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Focusing on the physical context of the thermal explosion model, this paper investigates a semilinear parabolic equation
ut = Δu + a

Ð
Ω
updx, ðx, tÞ ∈QT ,

n · ∇u + gðuÞu = 0, ðx, tÞ ∈ ST ,
uðx, 0Þ = u0ðxÞ, x ∈Ω

8>><
>>: with nonlocal sources under nonlinear heat-loss boundary conditions, where a, p > 0 is

constant, QT =Ω × ð0, T�, ST = ∂Ω × ð0, T�, and Ω is a bounded region in RN ,N ≥ 1 with a smooth boundary ∂Ω. First, we
prove a comparison principle for some kinds of semilinear parabolic equations under nonlinear boundary conditions; using
it, we show a new theorem of subsupersolutions. Secondly, based on the new method of subsupersolutions, the existence
of global solutions and blow-up solutions is presented for different values of p. Finally, the blow-up rate for solutions is
estimated also.

1. Introduction

This paper studies the following semilinear parabolic equa-
tions under nonlinear boundary conditions

ut = Δu + a
ð
Ω

updx, x, tð Þ ∈QT ,

n · ∇u + g uð Þu = 0, x, tð Þ ∈ ST ,
u x, 0ð Þ = u0 xð Þ, x ∈Ω,

8>>><
>>>:

ð1Þ

where a, p > 0 is constant, QT =Ω × ð0, T�, ST = ∂Ω × ð0, T�,
and Ω is a bounded region in RN ,N ≥ 1 with a smooth
boundary ∂Ω, n is outward unit normal vector of ST , initial
value u0ðxÞ is nonnegative continuous function, satisfying
assumption (H1) (see below), and jΩj denotes Lebusgue
measure of Ω.

This equation can be used to describe thermal explosion
or spontaneous combustion problems (see [1–3]). It differs
from the classical Dirichlet boundary conditions discussed

in most of the literature (see [3–9]). For examples, in [5, 7],
the authors considered the following equation:

ut = f uð Þ Δu + a
ð
Ω

udx
� �

, x, tð Þ ∈QT , ð2Þ

under Dirichlet boundary conditions, where a is positive
constant. And they proved the existence of global solution
and showed that all the blow-up solutions are blow up glob-
ally if f satisfies

Ð∞
0 1/f ðsÞds =∞. Furthermore, authors gave

the blow-up rate in special cases as follows:

c1 T∗ − tð Þ−1/p ≤max
x∈ �Ω

u x, tð Þ ≤ C1 T∗ − tð Þ−1/p, ð3Þ

where c1, C1 are positive constants and f ðuÞ = up, 0 < p < 1.
In [8], Li and Xie studied global existence of the following
equation:

ut − Δum = aup
ð
Ω

uqdx, x, tð Þ ∈QT , ð4Þ

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 4629799, 7 pages
https://doi.org/10.1155/2022/4629799

https://orcid.org/0000-0001-6601-6433
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4629799


with Dirichlet boundary conditions, where a > 0,m > 1, p,
q ≥ 0. They obtained that there exists a global positive classi-
cal solution if p + q ≤m and when p + q >m, and the solution
blows up in finite time if the initial value u0 is sufficiently
large. Then, the blow-up rate was given as follows:

C1 T∗ − tð Þ−1/ p+q+1ð Þ ≤max
x∈ �Ω

u x, tð Þ ≤ C2 T∗ − tð Þ−1/ p+q+1ð Þ,

ð5Þ

where C1, C2 are positive constants and T∗ is the blow-up
time of uðx, tÞ.

In [10], the authors investigated the parabolic superqua-
dratic diffusive Hamilton-Jacobi equations as follows:

ut − Δu = ∇uj jp, inΩ × 0,∞ð Þ, ð6Þ

with Dirichlet boundary condition, where p > 2. They
studied the gradient blow-up (GBU) solutions which are
defined as

T <∞⇒ lim
t⟶T−

∇uk k∞ =∞, ð7Þ

where T is the existence time of the unique maximal clas-
sical solution. And it was showed that in the singular
region, the normal derivatives uν and uνν, which satisfy
uνν ~ −juνjp, play a dominant role.

