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In this article, we first give a proof for the denseness of the Schwartz class in the modulation spaces with variable smoothness and
integrability. Then, we study the dual spaces of such modulation spaces.

1. Introduction

The modulation spaces Ms
p,q were introduced by Feichtinger

[1] on a locally compact Abelian group in 1983 through
short-time Fourier transform. His original motivation for
modulation spaces was to introduce a new theory of func-
tion spaces and to offer an alternative to the class of Besov
spaces. In recent years, it is gradually recognized that the
modulation spaces are very useful for studying time-
frequency behavior of functions. Therefore, the modulation
spaces, α-modulation spaces, and their applications have
received a lot of attention and research, such as [2–10] and
the references therein. Particularly, in [11–14], Wang and
other authors showed that from PDE point of view, the com-
bination of frequency-uniform decomposition operators and
Banach function spaces ℓqðXðℝnÞÞ is important in making
nonlinear estimates, where X is a Banach function space
defined on ℝn.

On the other hand, function spaces with variable expo-
nents have received extensive attention recently. Even
though the study on variable Lebesgue spaces can be traced
back to [15, 16] by Orlicz, the modern development started
from the article [17] by Kováčik and Rákosník in 1991. In
[18], Fan and Zhao obtained the results in [17] again
through the method of Musielak-Orlicz spaces. Thereafter,
variable Lebesgue and Sobolev spaces have been widely stud-
ied (see, for example, [19–23]). In addition, function spaces

with variable exponents have a wealth of applications in
many fields, such as in fluid dynamics [24], image processing
[25], and partial differential equations [26].

The function spaces with variable smoothness and variable
integrability were firstly introduced by Diening et al. in [27],
where they studied Triebel-Lizorkin spaces with variable expo-

nents Fαð·Þ
pð·Þ,qð·ÞðℝnÞ. Then, Almeida and Hästö introduced the

Besov space with variable smoothness and integrability

Bαð·Þ
pð·Þ,qð·ÞðℝnÞ in [28]. Since then, many articles about these

function spaces appeared, such as [29, 30]. In the past few
years, many function spaces with variable exponents have
appeared, such as Besov-type spaces with variable exponent,
Bessel potential spaces with variable exponent, and Hardy
spaces with variable exponent (see [31–35]). Recently, we
studied the modulation spaces with variable smoothness and

integrability Msð·Þ
pð·Þ,qð·Þ and gave some properties about these

spaces in [36]. Since the modulation spaces and the function
spaces with variable exponents have rich applications, we
believe that the modulation spaces with variable exponents
will also have many application areas, and we will continue
to explore these application areas, especially in partial differen-
tial equations and time frequency analysis.

The dual is an important content when we study func-
tion spaces; for example, Triebel [37] has obtained duality
of the usual Besov spaces and applied it to real interpolation
and Sobolev embedding, Izuki [38] has given the duality of
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Herz spaces with variable exponent and applied it to charac-
terize the above spaces by wavelet expansions. In [8, 12], the
dual of modulation spaces was studied, respectively. In [39],
Izuki and Noi were concerned with the dual of Triebel-

Lizorkin spaces Fsð·Þ
pð·Þ,qð·Þ and Besov spaces Bsð·Þ

pð·Þ,qð·Þ with vari-

able exponents. In this paper, we will study the dual of mod-

ulation spaces Msð·Þ
pð·Þ,qð·Þ with variable smoothness and

integrability.
The paper is organized as follows. In Section 2, we

review some notions and notations about semimodular
spaces and function spaces with variable exponents. In
the theories of function spaces, the research on dense-
ness of the Schwartz class has always been an important
topic, by which we can obtain many conclusions such as
duality of function spaces and boundedness of some
operators. Therefore, in Section 3, we study the dense-
ness of the Schwartz class in the modulation spaces with
variable smoothness and integrability. In Section 4, we
give the dual of modulation spaces with variable
exponents.

2. Preliminaries

In this section, we review some notions and conventions and
state some basic results. Throughout this article, we let C
denote constants that are independent of the main parame-
ters involved but whose value may differ from line to line. By
A ~ B, we mean that there exists a positive constant C such
that 1/C ≤ A/B ≤ C. The symbol A ≲ B means that A ≤ CB.
The symbol ½s� for s ∈ℝ denotes the maximal integer not
more than s. We also set ℕ ≡ f1, 2,⋯g and ℤ+ ≡ℕ ∪ f0g.
We write hxi = ð1 + jxj2Þ1/2 and hxio = 1 + jx1j + jx2j +⋯+j
xnj for x ∈ℝn. It is easy to see that hxi ~ hxio. For any
multi-index α = ðα1, α2,⋯,αnÞ, we denote Dα = ∂α11 ∂α22 ⋯ ∂αnn ,
and for k = ðk1, k2,⋯,knÞ, we denote jkj∞ =maxi=1,⋯,njkij.
We also denote the sequence Lebesgue space by ℓp and Lebes-
gue space by Lp ≔ LpðℝnÞ for which the norm is written by
k·kp.

Let S ≔ SðℝnÞ be the Schwartz function space and
S ′ ≔ S ′ðℝnÞ be its strongly topological dual space which
is also known as the space of all tempered distributions.
For f ∈ S , we define the Fourier transform F f and the
inverse Fourier transform F−1 f , respectively, by

F f ξð Þ = f̂ ξð Þ =
ð
ℝn
f xð Þe−2πix·ξdx, 

F−1 f xð Þ =
ð
ℝn
f ξð Þe2πix·ξdξ:

ð1Þ

2.1. Modular Spaces. In what follows, let X be a vector
space over ℝ or ℂ. The function spaces studied in this
paper fit into the framework semimodular spaces, and
we refer to monograph [23] for a detailed exposition of
these concepts.

