Hindawi

Journal of Function Spaces

Volume 2022, Article ID 4732049, 13 pages
https://doi.org/10.1155/2022/4732049

Research Article

@ Hindawi

Weighted Composition Operators from H™ to («, m)-Bloch Space
on Cartan-Hartogs Domain of the First Type

2

Jianbing Su(®' and Ziyi Zhang

ISchool of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
2School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Correspondence should be addressed to Ziyi Zhang; zyzhangl 1@hotmail.com

Received 18 December 2021; Accepted 15 February 2022; Published 15 April 2022

Academic Editor: Natasha Samko

Copyright © 2022 Jianbing Su and Ziyi Zhang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Let Y; be nonhomogeneous Cartan-Hartogs domain of the first type, ¢ a holomorphic self-map, and y a fixed holomorphic
function on Y;. We study the weighted composition operator yCyf =y(f o ¢) for a function f holomorphic on Y;. Our main
results generalize both cases of the unit ploydisc and the unit ball obtained by Li and Stevi¢ (Li 2007 and Li 2008). Firstly, we
obtain two crucial inequalities on Y; furthermore, the boundedness and compactness of operator yC, from the space H* of

all bounded holomorphic functions to the (e, m)-Bloch space %*™ on Y, are investigated.

1. Introduction

Let O be a bounded domain in C" and H(Q) be the set of all
holomorphic functions on Q. Let A, B be complex Banach
spaces on (2, let ¢ be a fixed holomorphic function on €,
and let ¢ be a holomorphic self-map of Q. The weighted
composition operator yC;, : A — B with the multiplication

symbol y and the composition symbol ¢ is defined by
vCof =y(fe¢) (1)

for a function f holomorphic on A. It should be mentioned
that this operator can be regarded as a generalization of a
multiplication operator and a composition operator on var-
ious Banach spaces; one can see [1] and reference within for
more information on composition operators.

Our primary objects of study in this article are bounded
and compact weighted composition operators from the
space H*® of all bounded holomorphic functions to the (a,
m)-Bloch space %'*™ on the Cartan-Hartogs domain of
the first type, which is defined by Yin [2]. In the work of
[3], Cartan first split the irreducible bounded symmetric
domains into four types of Cartan domains and two excep-

tional domains whose complex dimensions are 16 and 27,
respectively. Based on this pioneering work, Yin [2] con-
structed the Hua domains in the theory of several complex
variables, which mainly contain the Cartan-Hartogs
domains, Cartan-Egg domains, Hua domains, generalized
Hua domains, and Hua construction. The Cartan-Hartogs
domain of the first type is defined as follows:

Y (N, m, n; K) = {w €CY,Z € R, (m, n): WP < det (1 722’) },K >0,
(2)

where
R, (m, n) = {ZE(C”“X" 1-27' >0} (3)

is the Cartan domain of the first type, Z' denotes the conju-
gate transpose of Z, det denotes the determinant of a square
matrix, N, m, n are some positive integers, and K is a posi-
tive real number. In particular, when m=1, W =0, and K
=1, the Cartan-Hartogs domain of the first type turns to
be the case of the unit ball; it is obvious that the unit ball
is a specific case of the Hua domain. In [4], they verified that
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the Hua domain is not a homogeneous domain or a Rein-
hardt domain unless a ball. For simplicity, the Cartan-
Hartogs domain of the first type is characterized as Y.
Moreover, throughout this paper, we only consider the case
of N =1 for convenience. However, we would like to men-
tion that all of results obtained in this work can be extended
to the case of N > 1 naturally.

In [5], Ohno investigated the boundedness and compact-
ness of weighted composition operators between H* and
the Bloch space 8 in the open unit disc. In the setting of
the unit ball, Du and Li [6] study the boundedness and com-
pactness of weighted composition operators from H* to the
Bloch space 9B, whose norm is defined by the radial deriva-
tive Zf(z). Li and Stevi¢ [7] gave another characterization
for the boundedness and compactness of weighted composi-
tion operators from H* to the a-Bloch space %*, whose
norm is defined by the gradient Vf(z). Actually, these two
norms are equivalent (see [8] for details). In the setting of
the unit polydisc, Li and Stevi¢ [9, 10] presented some nec-
essary and sufficient conditions for the composition opera-
tors and weighted composition operators between H* and
a-Bloch space %B“ to be bounded and compact. Besides,
there are various interesting works in the literature concern-
ing the operators from the Bloch-type space with the normal
weight y or the logarithmic weight to H* in the unit disc,
unit ball, or polydisc (cf. [6, 11-15]).