Moreover, some Fujita type results for parabolic inequal-
ities are also studied. In [11], authors studied the quasilinear
parabolic inequalities with weights and showed the existence
of Fujita type exponents. And in [12], it investigated the
nonexistence of nonnegative solutions of a class of quasi-
linear parabolic inequalities featuring nonlocal terms.

There are also some interesting results on the behaviour
and stability for perturbed nonlinear impulsive differential
systems (see [13–19]). And the stability of stochastic differ-
ential equations with impluses is studied in [20, 21].

In this paper, we will show the existence of global solu-
tion and the blow-up property of problem (1).

Now some assumptions are listed below.
(H1) u0 ∈ C2+αðΩÞ ∩ Cð�ΩÞð0 < α < 1Þ, u0ðxÞ ≥ 0, ∂u0/∂n < 0
(H2) g > 0 and satisfies the local Lipschitz condition
In our paper, we use the method of subsupersolutions

(see [22–25]). Since the there exist nonlinear boundary con-
ditions and nonlocal term, we list the definitions of super-
and subsolutions for our problem as follows.

Definition 1. �uðx, tÞ ∈ C2,1ð�QTÞ is called a a supersolution to
equation (1) if it satisfies that

�ut ≥ Δ�u + a
ð
Ω

�updx, x, tð Þ ∈QT ,

n · ∇�u + g �uð Þ�u ≥ 0, x, tð Þ ∈ ST ,
�u x, 0ð Þ ≥ u0 xð Þ, x ∈Ω:

8>>><
>>>:

ð8Þ

uðx, tÞ ∈ C2,1ð�QTÞ is called a subsolution to equation (1)
if it satisfies that

ut ≤ Δu + a
ð
Ω

updx, x, tð Þ ∈QT ,

n · ∇u + g uð Þu ≤ 0, x, tð Þ ∈ ST ,
u x, 0ð Þ ≤ u0 xð Þ, x ∈Ω:

8>>><
>>>:

ð9Þ

Blow-up and global existence solutions are defined as
follows.

Definition 2. The solution u of the problem (1) blows up in
finite time if there exists a positive real number T∗ <∞,
such that

lim
t⟶T∗−

sup
x∈ �Ω

u x, tð Þj j = +∞: ð10Þ

And the solution u of the problem (1) exists globally if
for any t ∈ ð0,+∞Þ,

sup
x∈ �Ω

u x, tð Þj j < +∞: ð11Þ

Theorem 3 states the problem of local existence of the
solution to equation (1) and is the main conclusion of this
paper.

Theorem 3. Suppose u, �u ≥ 0 are the sub- and supersolutions
to equation (1), respectively, and u ≤ �u. If u0ðxÞ satisfies
assumption (H1) and the function g satisfies assumption
(H2), then there exists û ∈ ½u, �u� ∩W2,1

p ðQTÞ, which is the
solution to equation (1).

The following two theorems show that whether the solu-
tion to equation (1) exists globally or blows up in finite time
is related to constant p.

Theorem 4. Suppose assumptions (H1) and (H2) hold, and
the equation (1) satisfies one of the following conditions.

(i) 0 < p ≤ 1

(ii) p > 1, and the initial value u0ðxÞ is sufficiently small

Then, the solution û of this equation exists globally.

Theorem 5. Assume (H1) and (H2). If p > 1 and the initial
value u0ðxÞ is sufficiently large, then the solution û to equa-
tion (1) blows up in finite time.

And the blow-up rate of the equation is given by
Theorem 6.

Theorem 6. Assume (H1)–(H3) (see below). Then, there
exists a solution uðx, tÞ blowing up at T∗ <∞. Specifically,
there exist constants C1, C2 such that

C1 T∗ − tð Þ−1/ p−1ð Þ ≤ u x, tð Þ ≤ C2 T∗ − tð Þ−1/ p−1ð Þ: ð12Þ
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Remark 7. See Definition 2 for the description of global exis-
tence and blow-up solutions.