Definition 1. A function ϱ : X ⟶ ½0,∞� is called a semi-
modular on X if it satisfies

ϱ 0ð Þ = 0: ð2Þ

(i) ϱðλf Þ = ϱð f Þ for all f ∈ X, λ ∈ℝ orℂ with jλj = 1
(ii) ϱðλf Þ = 0 for all λ > 0 implies f = 0
(iii) λ↦ ϱðλf Þ is left-continuous on ½0,∞Þ for every f

∈ X

A semimodular ϱ is called a modular if ϱð f Þ = 0 implies
f = 0, and it is called continuous if the mapping λ↦ ϱðλf Þ is
continuous on ½0,∞Þ for every f ∈ X. A semimodular ρ can
also be qualified by the term (quasi)convex; that is, for all
f , g ∈ X and θ ∈ ½0, 1�, there exists A such that

ϱ θf + 1 − θð Þgð Þ ≤ A θϱ fð Þ + 1 − θð Þϱ gð Þ½ �, ð3Þ

where A = 1 in the convex case and A ∈ ½1,∞Þ in the quasi-
convex case. By semimodular, we can obtain a normed space
as follows:

Definition 2. If ρ is a (semi)modular on X, then Xϱ ≔ f f ∈
X : ∃λ > 0, s:t:ϱðλf Þ<∞g is called a (semi)modular space.

In [11], the authors have proven that the Xϱ is a (quasi)
normed space with the Luxemburg (quasi)norm k f kϱ ≔ inf
fλ > 0 : ϱð f /λÞ ≤ 1g, where the infimum of the empty set is
infinity by definition. The following conclusion can be found
in [23], and we omit the proof here.

Theorem 3 (norm-modular unit ball property). Let ϱ be a
semimodular on X and f ∈ X. Then, k f kϱ ≤ 1 if and only if
ϱð f Þ ≤ 1. If ϱ is continuous, then k f kϱ < 1 and ϱð f Þ < 1 are
equivalent, so are k f kϱ = 1 and ϱ ð f Þ = 1.

2.2. Function Spaces with Variable Exponents. A measurable
function pð·Þ: ℝn ⟶ ð0,∞� is called a variable exponent
function if it is bounded away from zero; namely, the
range of the pðxÞ is ðc,∞� for some c > 0. For a measur-
able function pð·Þ and a measurable set Ω ⊂ℝn, let p−Ω ≔
ess infΩpðxÞ and p+Ω ≔ ess supΩpðxÞ: For simplicity, we
abbreviate p− = p−ℝn and p+ = p+ℝn .

We denote by P 0 for the set of all measurable functions
pð·Þ: ℝn ⟶ ð0,∞Þ such that 0 < p− ≤ p+ <∞ and denote by
P for the set of all measurable functions pð·Þ: ℝn ⟶ ð0,∞Þ
such that 1 < p− ≤ p+ <∞.

In order to make the Hardy-Littlewood maximal func-
tion bounded in the variable exponent Lebesgue spaces,
one need to add some conditions to the variable exponent
function, that is, so-called log-Hölder continuity, which
was first introduced in [40].

Definition 4. Let pð·Þ: ℝn ⟶ℝ.
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(i) If there exists clog > 0 such that

p xð Þ − p yð Þj j ≤ clog
log e + 1/ x − yj jð Þ , ð4Þ

for all x, y ∈ℝn, then pð·Þ is called locally log-Hölder contin-

uous, abbreviated as p ∈ Clog
loc .

(ii) If pð·Þ is locally log-Hölder continuous and there
exists p∞ ∈ℝ such that

p xð Þ − p∞j j ≤ clog
log e + xj jð Þ , ð5Þ

for all x ∈ℝn, then pð·Þ is called globally log-Hölder contin-
uous, abbreviated as p ∈ Clog.

If a variable exponent p ∈P satisfies 1/p ∈ Clog, we say

that it belongs to the class P log. The class P
log
0 is defined

similarly.

Remark 5.

(i) One can notice that all functions p ∈ Clog
loc always

belong to L∞

(ii) Let p ∈P 0, then p ∈ Clog if and only if 1/p ∈ Clog. If p
satisfies (5), then p∞ = limjxj⟶∞pðxÞ

(iii) We define the conjugate exponent function p′ð·Þ by
the formula ð1/pð·ÞÞ + ð1/p′ð·ÞÞ = 1: If pð·Þ is in Clog,
then p′ð·Þ is also in Clog

We define

φp tð Þ =
tp, if p ∈ 0,∞ð Þ,
0, if p =∞and t ≤ 1,
∞, if p =∞and t > 1,

8>><
>>: ð6Þ

and we adopt the convention 1∞ = 0 in order that φp is left-
continuous. The variable exponent modular of a measurable
function f on ℝn is defined by

ρp ·ð Þ fð Þ≔
ð
ℝn
φp xð Þ f xð Þj jð Þdx: ð7Þ

According to Definition 2, one can define the corre-
sponding semimodular space, namely, the variable exponent
Lebesgue space which is denoted by Lpð·ÞðℝnÞ, and the Lux-
emburg (quasi)norm of the Lpð·ÞðℝnÞ is defined by

fk kp ·ð Þ ≔ inf λ > 0 : ϱp ·ð Þ
f
λ

� �
≤ 1

� �
: ð8Þ

Now let us recall the mixed Lebesgue sequence space
ℓqð·ÞðLpð·ÞÞ which was introduced by Almeida and Hästö
in [28].

Definition 6. Let p, q ∈P 0 and Ω be a measurable subset of
ℝn. The mixed Lebesgue sequence space ℓqð·ÞðLpð·ÞðΩÞÞ is
the collection of all sequences f f jgj∈ℕ of Lpð·ÞðΩÞ-functions
such that

f j
n o

j

����
����
ℓq ·ð Þ Lp ·ð Þ Ωð Þð Þ

≔ inf λ > 0 : ϱℓq ·ð Þ Lp ·ð Þð Þ
f jχΩ

λ

� �
j

 !
≤ 1

( )
<∞,

ð9Þ

where

ϱℓq ·ð Þ Lp ·ð Þð Þ f j
n o

j

� �
≔ 〠

j∈ℕ
inf μj > 0 : ϱp ·ð Þ

f j

μ
1/q ·ð Þ
j

 !
≤ 1

( )
,

ð10Þ

with the convention λ1/∞ = 1 for all λ > 0.

Remark 7. Let p, q ∈P 0.

