we implemented YTDM for solving vari-
ous time-fractional Fokker-Planck equation.

Example 1. Consider F-FPEs of the form

∂γ

∂Iγ φ μ,Ið Þð Þ + ∂
∂μ

μ

6 φ μ,Ið Þ
� �

−
∂2

∂μ2
μ2

12φ μ,Ið Þ
� �

= 0, μ,I > 0, γ ∈ 0, 1ð �,
ð23Þ

with the initial condition

φ μ, 0ð Þ = μ2: ð24Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y −

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �" #

:

ð25Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y
"
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �#

,

M uð Þ = uφ 0ð Þ + uγY
"
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �#

:

ð26Þ
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On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1
"
uγ
(
Y
 
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �!)#

,

φ μ,Ið Þ = μ2 + Y−1
"
uγ
(
Y
 
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �!)#

:

ð27Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ,

〠
∞

m=0
φm μ,Ið Þ = μ2 + Y−1

"
uγY

"
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �##

:

ð28Þ

By comparing Equation (28) both sides, we get

φ0 μ,Ið Þ = μ2: ð29Þ

On m = 0,

φ1 μ,Ið Þ = μ2
Iγ

2Γ γ + 1ð Þ : ð30Þ

On m = 1,

φ2 μ,Ið Þ = μ2
I2γ

8Γ 2γ + 1ð Þ : ð31Þ

On m = 2,

φ3 μ,Ið Þ = μ2
I3γ

24Γ 3γ + 1ð Þ : ð32Þ

The YTDM solution remaining components φm for ðm
≥ 3Þ are calculated easily. Thus, we define the series form

solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ +⋯,

φ μ,Ið Þ = μ2 + μ2
Iγ

2Γ γ + 1ð Þ + μ2
I2γ

8Γ 2γ + 1ð Þ

+ μ2
I3γ

24Γ 3γ + 1ð Þ+⋯:

ð33Þ

The YTDM solution at γ = 1 is

φ μ,Ið Þ = μ2 expI/2: ð34Þ

In Figure 1, the first graph shows the exact and second
the analytical solution graph, which shows the close contact
with each other. In Figure 1, the third and fourth graphs are
the three- and two-dimensional graphs concerning different
fractional order of problem 1. The figures show that the sug-
gested technique agrees with the actual solution for the given
problem. As fractional order approaches integer order,
fractional-order solution surfaces converge to the integer-
order surface, as depicted by graphs. It means that we may
physically model any surface based on the physical events
observed in nature.

Example 2. Consider F-FPEs of the form

∂
∂Iγ φ μ,Ið Þð Þ + ∂

∂μ
μφ μ,Ið Þð Þ − ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �

= 0, μ,I > 0, γ ∈ 0, 1ð �,
ð35Þ

with the initial condition

φ μ, 0ð Þ = μ: ð36Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y −

∂
∂μ

μφ μ,Ið Þð Þ + ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �" #

:

ð37Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y
"
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �#

,
ð38Þ
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M uð Þ = uφ 0ð Þ + uγY
"
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �#

:

ð39Þ

On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1
"
uγ
(
Y
 
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �!)#

,

φ μ,Ið Þ = μ + Y−1
"
uγ
(
Y
 
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �!)#

:

ð40Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ,

〠
∞

m=0
φm μ,Ið Þ = μ + Y−1

"
uγY

"
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �##

:

ð41Þ

By comparing Equation (41) both sides, we get

φ0 μ,Ið Þ = μ: ð42Þ

On m = 0,

φ1 μ,Ið Þ = μ
Iγ

Γ γ + 1ð Þ : ð43Þ

On m = 1,

φ2 μ,Ið Þ = μ
I2γ

Γ 2γ + 1ð Þ : ð44Þ

On m = 2,

φ3 μ,Ið Þ = μ
I3γ

Γ 3γ + 1ð Þ : ð45Þ

The YTDM solution remaining components φm with ð
m ≥ 3Þ are calculated easily. Thus, we define the series form

solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ+⋯,

φ μ,Ið Þ = μ + μ
Iγ

Γ γ + 1ð Þ + μ
I2γ

Γ 2γ + 1ð Þ + μ
I3γ

Γ 3γ + 1ð Þ+⋯:

ð46Þ

The YTDM solution at γ = 1 is

φ μ,Ið Þ = μ expI: ð47Þ

In Figure 2, the first graph shows the exact and sec-
ond the analytical solution graph, which shows the close
contact with each other. In Figure 2, the third and
fourth graphs are the three- and two-dimensional graphs
concerning different fractional order of problem 2. The
figures show that the suggested technique agrees with
the actual solution for the given problem. As fractional
order approaches integer order, fractional-order solution
surfaces converge to the integer-order surface, as
depicted by graphs. It means that we may physically
model any surface based on the physical events observed
in nature.