This paper is organized as follows. In Section 2, the local
existence theory of solutions to equation (1) is established
and Theorem 3 is proved. In Section 3, the conditions for
the global existence of the solution are discussed and Theo-
rem 4 is proved. In Section 4, the conclusions related to the
blow-up solution are obtained and Theorem 5 is proved. In
Section 5, the blow-up rate of the blow-up solution to equa-
tion (1) is further discussed and Theorem 6 is proved.

2. Proof of Theorem 3

In this section, the local existence of the solution to equation
(1) is proved by using the fixed-point theorem and mono-
tone iterative technique (see [26–29]).

First, the following lemma is present, which is proved
according to [2].

Lemma 8. Suppose that assumptions (H1) and (H2) hold. Let
wðx, tÞ ∈ C2+αðQTÞ ∩ Cð �QTÞ and satisfy

wt − dΔw ≥ c1w + c3

ð
Ω

c2wdx, x, tð Þ ∈QT ,

n · ∇w + g wð Þw ≥ 0, x, tð Þ ∈ ST ,
w x, 0ð Þ ≥ 0, x ∈Ω,

8>>><
>>>:

ð13Þ

where ciðx, tÞ, i = 1, 2, 3 are continuous and bounded func-
tions in QT , c2, c3 ≥ 0, dðx, tÞ ≥ 0, ðx, tÞ ∈QT . Then, wðx, tÞ
≥ 0, ðx, tÞ ∈QT .

Proof 1. Let �ci = sup
QT

ciðx, tÞ, i = 1, 2, 3 and v = e−λtw, where

λ =�c1 +�c2�c3jΩj + 1. Then, the first equation in equation
(13) can be deduced to

vt + λv − dΔv ≥ c1v + c3

ð
Ω

c2vdx: ð14Þ

Hence,

vt − dΔv + λ − c1ð Þv ≥ c3

ð
Ω

c2vdx: ð15Þ

Assume by contradiction that v < 0 at some points ðx, tÞ
∈QT , so there must be a negative minimum value of v due
to continuity, denoted as v0 = vðx0, t0Þ. The following two
cases are discussed.

(i) If x0 ∈ ∂Ω, then

n · ∇v0 + g v0ð Þv0 ≥ 0: ð16Þ

At this point, we have n · ∇v0 ≥ −gðv0Þv0 > 0, which is
contradictory to n · ∇v0 < 0.

(ii) If x0 ∈Ω
∘, consider the values of each function at

ðx0, t0Þ. Then,

λ − c1ð Þv0 ≥ −dΔv0 + λ − c1ð Þv0 ≥ c3

ð
Ω

c2v0dx ≥ c3�c2 Ωj jv0:

ð17Þ

It yields λ − c1 ≤ c3�c2jΩj, contradicting λ ≥ c1 + c3�c2jΩj.
Combining (i) and (ii), there is no negative minimum

value of v; thus, v is nonnegative. So v = e−λtw ≥ 0, i.e., w ≥
0. Lemma 8 is proved.

Suppose that the assumptions of Theorem 3 hold. Con-
sider the following auxiliary problem

vt − Δv + v = u + a
ð
Ω

updx, x, tð Þ ∈QT ,

n · ∇v + Kv =Gk uð Þ, x, tð Þ ∈ ST ,
v x, 0ð Þ = u0 xð Þ, x ∈Ω,

8>>><
>>>:

ð18Þ

where K and GkðuÞ satisfy the following rule. Let GðuÞ =
−gðuÞu. We have that GðuÞ is Lipschitz continuous on
the interval ½u, �u�, which implies that for any u1 ≥ u2
given, there exists a fixed positive real number K such that

G u1ð Þ −G u2ð Þj j ≤ K u1 − u2j jj j: ð19Þ

Thus,

G u1ð Þ − G u2ð Þ ≥ −K u1 − u2ð Þ: ð20Þ

Let GkðuÞ =GðuÞ + Ku. Then, the function GkðuÞ is
increasing under this definition.