(i) If q+ <∞, then inf fλ > 0 : ϱpð·Þð f /λ1/qð·ÞÞ ≤ 1g =
kj f jqð·Þkpð·Þ/qð·Þ, and we use the notation

ϱℓq ·ð Þ Lp ·ð Þð Þ f j
� �

j

� �
=〠

j

f j
			 			q ·ð Þ����

����
p ·ð Þ/q ·ð Þ

: ð11Þ

(ii) By Proposition 3.3 of [28], if q ∈ ð0,∞� is constant,
then we have kð f jÞjkℓqðLpð·ÞÞ = kk f jkpð·Þkℓq

(iii) In [28], Almeida and Hästö proved that k·kℓqð·ÞðLpð·ÞÞ
is a quasinorm for all pð·Þ, qð·Þ ∈P , and k·kℓqð·ÞðLpð·ÞÞ
is a norm when ð1/pð·ÞÞ + ð1/qð·ÞÞ ≤ 1 pointwise or
q is a constant. In [30], Kempka and Vybíral proved
that k·kℓqð·ÞðLpð·ÞÞ is a norm if pð·Þ, qð·Þ ∈P satisfy
either 1 ≤ qðxÞ ≤ pðxÞ ≤∞ for almost every x ∈ℝn

or pðxÞ ≥ 1, and q ∈ ½1,∞Þ is a constant almost
everywhere

To define modulation space with variable exponents, we
need some general definitions from the constant exponent
case. For k ∈ℤn, let Qk be the unit cube with the center at
k; then, fQkgk∈ℤn constitutes a decomposition of ℝn. Let ϕ
∈ SðℝnÞ and ϕ : ℝn ⟶ ½0, 1� be a smooth function satisfy-
ing ϕðξÞ = 1 for jξj∞ ≤ 1/2 and ϕðξÞ = 0 for jξj∞ ≥ 1. Let ϕk
be a translation of ϕ: ϕkðξÞ = ϕðξ − kÞ, k ∈ℤn: Then, we see
that ϕkðξÞ = 1 in Qk and ∑k∈ℤnϕkðξÞ ≥ 1 for all ξ ∈ℝn. If
we denote φkðξÞ = ϕkðξÞð∑k∈ℤnϕkðξÞÞ−1, for k ∈ℤn, then we
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have

φk ξð Þj j ≥ c, ∀ξ ∈Qk,
supp φk ⊂ ξ : ξ − kj j∞ ≤ 1


 �
,  ,

〠
k∈ℤn

φk ξð Þ ≡ 1, ∀ξ ∈ℝn,

Dαφk ξð Þj j ≤ C αj j, ∀ξ ∈ℝn, α ∈ ℕ ∪ 0f gð Þn:

8>>>>>>><
>>>>>>>:

ð12Þ

We denote Y = ffφkgk∈ℤn : fφkgk∈ℤn satisfiesð3Þg:Y is
nonempty, and for every sequence fφkgk∈ℤn ∈ Y , one can
construct an operator sequence as follows:

□k ≔F−1φkF , k ∈ℤn: ð13Þ

f□kgk∈ℤn are said to be frequency-uniform decomposi-
tion operators. Let s ∈ℝ and 0 < p, q ≤∞; the modulation
space can be defined as

Ms
p,q ℝnð Þ = f ∈ S ′ ℝnð Þ: fk kMs

p,q
= 〠

k∈ℤn

kh isq □k fk kqp
 !1/q

<∞
( )

:

ð14Þ

Further details about the frequency-uniform decomposi-
tion techniques and their applications to PDE can be found
in the book [13] and articles [11, 12, 14].

Definition 8. Let fφkgk∈ℤn ∈ Y and f□kgk∈ℤn be the corre-
sponding frequency-uniform decomposition operators. For

p, q ∈P log
0 and s ∈ Clog

loc , the modulation space with variable

smoothness and integrability Msð·Þ
pð·Þ,qð·Þ is defined to be the

set of all distributions f ∈ S ′ such that

fk kφ
Ms ·ð Þ

p ·ð Þ,q ·ð Þ
≔ kh is ·ð Þ □k f
� �

k

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

<∞: ð15Þ

For above modulation space, we can define the following
modular:

ϱ
φ

Ms ·ð Þ
p ·ð Þ,q ·ð Þ

fð Þ≔ ϱℓq ·ð Þ Lp ·ð Þð Þ kh is ·ð Þ □k f
� �

k

� �
, ð16Þ

which can be used to define the norm. In [36], we have
shown that the space given by Definition 8 is independent
of the choice of fφkgk∈ℤn ∈ Y and the corresponding
frequency-uniform decomposition operators. Thus, we can
choose fφkgk∈ℤn ∈ Y according to our requirements, and
we will omit φ in the notation of the norm and modular.

3. Density

In [28], the authors showed that the maximal function is not
a good tool in the variable exponent space ℓqð·ÞðLpð·ÞÞ; hence,
they used so-called η-functions which were also used in [27].

Similarly, in our article, we define the so-called θ-functions
on ℝn by

θk,m xð Þ≔ rnk
1 + rk xj jð Þm , ð17Þ

with k ∈ℤn, m > 0, and rk ≔
ffiffiffi
n

p ð1 + jkj∞Þ. Note that
θk,m ∈ L1 when m > n and that kθk,mk1 = cm is independent
of k. These functions are different from the η-functions
since we use the uniform decomposition of ℝn rather
than the dyadic decomposition.

Now let us review some useful results about θ-functions
which have been proven in [36].

Lemma 9 (see [36]). Let sð·Þ ∈ Clog
loc and k ∈ℤn; then, there

exists a positive constant C such that

kh is xð Þ θk,m+R x − yð Þ ≤ C kh is yð Þθk,m x − yð Þ, ð18Þ

for all x, y ∈ℝn and R ≥ clogðsÞ, where clogðsÞ is the constant
from (4) for sð·Þ.

Remark 10. By Lemma 9, we can move the term inside the
convolution as follows:

kh is xð Þθk,m+R ∗ f xð Þ ≤ C θk,m ∗ kh is ·ð Þ f
� �

xð Þ, ð19Þ

which helps us to treat the variable smoothness in many
cases.

Lemma 11 (see [36]). Let p, q ∈P log, for m > n and every
sequence f f kgk∈ℤn of L1loc-functions, there exists a constant
C > 0 such that

θk,2m ∗ f kð Þk
�� ��

ℓq ·ð Þ Lp ·ð Þð Þ ≤ C f kð Þk
�� ��

ℓq ·ð Þ Lp ·ð Þð Þ: ð20Þ

Remark 12. In some cases, although we need to require that
p−, q− ≥ 1, we can weaken this condition by the following
identity:

f kð Þk
�� ��

ℓq ·ð Þ Lp ·ð Þð Þ = f kj jrð Þk
�� ��1/r

ℓq ·ð Þ/r Lp ·ð Þ/rð Þ: ð21Þ

In [36], we have proven that SðℝnÞ↪Msð·Þ
pð·Þ,qð·ÞðℝnÞ, and

in this section, we will prove that SðℝnÞ is also dense in

Msð·Þ
pð·Þ,qð·ÞðℝnÞ. For this purpose, we need the following con-

clusions as in [41]. The first one is the generalization of
Lemma A.6 in [27] and Lemma 3.4 in [36].