Example 3. Consider F-FPEs of the form

∂
∂Iγ φ μ,Ið Þð Þ + ∂

∂μ
4
μ
φ2 μ,Ið Þ

� �
−

∂
∂μ

μ

3 φ μ,Ið Þ
� �

−
∂2

∂μ2
φ2 μ,Ið Þ
 �

= 0, μ,I > 0, γ ∈ 0, 1ð �,

ð48Þ

with the initial condition

φ μ, 0ð Þ = μ2: ð49Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y
"

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �#
:

ð50Þ
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By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y
"

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �#
,

M uð Þ = uφ 0ð Þ + uγY
"

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �#
:

ð51Þ

On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1
"
uγ
(
Y
 

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �!)#
,

φ μ,Ið Þ = μ2 + Y−1
"
uγ
(
Y
 

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �!)#
:

ð52Þ

Now, by assuming that the infinite series form the func-
tion φðμ,IÞ which is unknown, it has the solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ: ð53Þ

Thus, the nonlinear terms are defined by the Adomian
polynomial φ2 =∑∞

m=0 Am. Using specific concepts, Equa-
tion (52) can be rewritten in the form

〠
∞

m=0
φm μ,Ið Þ = φ μ, 0ð Þ + Y−1

"
uγY

"
∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ 〠
∞

m=0
Am

##
,

〠
∞

m=0
φm μ,Ið Þ = μ2 + Y−1

"
uγY

"
∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ 〠
∞

m=0
Am

##
:

ð54Þ

Now, by Adomian polynomial Q1, the nonlinear terms
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Figure 1: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 1.
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are decomposed according to Equation (38),

A0 = φ2
0,

A1 = 2φ0φ1,
A2 = 2φ0φ2 + φ2ð Þ2:

ð55Þ

By comparing Equation (54) both sides, we get

φ0 μ,Ið Þ = μ2: ð56Þ

On m = 0,

φ1 μ,Ið Þ = μ2
Iγ

Γ γ + 1ð Þ : ð57Þ

On m = 1,

φ2 μ,Ið Þ = μ2
I2γ

Γ 2γ + 1ð Þ : ð58Þ

On m = 2,

φ3 μ,Ið Þ = μ2
I3γ

Γ 3γ + 1ð Þ : ð59Þ

The YTDM solution remaining components φm with ð
m ≥ 3Þ are calculated easily. Thus, we define the series form
solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ+⋯,

φ μ,Ið Þ = μ2 + μ2
Iγ

Γ γ + 1ð Þ + μ2
I2γ

Γ 2γ + 1ð Þ

+ μ2
I3γ

Γ 3γ + 1ð Þ+⋯:

ð60Þ

The YTDM solution at γ = 1 is

φ μ,Ið Þ = μ2 expI: ð61Þ
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Figure 2: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 2.
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In Figure 3, the first graph shows the exact and sec-
ond the analytical solution graph, which shows the close
contact with each other. In Figure 3, the third and
fourth graphs are the three- and two-dimensional graphs
concerning different fractional order of problem 3. The
figures show that the suggested technique agrees with
the actual solution for the given problem. As fractional
order approaches integer order, fractional-order solution
surfaces converge to the integer-order surface, as
depicted by graphs. It means that we may physically
model any surface based on the physical events observed
in nature.

Example 4. Consider F-FPEs of the form

∂
∂Iγ φ μ,Ið Þð Þ − ∂

∂μ
φ μ,Ið Þ − ∂2

∂μ2
φ μ,Ið Þ

= 0,I > 0, γ ∈ 0, 1ð �,
ð62Þ

with the initial condition

φ μ, 0ð Þ = μ: ð63Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y ∂

∂μ
φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

" #
: ð64Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y ∂
∂μ

φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

" #
,

M uð Þ = uφ 0ð Þ + uγY ∂
∂μ

φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

" #
:

ð65Þ
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Figure 3: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 3.
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On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1 uγ Y ∂
∂μ

φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

 !( )" #
,

φ μ,Ið Þ = μ + Y−1 uγ Y ∂
∂μ

φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

 !( )" #
:

ð66Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ,

〠
∞

m=0
φm μ,Ið Þ = μ + Y−1 uγY ∂

∂μ
φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

" #" #
:

ð67Þ

By comparing Equation (67) both sides, we get

φ0 μ,Ið Þ = μ: ð68Þ

On m = 0,

φ1 μ,Ið Þ = Iγ

Γ γ + 1ð Þ : ð69Þ

On m = 1,

φ2 μ,Ið Þ = 0: ð70Þ

On m = 2,

φ3 μ,Ið Þ = 0: ð71Þ

The YTDM solution remaining components φm with ð
m ≥ 3Þ are calculated easily. Thus, we define the series form
solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ +⋯,

φ μ,Ið Þ = μ + Iγ

Γ γ + 1ð Þ + 0 + 0 +⋯:

ð72Þ
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Figure 4: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 4.
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The YTDM solution at γ = 1 is

φ μ,Ið Þ = μ +I: ð73Þ

In Figure 4, the first graph shows the exact and second
the analytical solution graph, which shows the close contact
with each other. In Figure 4, the third and fourth graphs are
the three- and two-dimensional graphs concerning different
fractional order of problem 4. The figures show that the sug-
gested technique agrees with the actual solution for the given
problem. As fractional order approaches integer order,
fractional-order solution surfaces converge to the integer-
order surface, as depicted by graphs. It means that we may
physically model any surface based on the physical events
observed in nature.

Example 5. Consider F-FPEs of the form

∂γ

∂Iγ φ μ,Ið Þð Þ − 1 − μð Þ ∂
∂μ

φ μ,Ið Þ − eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

= 0,I > 0, γ ∈ 0, 1ð �,
ð74Þ

with the initial condition

φ μ, 0ð Þ = 1 + μ: ð75Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y 1 − μð Þ ∂

∂μ
φ μ,Ið Þ + eIμ2

� � ∂2

∂μ2
φ μ,Ið Þ

" #
:

ð76Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y
"
1 − μð Þ ∂

∂μ
φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

#
,

M uð Þ = uφ 0ð Þ + uγY
"
1 − μð Þ ∂

∂μ
φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

#
:

ð77Þ
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Figure 5: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 5.
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On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1
"
uγ
(
Y
 

1 − μð Þ ∂
∂μ

φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

!)#
,

φ μ,Ið Þ = 1 + μð Þ + Y−1
"
uγ
(
Y
 

1 − μð Þ ∂
∂μ

φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

!)#
:

ð78Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ, ð79Þ

〠
∞

m=0
φm μ,Ið Þ = 1 + μð Þ + Y−1

"
uγY

"
1 − μð Þ ∂

∂μ
φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

##
:

ð80Þ

By comparing Equation (80) both sides, we get

φ0 μ,Ið Þ = 1 + μ: ð81Þ

On m = 0,

φ1 μ,Ið Þ = 1 + μð Þ Iγ

Γ γ + 1ð Þ : ð82Þ

On m = 1,

φ2 μ,Ið Þ = 1 + μð Þ I2γ

Γ 2γ + 1ð Þ : ð83Þ

On m = 2,

φ3 μ,Ið Þ = 1 + μð Þ I3γ

Γ 3γ + 1ð Þ : ð84Þ

The YTDM solution remaining components φm with ð
m ≥ 3Þ are calculated easily. Thus, we define the series form

solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ+⋯,

φ μ,Ið Þ = 1 + μð Þ + 1 + μð Þ Iγ

Γ γ + 1ð Þ + 1 + μð Þ I2γ

Γ 2γ + 1ð Þ

+ 1 + μð Þ I3γ

Γ 3γ + 1ð Þ+⋯:

ð85Þ

The YTDM solution at γ = 1 is

φ μ,Ið Þ = expI 1 + μð Þ: ð86Þ

In Figure 5, the first graph shows the exact and second
the analytical solution graph, which shows the close contact
with each other. In Figure 5, the third and fourth graphs are
the three- and two-dimensional graphs concerning different
fractional order of problem 5. The figures show that the sug-
gested technique agrees with the actual solution for the given
problem. As fractional order approaches integer order,
fractional-order solution surfaces converge to the integer-
order surface, as depicted by graphs. It means that we may
physically model any surface based on the physical events
observed in nature.

5. Conclusion

The Adomian decomposition approach was expanded in
this paper to find explicit and numerical solutions to the F-
FPEs. The proposed method is an effective and powerful
strategy for solving the proposed equations. The plotted
graphs confirm the strong relationship between the exact
and analytical results. The approaches provide series form
solutions with a higher convergence rate to exact results.
While providing quantitatively accurate results, the Ado-
mian decomposition method requires less computational
work than existing approaches.
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