The auxiliary problem (12) is a third boundary value
problem. It is clear that there exists a unique solution v to
it, due to Theorem 3.4.7 in [9]. Define the nonlinear opera-
tor T : ½u, �u�↦ ½u, �u� such that v = Tu and construct the
following sequences

u1 = T�u, u2 = Tu1, ⋯, un = Tun−1, ⋯,
v1 = Tu, v2 = Tv1, ⋯, vn = Tvn−1, ⋯:

ð21Þ

It can be proved that operator T is increasing. The proof
is as follows. For any y1, y2 ∈ ½u, �u�, u ≤ y1 ≤ y2 ≤ �u, let z1 =
Ty1, z2 = Ty2,w = z2 − z1. And

wt − Δw +w = a
ð
Ω

yp2 − yp1
� �

dx + y2 − y1ð Þ ≥ 0, x, tð Þ ∈QT ,

n · ∇w + Kw =Gk y2ð Þ −Gk y1ð Þ ≥ 0, x, tð Þ ∈ ST ,
w x, 0ð Þ = 0 ≥ 0, x ∈Ω:

8>>><
>>>:

ð22Þ
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Applying Lemma 8, where c1 = −1, c2 = c3 = 0, d = 1, we
have w = z2 − z1 ≥ 0, i.e., z2 ≥ z1. Letting w = v1 − u, the
above equation is transformed into

wt − Δw +w ≥ a
ð
Ω

up − upð Þdx + u − uð Þ = 0, x, tð Þ ∈QT ,

n · ∇w + Kw ≥ Gk uð Þ − Gk uð Þ = 0, x, tð Þ ∈ ST ,
w x, 0ð Þ = 0 ≥ 0, x ∈Ω,

8>>><
>>>:

ð23Þ

from which we deduce to v1 ≥ u. The same procedure may
be easily adapted to obtain �u ≥ u1. Thus,

u ≤ v1 = Tu ≤ u1 = T�u ≤ �u: ð24Þ

By mathematical induction on n, the above sequence
(21) exhibits the following comparative relationship

u ≤ v1 ≤ v2 ≤⋯≤ vn ≤⋯≤ un ≤ un−1 ≤⋯ ≤ u1 ≤ �u, ð25Þ

which shows that the sequences fung, fvng are increasing
and bounded. So limits

û = lim
n⟶∞

un v̂ = lim
n⟶∞

vn ð26Þ

exist. And û = Tû, v̂ = Tv̂. Considering the compactness of
the nonlinear operator T and jΩj <∞, we know that û,
v̂ ∈ ½u, �u� ∩W2,1

p ðQTÞ is the solution to the auxiliary prob-
lem, so as to the problem (1). The local existence of the
solution to equation (1), i.e., Theorem 3, is proved.

3. Proof of Theorem 4

In this section, the proof of the global results of solution to
equation (1) is given.

Case 1. Combining assumptions (H1) and (H2) and Defini-
tion 1, uðx, tÞ = 0 satisfies

ut = 0 = Δu + a
ð
Ω

updx, x, tð Þ ∈QT ,

n · ∇u + g uð Þu = n∇u ≤ 0, x, tð Þ ∈ ST ,
u x, 0ð Þ = 0 ≤ u0 xð Þ, x ∈Ω:

8>>><
>>>:

ð27Þ

Therefore, uðx, tÞ = 0 is a subsolution to equation (1).
According to Theorem 3, we need to determine a globally
existing supersolution. Set φ as the unique solution of the
ellipse problem

−Δφ = 1, x ∈Ω,
n · ∇φ = 0, x ∈ ∂Ω:

(
ð28Þ

Let ϕ =Mφ where M > 0 is a constant. Obviously, on the
boundary, we have

n · ∇ϕ + g ϕð Þϕ =Mg ϕð Þφ ≥ 0: ð29Þ

And the initial value ϕ0 = ϕ ≥ 0 is

ϕt − Δϕ − a
ð
Ω

ϕpdx = −MΔφ − aMp
ð
Ω

φpdx

=M − aMp
ð
Ω

φpdx:
ð30Þ

Let equation (30) ≥0. Then, ϕ is a supersolution to equa-
tion (1) and satisfies ϕ ≥ 0. So,

M1−p ≥ a
ð
Ω

φpdx: ð31Þ

When p is fixed,
Ð
Ω
φpdx is a constant. Set μ = Ð

Ω
φpdx.