Lemma 13. Let r > 0, k ∈ℤn, and m > n. Then, for all x, z
∈ℝn and g ∈ S ′ with supp ĝ ⊂ fξ : jξ − kj∞ ≤ 1g, there
exists a constant C = Cðr,m, nÞ > 0 such that

g x − zð Þj j
1 + rk zj jð Þm/r ≤ C θk,m ∗ gj jr xð Þð Þ1/r: ð22Þ
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Proof. As in the proof of Lemma 3.4 of [36], for rk =
ffiffiffi
n

p ð1
+ jkj∞Þ, there exists v ∈ℕ such that 2v ≤ rk < 2v+1, which
implies fξ : jξ − kj∞ ≤ 1g ⊂ fξ : jξj ≤ 2v+1g. Then, for u ∈
ℤn and a fixed dyadic cube Q =Qv,u ≔ fx ∈ℝn : 2−vui ≤ xi
< 2−vðui + 1Þ, i = 1, 2,⋯,ng, when x − z ∈Q, we have

g x − zð Þj jr ≤ sup
w∈Q

g wð Þj jr ≤ C2vn 〠
l∈ℤn

1 + lj jð Þ−m
ð
Qv,u+l

g yð Þj jrdy:

ð23Þ

In addition, for x − z ∈Qv,u and y ∈Qv,u+l , we have jx −
z − yj ~ 2−vjlj when l is large enough, which implies 1 + 2vj
x − z − yj ~ 1 + jlj. Since

1 + 2v x − yj jð Þm ≤ 1 + 2v x − z − yj jð Þm 1 + 2v zj jð Þm, ð24Þ

we get

sup
w∈Q

g wð Þj jr ≤ C 2vn 〠
l∈ℤn

ð
Qv,u+l

1 + 2v x − z − yj jð Þ−m g yð Þj jrdy

≤ C 2vn 〠
l∈ℤn

ð
Qv,u+l

1 + 2v x − yj jð Þ−m 1 + 2v zj jð Þm g yð Þj jrdy

≤ C 1 + rk zj jð Þm 〠
l∈ℤn

ð
Qv,u+l

rnk 1 + rk x − yj jð Þ−m g yð Þj jrdy

≤ C 1 + rk zj jð Þm
ð
ℝn
rnk 1 + rk x − yj jð Þ−m g yð Þj jrdy

= C 1 + rk zj jð Þm θk,m ∗ gj jrð Þ xð Þ:
ð25Þ

Hence, for x − z ∈Qv,u, we have

g x − zð Þj j
1 + rk zj jð Þm/r ≤ C θk,m ∗ gj jr xð Þð Þ1/r , ð26Þ

where C = Cðr,m, nÞ depends only on r, m, and n. For any
x, z ∈ℝn, there exists a u′ ∈ℤn such that x − z ∈Qv,u′. Then,
we get the desired conclusion.

Definition 14.

(i) LetΩ be a compact subset of ℝn; then, we denote the
space of all elements f ∈ SðℝnÞ with supp F f ⊂Ω
by SΩðℝnÞ

(ii) Let pð·Þ ∈P log
0 and Ω = fΩkg∞k=0 be a sequence of

compact subsets of ℝn; then, we denote by Lpð·ÞΩ ðℝnÞ
the space of all sequences f f kg∞k=0 in S ′ðℝnÞ such that
supp F f k ⊂Ωk and k f kkpð·Þ <∞ for k = 0, 1, 2,⋯

Lemma 15. Let p, q ∈P log
0 , s ∈ Clog

loc , and Ω = fΩkg∞k=0 be a
sequence of compact subsets of ℝn such that Ωk ⊂ fξ ∈ℝn

: jξ − kj∞ ≤ 1g. If 0 < r <min fp−, q−g and m > 2n + 2clogðsÞ
min fp−, q−g, then for all f f kgk∈ℤn ⊂ Lpð·ÞΩ ðℝnÞ, there exists

a constant C such that

sup
z∈ℝn

kh is ·−zð Þ f k ·−zð Þj j
1 + rkzj jm/r

( )
k∈ℤn

�����
�����
ℓq ·ð Þ Lp ·ð Þð Þ

≤ C kh is ·ð Þ f k
n o

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

:

ð27Þ

Proof. Let f f kgk∈ℤn ∈ Lpð·ÞΩ ðℝnÞ and R ≥ clogðsÞ; then, for any
k ∈ℤn by Lemmas 9 and 13, we have

kh is x−zð Þ f k x − zð Þj j
1 + rkzj jm/r ≤max 2m/r , 1


 � kh is x−zð Þ f k x − zð Þj j
1 + rkzj jð Þm/r

≲max 2m/r , 1

 � kh is xð Þ f k x − zð Þj j

1 + rkzj jð Þm−Rr/r

≲max 2m/r , 1

 �

kh is xð Þ θk,m−Rr ∗ f kj jr xð Þð Þ1/r

≲max 2m/r , 1

 �

θk,m−2Rr yð Þ ∗ kh irs yð Þ f k yð Þj jr
� �

xð Þ
� �1/r

:

ð28Þ

Therefore, for 0 < r <min fp−, q−g and m > 2n + 2Rr, by
Lemma 11, we obtain

sup
z∈ℝn

kh is ·−zð Þ f k ·−zð Þj j
1 + rkzj jm/r

( )
k∈ℤn

�����
�����
ℓq ·ð Þ Lp ·ð Þð Þ

≤ C θk,m−2Rr yð Þ ∗ kh irs yð Þ f k yð Þj jr
� �

·ð Þ
n o

k∈ℝn

��� ���1/r
ℓq ·ð Þ/r Lp ·ð Þ/rð Þ

≤ C kh irs ·ð Þ f k ·ð Þj jr
n o

k∈ℤn

��� ���1/r
ℓq ·ð Þ/r Lp ·ð Þ/rð Þ

= C kh is ·ð Þ f k
n o

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

,

ð29Þ

which completes the proof.