Allen and Colonna [16] investigated the boundedness
and compactness of the weighted composition operators
from H*® to the Bloch space % in the bounded homoge-
neous domain. In the case of the infinite dimensional
bounded symmetric domains, Hamada in [17] studied the
bounded weighted composition operators from H* to the
Bloch space & on the infinite dimensional bounded sym-
metric domain, which is realized as the open unit ball of a
JB*-triple in [18].

However, in the setting of the Hua domain, the related
works only focus on the composition operators between
the classic Bloch spaces, the Bloch-type space equipped with
the special weight & or the normal weight y (see, e.g,
[19-23]).

In the present paper, motivated by [7, 9], we characterize
the boundedness and compactness of weighted composition
operators from H® to (a, m)-Bloch space on the Cartan-
Hartogs domain of the first type. The remainder of this
article is organized as follows. In Section 2, we collect
background materials necessary for the understanding of
the statements of our main results. In Section 3, two
important inequalities on the Cartan-Hartogs domain of
the first type are derived. The first one, let K>1 and «
>m, for a holomorphic function f in the Cartan-
Hartogs domain of the first type, there exists a constant
C>0 such that

11l ggem < 1f [l gtom < Cllf Nl oo (4)

The second inequality is that, for (Z, W),(X,Y)e€Y,,
we have
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_ 1/
2\det (1-2X") " (W, y)Kim

> [det (1—22’)”m - |W|2K/m} (5)

— 1/
+ [det (I—XX') m—|Y|2K"”},

which is in a position to derive the Hua inequality (see
[24]). Using these two inequalities and constructing some
test functions on Y, Section 4 is devoted to studying the

boundedness of the weighted composition operator yCg
: H®(Y;) — B*™(Y,), and in Section 5, the compact-
ness of the weighted composition operator yC : H*(Y)
— B @™ (Y,) is also derived.

Throughout the rest of the paper, C denotes some con-
stants which may change from line to line.

2. Preliminaries

In this section, before we state the main results, we would
like to collect some notations and crucial lemmas in order
to prove the main results.

Definition 1. We use H® = H®(Y) to denote the space of all
bounded holomorphic functions on Y. The space H® is a
Banach algebra under the following supremum norm |-

1flleo = sup |f(Z, W)| <+oo,

(ZW)eY,

forall f e H(Y;). (6)

For a holomorphic function f, the complex gradient of f
at (Z, W) will be denoted by Vf(Z, W), that is

0f(Z, W) 0f(Z, W)

of(zw)
dz,, 0z, ’

g 0z

>

Vf(Z, W)= ( of (2, W)).

ow

mn

(7)

Definition 2. Let a>0. The (a, m) -Bloch space %*™ =

B'“™(Y,) consists of all holimorphic functions on H(Y,)
satistying

_ )\ Um 2K @
sup {det (I—ZZ) — W] m} Vf(Z, W)| < +c0.
(Z,W)eY,

(8)

If we equip the norm

1/ Il ggtem = £ (0,0)| + sup
(ZW)eY,

. {det (1-22") S |W|2K’m} AT
9)

it is clear that the (&, m)-Bloch space B*™ becomes a
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Banach space under the norm ||-[| g» which can be proved
in a standard way.

For more information on H* and the Bloch-type space,
we refer to [25, 26] and references therein.

Lemma 3 (see [27], Theorem 3.3.1) (Hadamard). Let A = (
a;;) 2 0 be an n x n Hermitian matrix. Then,

det A< Haii, (10)

i=1

and "= holds if and only if A is a diagonal matrix.

Lemma 4 (see [28]). If x, > —1, x; keep the same sign and
n =2, then,

n

[J+x)>1+ ixk. (11)

k=1 k=1

Remark 5. When n=1 or x; =0(k=2,--,n), we get [[,_,
(1 +xk) =1+ ZZ:I.xk.