(1) In case of 0 < p < 1, equation (31) can be trans-
formed into

M ≥ a1/ 1−pð Þμ1/ 1−pð Þ: ð32Þ

At this time, let N is a sufficiently large constant such
that Nφ ≥ u0. Then, we take M = a1/ð1−pÞμ1/ð1−pÞ +N , which
can guarantee that ϕ is a supersolution to equation (1) and
the global existence of the solution u.

(2) In case of p > 1, equation (31) can be transformed
into

M ≤ a1/ 1−pð Þμ1/ 1−pð Þ: ð33Þ

To ensure that ϕ is still the supersolution to equation (1),
it needs to satisfy

u0 xð Þ ≤ ϕ =Mφ, x ∈Ω: ð34Þ

Without loss of generality, we can take M = a1/ð1−pÞ

μ1/ð1−pÞ such that u0ðxÞ ≤Mφ = a1/ð1−pÞμ1/ð1−pÞφ, that is, when
u0ðxÞ is sufficiently small, the solution u to equation (1)
exists globally.

Case 2. In case of p = 1, the form of equation (1) is as follows:

ut = Δu + a
ð
Ω

udx, x, tð Þ ∈QT ,

n · ∇u + g uð Þu = 0, x, tð Þ ∈ ST ,
u x, 0ð Þ = u0 xð Þ, x ∈Ω:

8>>><
>>>:

ð35Þ
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Let b > ajΩj, δ > ku0k∞, and zðtÞ be the solution to the
following Cauchy problem

dz
dt

= bz,

z 0ð Þ = δ,

8<
: ð36Þ

where t ∈ ð0, TÞ and the solution is zðtÞ = δebt . Then, we
have

zt = bz > a Ωj jz = Δz +
ð
Ω

zdx, x, tð Þ ∈QT ,

n · ∇z + g zð Þz = g zð Þz ≥ 0, x, tð Þ ∈ ST ,
z 0ð Þ = δ > u0 xð Þ, x ∈Ω:

8>>><
>>>:

ð37Þ

This means that when p = 1, for any given a, zðtÞ is a
supersolution to equation (1), and zðtÞ exists globally. Thus,
the solution to equation (1) exists globally.

Combined with Cases 1 and 2, Theorem 4 is proved.

4. Proof of Theorem 5

The above theorem states that the classic solution of equa-
tion (1) exists globally when 0 < p ≤ 1. In this section, we will
get the blow-up results of solutions to equation (1) when
p > 1 and prove Theorem 5.

Given assumptions (H1) and (H2) and u0ðxÞ >max
fMφ, δ0g, where M, φ are defined in Section 3 and δ0 > 0 is
a fixed constant, let ψ be the solution of the following eigen-
value problem

Δψ + λψ = 0, x ∈Ω,
ψ = 0, x ∈ ∂Ω:

(
ð38Þ

We normalize ψ, i.e., kψk∞ = 1, and λ denotes the first
eigenvalue of the problem. Let hðtÞ be the solution to the
Cauchy problem below

dh
dt

= −λh tð Þ + ahp tð Þ
ð
Ω

ψpdx,

h 0ð Þ = δ0:

8><
>: ð39Þ

It can be seen that the solution hðtÞ of this equation blows
up in finite time T∗ under the condition of p > 1. Let

v x, tð Þ = h tð Þψ xð Þ: ð40Þ

Equations below state that v , as defined above, is a subso-
lution to problem (1).