For a real number s, we denote

Hs
2 ℝnð Þ = f ∈ S ′ ℝnð Þ: fk kHs

2
= 1 + ·j j2 �s/2

F fð Þ ·ð Þ
��� ���

L2
<∞

n o
:

ð30Þ

Proposition 16. Let p, q ∈P log
0 , s ∈ Clog

loc , and Ω = fΩkg∞k=0 be
a sequence of compact subsets of ℝn such that Ωk ⊂ fξ ∈ℝn

: jξ − kj∞ ≤ 1g. If t > ðn/2Þ + ðð2n + 3clogðsÞ min fp−, q−gÞ/
min fp−, q−gÞ, then for all f f kgk∈ℤn ⊂ Lpð·ÞΩ ðℝnÞ and
fMkð·Þgk∈ℤn ⊂Ht

2ðℝnÞ, there exists a constant C such that

kh is ·ð ÞF−1MkF f k
n o

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

≤ C sup
k

Mk rk ·ð Þk kHt
2

kh is ·ð Þ f k
n o

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

:
ð31Þ

Proof. According to Lemma 15, by the similar argument in
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the proof of Theorem 4.15 of [41], we have

kh is xð ÞF−1MkF f k x − zð Þ
			 			

≲
ð
ℝn

kh is xð Þ F−1Mk

 �
x − z − yð Þ		 		

1 + rk x − yj jð Þ m+Rrð Þ/r f k yð Þj j 1 + rk x − yð Þj j m+Rrð Þ/r
� �

dy

≲
ð
ℝn

F−1Mk

 �
x − z − yð Þ		 		

1 + rk x − yj jð Þm/r kh is yð Þ f k yð Þj j 1 + rk x − yð Þj j m+Rrð Þ/r
� �

dy

≲ sup
u∈ℝn

kh is uð Þ f k uð Þj j
1 + rk x − uj jð Þm/r

ð
ℝn

F−1Mk

 �
x − z − yð Þ		 		 1 + rk x − yð Þj j m+Rrð Þ/r

� �
dy:

ð32Þ

Since

1 + rk x − yð Þj j m+Rrð Þ/r ≲ 1 + rk x − y − zð Þj j m+Rrð Þ/r
� �

1 + rkzj j m+Rrð Þ/r
� �

,

ð33Þ

then for 0 < r <min fp−, q−g and t > ðn/2Þ + ððm + RrÞ/rÞ,
by the same argument in 1.6.3 of [42], we haveð

ℝn
F−1Mk

 �
x − z − yð Þ		 		 1 + rk x − yð Þj j m+Rrð Þ/r

� �
dy

≲
ð
ℝn

F−1Mk

 �
x − z − yð Þ		 		 1 + rk x − y − zð Þj j m+Rrð Þ/r

� �
� 1 + rkzj j m+Rrð Þ/r
� �

dy ≲ 1 + rkzj j m+Rrð Þ/r
� �

Mk rk ·ð Þk kHt
2
:

ð34Þ

Thus,

sup
z∈ℝn

kh is xð ÞF−1MkF f k x − zð Þ
			 			

1 + rkzj j m+Rrð Þ/r
� � ≲ sup

z∈ℝn

kh is x−zð Þ f k x − zð Þj j
1 + rk zj jð Þm/r Mk rk ·ð Þk kHt

2
:

ð35Þ

In addition, since

kh is xð Þ F−1MkF f k xð Þ		 		 ≤ sup
z∈ℝn

kh is xð Þ F−1MkF f k x − zð Þ		 		
1 + rkzj j m+Rrð Þ/r ,

ð36Þ

then together with above inequality, (33) and Lemma 15, we
can get the conclusion.

Remark 17. In fact, in the conclusion of the above lemma,
the “rk” in kMkðrk · ÞkHt

2
can be replaced by jΩkj≔

supx,y∈Ωk
jx − yj.

Theorem 18 (density). Let p, q ∈P log
0 and s ∈ Clog

loc , then S

ðℝnÞ is dense in Msð·Þ
pð·Þ,qð·ÞðℝnÞ.

Proof. Let f ∈Msð·Þ
pð·Þ,qð·Þ, for fφkgk∈ℤn ∈ Y and N ∈ℤ+, we put

f N = 〠
kj j≤N

□k f = 〠
kj j≤N

F−1φkF f , ð37Þ

where jkj≔ jk1j + jk2j +⋯+jknj for k ∈ℤn. Then, we have

f N ∈Msð·Þ
pð·Þ,qð·Þ. In fact, by Proposition 16, we obtain

f Nk kMs ·ð Þ
p ·ð Þ,q ·ð Þ

= lh is ·ð Þ □l f N
� �

l∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

≲ lh is ·ð Þ 〠
rj j∞≤1

□l□l+r fj j
 !

lj j≤N+n

������
������
ℓq ·ð Þ Lp ·ð Þð Þ

≲ lh is ·ð Þ □l f
� �

l∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

<∞:

ð38Þ

Consequently,

f − f Nk kMs ·ð Þ
p ·ð Þ,q ·ð Þ

≲ lh is ·ð Þ 〠
rj j∞≤1

□l□l+r fj j
 !

lj j>N−n

������
������
ℓq ·ð Þ Lp ·ð Þð Þ

≲ lh is ·ð Þ □l f
� �

lj j>N−n

����
����
ℓq ·ð Þ Lp ·ð Þð Þ

⟶ 0,

ð39Þ

when N ⟶∞, in which the last limit can be deduced

by Lemma 2.2 of [43]. Hence, f N ⟶ f in Msð·Þ
pð·Þ,qð·Þ when

N ⟶∞.
Next, we should approximate f N by some functions in

SðℝnÞ for N ∈ℤ+. Let ψ ∈ SðℝnÞ satisfy ψð0Þ = 1 and supp
Fψ ⊂ fξ ∈ℝn : jξj ≤ 1g. Then, for any N ∈ℤ+ and n ∈ℕ,
we have ψð·/nÞf N ∈ SðℝnÞ and

supp F f N − ψ ·/nð Þf Nð Þ ⊂ ξ ∈ℝn : ξj j∞ ≤N + 3

 �

: ð40Þ

Since k1 − ψð·/nÞk∞ = k1 − ψk∞ <∞, we have

lim
n⟶∞

f N − ψ ·/nð Þf Nk kp ·ð Þ = 0, ð41Þ

by Lemma 3.2.8 of [23]. Now, we prove that
fψð·/nÞf Ngn∈ℕ ⊂ SðℝnÞ is an approximation of f N in