Lemma 6 (see [26], Proposition 5.1). Let D be the unit disc
on C". H®(D) c B(D). Moreover,

(1-121°) | £ @) < 1 oo (12)

forall zeD and f € H®.
This lemma shows that any bounded analytic function
on D is in the Bloch space. We will generalize this lemma

to the Cartan-Hartogs domain of the first type in Section 3.

Lemma 7 (see [29], Appendix: Theorem 1.1). Let

211 212 Z1n
21 22 Zom

7= (13)
Zm] ZmZ Zmn

be an m x n matrix (m < n); then, there exist an m X m uni-
tary matrix U and an n X n unitary matrix V such that

A0 0 0 0
0 A 0 0 0
Z=U ) ] Vo (A zA,2-2A,20)
0 0 A, O 0
(14)
where A%, -+, A, 2 are characteristic values of ZZ'.

Lemma 8 (see [29], Theorem 3.1.1). Let

A, 0 0
0 A, - 0
A= (A= A,22A,,20),
0
0 0 A,
# 0 0
0 u, 0
Ap= o | EHE28,20),
0 0 o
(15)
satisfying
)Ljptk<1(j,k:1,-~,m). (16)

Then, there is an arranged square matrix P such that

inf
UU’:I,VV’:I

>

(17)

and the minimum value is obtained when U=P and V = L.

det (1— A UAZU'V)‘ = ’det <I—A1PA2P'>

Lemma 9 (see [28]). Let ay, by, > 0; then,

n I/n n 1/n " 1/n
] "+ (1) (f10) " s
k=1 k=1

k=1

Lemma 10. Let K be a compact subset of Y, and f be a holo-
morphic function on B'“™(Y,). Then for every (Z, W) €K,
there exists a constant C(K) > 0 such that

(2, W)| < C(K)|1£ 1] ggeom- (19)

Proof. This lemma is a special case of Lemma 2.4 in [23] by

taking u(|(Z, W)|) = [det (I - 2Z")"" = [W™™]"; here, we
omit the details.

Lemma 11. Let ¢ = (¢;;, 95 =+ > Prunss) be a holomorphic
self-map of Y, and y a holomorphic function on Y. The
weighted composition operator yCy, : H®(Y;) — BEm (Y )
is compact if and only if yCy is bounded and for any bounded
sequence {f;},., in H®(Y;) converging to 0 uniformly on
compact subsets of Y1, limy__ o [[yCyf || yiem = 0.

Proof. Suppose that yCy : H*(Y;) — Bm(Y)) is com-
pact. Let {f;},., be a bounded sequence in H*(Y;) with
sup || fillleo €M < 00, and f; — 0 uniformly on com-
pact subsets of Y; as k — co. By the definition of compact-
ness of yCy, the sequence {yCyf k}kz | has a subsequence



{Wc¢fkj}, . converging to f € B*™(Y,). By (19), there
iz

exists a constant C(K) > 0 such that

W) = £z W)| < C)|[vCefy ~f] .,

(20)

‘ (wC¢f kf)(

for every (Z, W) € Y. It follows that (yCyf, )(Z, W) - f(Z,

W) — 0 uniformly on compact subsets of Y, as j — co.
Therefore, f, — 0 uniformly on compact subsets of Y; as
]

j— 00. Owing to the definition of yCj, we obtain f=0;
thus, limy__, [y Cyf /| o = 0-

Conversely, suppose that {h, },., is a sequence in the ball
B(0, M) c H®(Y,); then ||A||,, <M < oo. It is obvious that
{h;} s, is uniformly bounded on compact subsets of Y.
By Montel’s theorem, we know that {h;},., has a subse-
quence {hkj}j>1 converges to he€ H(Y;) uniformly on Y.

Moveover, h € H®(Y;) and | k||, < M. Hence the sequence
{hkj - h} s such that ||hkj —h|| <2M and hkj -h—0
j= 0

uniformly on compact subsets of Y;. We Following from
the hypothesis implies that

=0,

glam)

(21)

T

J—00 J—00

which yields that the set yCy(B(0, M)) is relatively compact.
U

3. Two Important Inequalities

In this section, we obtain two important inequalities on Y/,
which are essential in proving our main results. We remark
that two inequalities below seem to be known in the unit
ball, but we need to prove them correct on the Cartan-
Hartogs domain of the first type.