vt x, tð Þ = h′ tð Þψ xð Þ = −λψh tð Þ + ahpψ
ð
Ω

ψpdx, ð41Þ

Δv + a
ð
Ω

vpdx = hΔψ + ahp
ð
Ω

ψpdx

= −λψh + ahp
ð
Ω

ψpdx

≥ −λψh + ahpψ
ð
Ω

ψpdx = vt:

ð42Þ

Consider the boundary and initial value conditions

n · v + g vð Þv = 0, x, tð Þ ∈ ST ,
v x, 0ð Þ = δ0ψ ≤ δ0 ≤ u0 xð Þ, x, tð Þ ∈Ω:

(
ð43Þ

Hence, v is a subsolution to problem (1), when p > 1.
According to equations (42) and (43), set w = u − v . Consid-
ering mean value theorem, we have

wt − Δw ≥ a
ð
Ω

up − vpð Þdx = a
ð
Ω

pξp−1wdx, x, tð Þ ∈QT ,

n · ∇w + g wð Þw = n · ∇u + g uð Þu = 0, x, tð Þ ∈ ST ,
w x, 0ð Þ = u0 xð Þ − v x, 0ð Þ ≥ u0 xð Þ − δ0 ≥ 0, x ∈Ω,

8>>><
>>>:

ð44Þ

where ξ is a nonnegative function between v and u.
Applying Lemma 8 with d = 1, c1 = 0, c2 = ξp−1, c3 = ap, w
≥ 0, i.e., u ≥ v is obtained. Since hðtÞ blows up in finite
time, so does v . Therefore, when p > 1, the solution u to
equation (1) blows up in finite time, which means equa-
tion (1) has at least one solution that blows up in finite
time, when p > 1 and u0ðxÞ is sufficiently large. Theorem
5 is proved.

5. Proof of Theorem 6

In this section, we show the blow-up rate of the blow-up
solution to equation (1) near its blow-up time.

Suppose that the solution u of equation (1) blows up in
finite time T∗ and the assumptions (H1) and (H2) hold.
We need the following assumption on the boundary
condition:

(H3) There exists a constant γ > 0 such that inf gðuÞ ≥ γ
Let function UðtÞ = sup

x∈ �Ωjuðx, tÞj, where uðx, tÞ is a
blow-up solution to equation (1). The following lemma is
given according to [8, 30, 31].

Lemma 9. Suppose equation (1) satisfies the assumptions
(H1) and (H2), and there exists a positive real number C1
such that

U tð Þ ≥ C1 T∗ − tð Þ−1/ p−1ð Þ, t ∈ 0, T∗ð Þ: ð45Þ
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The following provides an upper bound for the solution
uðx, tÞ to equation (1). Let zðx, tÞ be the solution of the fol-
lowing auxiliary problem

zt = zq Δz + a
ð
Ω

zpdx
� �

, x, tð Þ ∈Ω × 0,T∗∗ð Þ,

n · ∇z + γz = 0, x, tð Þ ∈ ∂Ω × 0,T∗∗ð Þ,
z x, 0ð Þ =max c0, u0f g, x ∈Ω,

8>>>><
>>>>:

ð46Þ

where u0 is stated in Theorem 5, q ∈ ð0, 1Þ, and c0 > 0 is a
fixed constant. Obviously zðx, 0Þ ≥ u0, according to [8] The-
orem 3.1 (the equation discussed in it is a subsolution to
equation (46)), zðx, tÞ blows up in a finite time, denoted
as T∗∗.