Msð·Þ
pð·Þ,qð·Þ. By (38), we have

f N − ψ ·/nð Þf Nk kMs ·ð Þ
p ·ð Þ,q ·ð Þ

= lh is ·ð Þ □l f N − ψ ·/nð Þf Nð Þ
� �

l∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

= lh is ·ð Þ □l f N − ψ ·/nð Þf Nð Þ
� �

lj j∞≤N+3

����
����
ℓq ·ð Þ Lp ·ð Þð Þ

:

ð42Þ

Let l0 = ðN + 3, 0, 0,⋯,0Þ, then N + 3 ≤ rl0 =
ffiffiffi
n

p ðN + 4Þ
and fξ ∈ℝn : jξj∞ ≤N + 3g ⊂ fξ ∈ℝn : jξj ≤ rl0g. For each

l ∈ℤn with jlj∞ ≤N + 3, let gl = f N − ψð·/nÞf N ; then, gl ∈
Lpð·ÞΩl0

, where Ωl0
= fξ ∈ℝn : jξj ≤ rl0g. By Remark 17 and
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the embedding properties of Msð·Þ
pð·Þ,qð·Þ, we get

f N − ψ ·/nð Þf Nk kMs ·ð Þ
p ·ð Þ,q ·ð Þ

= lh is ·ð Þ □l f N − ψ ·/nð Þf Nð Þ
� �

lj j∞≤N+3

����
����
ℓq ·ð Þ Lp ·ð Þð Þ

≲ sup
lj j∞≤N+3

φl Ωl0

		 		 · ��� ��
Ht

2

 !
lh is ·ð Þ f N − ψ ·/nð Þf Nð Þ

� �
lj j∞≤N+3

����
����
ℓq ·ð Þ Lp ·ð Þð Þ

≲ sup
lj j∞≤N+3

φl Ωl0

		 		 · ��� ��
Ht

2

 !
lh is+ f N − ψ ·/nð Þf Nð Þ

� �
lj j∞≤N+3

����
����
ℓq

−
Lp ·ð Þð Þ

≲ sup
lj j∞≤N+3

φl Ωl0

		 		 · ��� ��
Ht

2

 !
〠

lj j∞≤N+3
lh is+q−

 !1/q−

f N − ψ ·/nð Þf Nk kp ·ð Þ:

ð43Þ

Then, combining (39) and supjlj∞≤N+3kφlðjΩl0
j · Þk

Ht
2
<

∞, we obtain

lim
n⟶∞

f N − ψ ·/nð Þf Nk kMs ·ð Þ
p ·ð Þ,q ·ð Þ

= 0: ð44Þ

Therefore, SðℝnÞ is dense in Msð·Þ
pð·Þ,qð·ÞðℝnÞ.

4. Dual Spaces of Msð·Þ
pð·Þ,qð·Þ

For a quasi-Banach space X, we denote the dual space of X

by X∗. In this section, we show that ðMsð·Þ
pð·Þ,qð·ÞÞ

∗
=M−sð·Þ

p′ð·Þ,q′ð·Þ
for p, q ∈P log and s ∈ Clog

loc .

Lemma 19. Let p, q ∈P , f f kgk∈ℤn , and fgkgk∈ℤn be
sequences of locally Lebesgue integrable functions satisfying
kf f kgk∈ℤnkℓqð·ÞðLpð·ÞÞ <∞ and kfgkgk∈ℤnkℓq ′ð·ÞðLp ′ð·ÞÞ <∞. Then,

we have

〠
k∈ℤn

ð
ℝn

f k xð Þgk xð Þj jdx ≤ 2 1 + 1
p−

−
1
p+

� �
f kf gk∈ℤn

�� ��
ℓq ·ð Þ Lp ·ð Þð Þ gkf gk∈ℤn

�� ��
ℓq ′ ·ð Þ Lp ′ ·ð Þ
 �:
ð45Þ

The above lemma has been proven in [39]; hence, we
omit the proof here.

Proposition 20. Let p, q ∈P and s ∈ Clog
loc . We denote by

~M
sð·Þ
pð·Þ,qð·Þ the collection of all f ∈ S ′ðℝnÞ satisfying that there

exists f f kgk∈ℤn ⊂ Lpð·ÞðℝnÞ such that f =∑k∈ℤn□k f k and

kh is ·ð Þ f k
� �

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

<∞: ð46Þ

If we define

fk k ~M
s ·ð Þ
p ·ð Þ,q ·ð Þ

= inf kh is ·ð Þ f k
� �

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

: f ∈ ~M
s ·ð Þ
p ·ð Þ,q ·ð Þ

( )
,

ð47Þ

then ~M
sð·Þ
pð·Þ,qð·Þ =Msð·Þ

pð·Þ,qð·Þ, and k·k ~M
sð·Þ
pð·Þ,qð·Þ

is an equivalent norm

on Msð·Þ
pð·Þ,qð·Þ.

Proof. Let f ∈Msð·Þ
pð·Þ,qð·Þ and write f k =∑jlj∞≤1□k+l f ; then, f

=∑k∈ℤn□k f k and

kh is ·ð Þ f k
� �

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

≲ fk kMs ·ð Þ
p ·ð Þ,q ·ð Þ

, ð48Þ

which implies Msð·Þ
pð·Þ,qð·Þ ⊂ ~M

sð·Þ
pð·Þ,qð·Þ. On the other hand, for

any f ∈ ~M
sð·Þ
pð·Þ,qð·Þ, by Proposition 16, we have

kh is ·ð Þ□k f
� �

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

≲ 〠
lj j∞≤1

kh is ·ð Þ□k+l f k+l
� �

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

≲ 〠
lj j∞≤1

kh is ·ð Þ f k+l
� �

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

≲ kh is ·ð Þ f k
� �

k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

,

ð49Þ

by which we can deduce the conclusion of the proposition.

Let us define

ℓq ·ð Þ
s ·ð Þ ℤn, Lp ·ð Þ
� �

= f = f k xð Þf gk∈ℤn : fk kℓq ·ð Þ
s ·ð Þ Lp ·ð Þð Þ<∞

� �
,

ð50Þ

where

fk kℓq ·ð Þ
s ·ð Þ Lp ·ð Þð Þ = kh is ·ð Þ f k

� �
k∈ℤn

��� ���
ℓq ·ð Þ Lp ·ð Þð Þ

: ð51Þ

Then, we have the following proposition about dual
spaces.

Proposition 21. Let p, q ∈P and s ∈ Clog
loc . Then,

ℓq ·ð Þ
s ·ð Þ ℤn, Lp ·ð Þ
� �� �∗

= ℓq
′ ·ð Þ

−s ·ð Þ ℤn, Lp′ ·ð Þ
� �

: ð52Þ

Moreover, g ∈ ðℓqð·Þsð·Þ ðℤn, Lpð·ÞÞÞ∗ is equivalent to

g, fh i = 〠
k∈ℤn

ð
ℝn
gk xð Þf k xð Þdx, ð53Þ

for all f = f f kgk∈ℤn ∈ ℓqð·Þsð·Þ ðℤn, Lpð·ÞÞ, in which

g = gkf gk∈ℤn ∈ ℓq
′ ·ð Þ

−s ·ð Þ ℤn, Lp′ ·ð Þ
� �

,  gk k
ℓq ·ð Þ
s ·ð Þ Lp ·ð Þð Þ
 �∗ = gkf gk k

ℓq
′ ·ð Þ

−s ·ð Þ Lp ′ ·ð Þ
 �:
ð54Þ
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Proof. Firstly, by Lemma 19, we have ðℓqð·Þsð·Þ ðℤn, Lpð·ÞÞÞ∗ ⊃
ℓq

′ð·Þ
−sð·Þðℤn, Lp′ð·ÞÞ and

g, fh i = 〠
k∈ℤn

ð
ℝn
gk xð Þf k xð Þdx, ð55Þ

for all f = f f kgk∈ℤn ∈ ℓqð·Þsð·Þ ðℤn, Lpð·ÞÞ, g = fgkgk∈ℤn ∈ ℓq
′ð·Þ

−sð·Þðℤn,
Lp′ð·ÞÞ:

On the other hand, for any g ∈ ðℓqð·Þsð·Þ ðℤn, Lpð·ÞÞÞ∗, let us
define gk by

gk, f kh i = g, 0,⋯,0, f k, 0, 0,⋯ð Þh i, ð56Þ

where f = f f kgk∈ℤn ∈ ℓqð·Þsð·Þ ðℤn, Lpð·ÞÞ. It follows that gk ∈

ðLpð·ÞÞ∗ = Lp′ð·Þ, whence

gk, f kh i =
ð
ℝn
gk xð Þf k xð Þdx: ð57Þ

Therefore,

g, fh i = 〠
k∈ℤn

ð
ℝn
gk xð Þf k xð Þdx: ð58Þ

We assume that gk ≠ 0 for all k ∈ℤn. Then, for any N
∈ℕ, let us define f N = f f kgk∈ℤn as follows: when jkj >N ,
we put f k = 0; when jkj ≤N , we set gk′ðxÞ = gkðxÞ/λ, where
λ = kðhki−sð·ÞgkÞjkj≤Nkℓq ′ð·ÞðLp ′ð·ÞÞ, and set

f k = sgn gk′ xð Þ kh i−s xð Þq′ xð Þgk′ xð Þq′ xð Þ
			 			p′ xð Þ−1/q′ xð Þ

× kh i−s xð Þ kh i−s ·ð Þq′ ·ð Þgk
′ ·ð Þq′ ·ð Þ

��� ���1−p′ xð Þ/q′ xð Þ

p′ ·ð Þ/q′ ·ð Þ
:

ð59Þ

Then, by Proposition 2.21 of [22], we have

ð
ℝn

kh is xð Þq xð Þ f k xð Þq xð Þ

kh i−s ·ð Þq′ ·ð Þgk′ ·ð Þq′ ·ð Þ
��� ���

p′ ·ð Þ/q′ ·ð Þ

0
B@

1
CA

p xð Þ/q xð Þ

dx

=
ð
ℝn

kh i−s xð Þq′ xð Þgk′ xð Þq′ xð Þ
			 			p′ xð Þ/q′ xð Þ

kh i−s ·ð Þq′ ·ð Þgk′ ·ð Þq′ ·ð Þ
��� ���p xð Þ/q xð Þ−p′ xð Þ/q′ xð Þ

p′ ·ð Þ/q′ ·ð Þ

kh i−s ·ð Þq′ ·ð Þgk
′ ·ð Þq′ ·ð Þ

��� ���p xð Þ/q xð Þ

p′ ·ð Þ/q′ ·ð Þ

dx

=
ð
ℝn

kh i−s xð Þq′ xð Þgk
′ xð Þq′ xð Þ

			 			
kh i−s ·ð Þq′ ·ð Þgk

′ ·ð Þq′ ·ð Þ
��� ���

p′ ·ð Þ/q′ ·ð Þ

0
B@

1
CA

p′ xð Þ/q′ xð Þ

dx = 1,

ð60Þ

which implies

kh is ·ð Þq ·ð Þ f k ·ð Þq ·ð Þ
��� ���

p ·ð Þ/q ·ð Þ
≤ kh i−s ·ð Þq′ ·ð Þgk′ ·ð Þq′ ·ð Þ
��� ���

p′ ·ð Þ/q′ ·ð Þ
:

ð61Þ

Thus, by the definition of g′k, we have

ρℓq ·ð Þ Lp ·ð Þð Þ kh is ·ð Þ f k ·ð Þ
� �

kj j≤N

� �
= 〠

kj j≤N
kh is ·ð Þq ·ð Þ f k ·ð Þq ·ð Þ

��� ���
p ·ð Þ/q ·ð Þ

≤ ρ
ℓq ′ ·ð Þ Lp ′ ·ð Þ
 � kh i−s ·ð Þgk

′ ·ð Þ
� �

kj j≤N

� �
≤ 1,

ð62Þ

from which we can get

f Nk kℓq ·ð Þ
s ·ð Þ Lp ·ð Þð Þ = kh is ·ð Þ f k

� �
kj j≤N

����
����
ℓq ·ð Þ Lp ·ð Þð Þ

≤ 1: ð63Þ

By Proposition 3.5 of [28], we know that ρ
ℓq ′ð·ÞðLp ′ð·ÞÞð·Þ is

continuous. Therefore, by kðhki−sð·Þgk
′Þjkj≤Nkℓq ′ð·ÞðLp ′ð·ÞÞ = 1, we

have

〠
kj j≤N

kh i−s ·ð Þq′ ·ð Þg′k ·ð Þq′ ·ð Þ
��� ���

p′ ·ð Þ/q′ ·ð Þ
= ρ

ℓq ′ ·ð Þ Lp ′ ·ð Þ
 � kh i−s ·ð Þg′k

� �
kj j≤N

� �
= 1:

ð64Þ

Then, it is easy to see that

g, f Nh i = 〠
k∈ℤn

ð
ℝn
gk xð Þf k xð Þdx = λ 〠

kj j≤N

ð
ℝn
gk′ xð Þf k xð Þdx

= λ 〠
kj j≤N

kh i−s ·ð Þq′ ·ð Þg′k ·ð Þq′ ·ð Þ
��� ���

p′ ·ð Þ/q′ ·ð Þ

 !