Let the function Jðx, tÞ = zt − δzp+q, where δ > 0. We
need to prove that J ≥ 0. According to [8]. Since p/ð2p + q
− 1Þ+ðp + q − 1Þ/ð2p + q − 1Þ = 1, applying Young’s inequal-
ity yields

zp+q−1
ð
Ω

z2p+q−1dx
� �p/ 2p+q−1ð Þ

≤
p + q − 1
2p + q − 1 θzp+q−1

� � 2p+q−1ð Þ/ p+q−1ð Þ

+ p
2p + q − 1 θ− 2p+q−1ð Þ/p

� �ð
Ω

z2p+q−1dx,

ð47Þ

where θ = ððp + qÞ/ð2p + q − 1ÞÞp/ð2p+q−1ÞjΩjpðp+q−1Þ/ð2p+q−1Þ2 .
Then, from Holder’s inequality, we have

ð
Ω

zpdx ≤ Ωj j p+q−1ð Þ/ 2p+q−1ð Þ
ð
Ω

z2p+q−1dx
� �p/ 2p+q−1ð Þ

: ð48Þ

Combining equations (47) and (48) yields

Jt − zqΔJ − 2qδzp+q−1 J − apzq
ð
Ω

zp−1 Jdx

= qz−1 J2 + δ p + qð Þ p + q − 1ð Þzp+2q−2 ∇zk k2 + qδ2z2p+2q−1

+ apδzq
ð
Ω

z2p+q−1dx − aδ p + qð Þzp+2q−1
ð
Ω

zpdx

≥ qδ2z2p+2q−1 + apδzq
ð
Ω

z2p+q−1dx

− aδ p + qð Þzp+2q−1
ð
Ω

zpdx

≥ δ qδ − a p + q − 1ð Þθ 2p+q−1ð Þ2/ p p+q−1ð Þ½ �
� �

z2p+2q−1

= qδ δ − δ1ð Þz2p+2q−1 ≥ 0:
ð49Þ

The boundary condition leads to

n · ∇J + γJ = n · ∇zt + γzt − δ n · ∇zp+q + γzp+qð Þ
= −δ n · ∇zp+q + γzp+qð Þ
= −δγzp+q 1 − p − qð Þ ≥ 0:

ð50Þ

And the initial value condition leads to

J x, 0ð Þ = zt x, 0ð Þ + δzp+q x, 0ð Þ = δzp+q x, 0ð Þ ≥ δcp+q0 ≥ 0:
ð51Þ

For any ε > 0, applying Lemma 8 on Ω × ð0,T∗∗ − ε�,
where d = zq, c1 = 2qδzp+q−1, c2 = zp−1, c3 = apzq, we have
Jðx, tÞ ≥ 0. Considering the arbitrary of ε, lim

ε⟶0
Jðx, tÞ ≥

0, i.e., zt ≥ δzp+q ≥ 0 can be obtained. Then, there exists
a constant τ ∈ ð0,T∗∗Þ such that z ≥ 1, when t ≥ τ. So
we have zp+q ≥ zp, i.e., zt ≥ δzp. Inegrating this equation
over ðt,T∗∗Þ,

z x, tð Þ ≤ C2 T∗∗ − tð Þ−1/ p−1ð Þ, ð52Þ

where C2 = ðδpÞ−1/ðp−1Þ. Set w = z − u. According to equation
(46), there is zðx, 0Þ ≥ uðx, 0Þ, i.e., wðx, 0Þ ≥ 0. On the
boundary, we have n∇z + γz = n∇u + gðuÞu ≥ n∇u + γu, i.e.,
n∇w + γw ≥ 0. Considering z ≥ 1 and mean value theorem,
we obtain

wt + Δw ≥ a
ð
Ω

zp − upð Þdx = a
ð
Ω

pηp−1wdx, ð53Þ

where η is a nonnegative function between z and u, ðx, tÞ ∈
Ω × ðτ,T∗∗Þ. Applying Lemma 8 with d = 1, c1 = 0, c2 = ηp−1,
c3 = ap, w ≥ 0 is obtained. So z ≥ u in ðτ,T∗∗Þ. Combined with
Lemma 9, there exists solution u to equation (1) satisfying

C1 T∗ − tð Þ−1/ p−1ð Þ ≤ u x, tð Þ ≤ C2 T∗ − tð Þ−1/ p−1ð Þ, ð54Þ

where T∗ is the blow-up time of solution uðx, tÞ. Theorem 6 is
proved.
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