·
ð
ℝn

kh i−s xð Þq′ xð Þgk
′ xð Þq′ xð Þ

			 			
kh i−s ·ð Þq′ ·ð Þg′k ·ð Þq′ ·ð Þ

��� ���
p′ ·ð Þ/q′ ·ð Þ

0
B@

1
CA

p′ xð Þ/q′ xð Þ

dx = λ:

ð65Þ

Hence, for any N ∈ℕ, by (61), we have

kh i−s ·ð Þgk
� �

kj j≤N

����
����
ℓq ′ ·ð Þ Lp ′ ·ð Þ
 � = λ = g, f Nh i

≤ gk k
ℓq ·ð Þ
s ·ð Þ Lp ·ð Þð Þ
 �∗ f Nk kℓq ·ð Þ

s ·ð Þ Lp ·ð Þð Þ ≤ gk k
ℓq ·ð Þ
s ·ð Þ Lp ·ð Þð Þ
 �∗ , ð66Þ

which implies g ∈ ℓq′ð·Þ−sð·Þðℤn, Lp′ð·ÞÞ and ðℓqð·Þsð·Þ ðℤn, Lpð·ÞÞÞ∗ ⊂
ℓq

′ð·Þ
−sð·Þðℤn, Lp′ð·ÞÞ.

Theorem 22 (dual space). Let p, q ∈P log and s ∈ Clog
loc ; then,

we have

Ms ·ð Þ
p ·ð Þ,q ·ð Þ

� �∗
=M−s ·ð Þ

p′ ·ð Þ,q′ ·ð Þ: ð67Þ

Proof. Firstly, we prove that M−sð·Þ
p′ð·Þ,q′ð·Þ ⊂ ðMsð·Þ

pð·Þ,qð·ÞÞ
∗
: For any

g ∈M−sð·Þ
p′ð·Þ,q′ð·Þ ⊂ S ′ðℝnÞ and φ ∈ SðℝnÞ, by Lemma 19, we
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have

g, φh ij j = 〠
k∈ℤn

〠
lj j∞≤1

□
∗
k+lg,□kφh i

					
					〠
k∈ℤn

ð
ℝn

□
∗
kg xð Þ□kφ xð Þj j

� dx 〠
k∈ℤn

ð
ℝn

kh i−s xð Þ
□
∗
kg xð Þ

			 			 · kh is xð Þ
□kφ xð Þ

			 			
� dx kh i−s xð Þ

□
∗
k g xð Þ

��� ���
ℓq ′ ·ð Þ Lp ′ ·ð Þ
 � kh is xð Þ

□kφ xð Þ
��� ���

ℓq ·ð Þ Lp ·ð Þð Þ
� gk kM−s ·ð Þ

p ′ ·ð Þ,q ′ ·ð Þ
fk kMs ·ð Þ

p ·ð Þ,q ·ð Þ
,

ð68Þ

where □∗
k ≔FσkF

−1. Since SðℝnÞ is dense in Msð·Þ
pð·Þ,qð·ÞðℝnÞ,

we obtain M−sð·Þ
p′ð·Þ,q′ð·Þ ⊂ ðMsð·Þ

pð·Þ,qð·ÞÞ
∗
.

Now, let us prove that ðMsð·Þ
pð·Þ,qð·ÞÞ

∗
⊂M−sð·Þ

p′ð·Þ,q′ð·Þ: It is easy

to see that, for f ∈Msð·Þ
pð·Þ,qð·Þ,

f ↦ □k ff gk∈ℤn ∈ ℓq ·ð Þ
s ·ð Þ ℤn, Lp ·ð Þ
� �

ð69Þ

is an isometric mapping from Msð·Þ
pð·Þ,qð·Þ into a subspace X of

ℓqð·Þsð·Þ ðℤn, Lpð·ÞÞ. Hence, for any g ∈ ðMsð·Þ
pð·Þ,qð·ÞÞ

∗
, we can regard

it as a continuous functional on X, which can be extended

onto ℓqð·Þsð·Þ ðℤn, Lpð·ÞÞ with the same norm. Then, by Proposi-

tion 21, for any f = f f kgk∈ℤn ∈ ℓqð·Þsð·Þ ðℤn, Lpð·ÞÞ, we have

g, fh i = 〠
k∈ℤn

ð
ℝn
gk xð Þf k xð Þdx, ð70Þ

where fgkgk∈ℤn ∈ ℓq
′ð·Þ

−sð·Þðℤn, Lp′ð·ÞÞ and

gk k
Ms ·ð Þ

p ·ð Þ,q ·ð Þ
 �∗ = gkf gk∈ℤn

�� ��
ℓq

′ ·ð Þ
−s ·ð Þ Lp ′ ·ð Þ
 �: ð71Þ

Since f□∗
kφgk∈ℤn ∈ ℓqð·Þsð·Þ ðℤn, Lpð·ÞÞ for any φ ∈ SðℝnÞ, we

have

g, φh i = 〠
k∈ℤn

ð
ℝn
gk xð Þ□∗

kφ xð Þdx =
ð
ℝn

〠
k∈ℤn

□kgk xð Þφ xð Þdx,

ð72Þ

which implies g =∑k∈ℤn□kgkðxÞ. Thus, by Proposition 20,
we obtain

gk kM−s ·ð Þ
p ′ ·ð Þ,q ′ ·ð Þ

≲ gkf gk∈ℤn

�� ��
ℓq

′ ·ð Þ
−s ·ð Þ Lp ′ ·ð Þ
 � = gk k

Ms ·ð Þ
p ·ð Þ,q ·ð Þ

 �∗ , ð73Þ

by which we can get ðMsð·Þ
pð·Þ,qð·ÞÞ

∗
⊂M−sð·Þ

p′ð·Þ,q′ð·Þ:
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