Theorem 12. Let K> 1 and a>m. There exists a positive
constant C independent of f such that

Il gem < 11£llgomm < Cllf lloos (22)
forall (Z,W) €Y, and f € H®.

Proof. Since & > m and the definition of %*™ (Y,), we have
|1 f1l gem < || 1] ggomm . For each (Z, W) € Y, let

211 %12 Z1n
z z z
21 22 2n
Z= (23)
Zml Zm2 Zmn

Journal of Function Spaces

In view of (10) and (11), we have

det (1-22") < [1 = (|u[* + Jen+-+|21,P) ]
X [1= (Jza1 | + |20+ +[200 )]
X X [1 - (|Zm1|2 + |Zm2|2+”'+|zmn|2)}
< (1 - |Z11|2) (1 - |Z1n|2) (1 - |Z21|2)
: (1 - |Zm1|2) (1_|Zmn|2)‘
(24)
Due to Va2 +b*<a+b(a>0,b>0), it leads to

2

0 0
Vi W>|={ Tz +[ L]
1/2

0

oot azf (Z, W) a‘J/CV(Z W) }

of of

8211 @ W)‘ 0z, @ W)‘
0 0

oot azf (Z,W)| + ‘81{V(Z W)‘

(25)

Since |W|* < det (I- ZZ'), it is easy to see that [W| < 1.
Moreover, let a=det (I-ZZ'), b=|W[*; we have 0<b <
a < 1. Making use of the following inequality (a'/” - b"/™)"
<a-b, it suffices to obtain

[det (I - ZZ’) o

m
|W|2K/”’} < det (1 —ZZ’) - |[W.
(26)

In fact, to prove (a'” — b""™)" < a— b, we can consider

a'™ < (a—-b)"" + b Let c= (a—b)"", d = b""; it follows

that we should prove ¢ +d™ < (c+d)™, which obviously
holds. Moreover, according to Lemma 6, it leads to

{det I- zz \W\ZK/"‘]m\vf(z, W)\s[det (I—ZZ')—\W\ZK]IVf(Z, w)l
<[(U=leu) (1= J2al) -
x( o 2 W)kl 5=~ f (2 W)l Zin(z W)kt 5 o (2, W)I)

<[(1- \Zu\)(l Ile\) (1= ll) = (U= L2 P) (1= fnl) o (1= [zl?) W]
x<|aaf (Z W)=~ f (2o W)t 2 f (2 W)l o (2, W)|>

<[0-kP) (- |z12\) (1 2 )(1 |w‘<| Bl
x(I o (ZW)H 5~ f (z W)+ in(z W)+ f(z W)|>

(L= lapl?) = (W]

<(1-feuf )l—f<z, W)l (1= ) (2 Wl (1= o) 2 2, W)
(- W) 15 I 7wyl <mnlfl, (1= \wﬂ)afé‘i’/fz) a;:v|
< ma|flloo+lflleo KIWIK1 (mn+ K)lflloo
(27)

which gives the desired estimate. O



Journal of Function Spaces

Remark 13. When the target is the unit ball in C", let m =1,
W =0, and K = 1; we have the inequality (1 - |Z|*) | Vf(Z)
| <(n+1)|fll,> which arrives at the same conclusion in
([7], Lemma 3).

Theorem 14. Let Z, X € C™", W,Y e CN and K> 0. If I -

7750, I-XX'>0, W™ <det (I1-ZZ') and |Y|* < det
(I-XX"). Then, the following inequality holds

— Im
2| det (I—ZX’)I — (W, Y)K/m|
_ 1/m
> [det (I—ZZ’) - |W|2K/’”] (28)

—_ N\ 1/
+ [det (I—XX’) " |Y|2K/’”}

and "= holds if and only if (Z, W) = (X, Y).

Proof. When m=n, since Z,,X, €R;(m,n), applying
Lemma 7, there exist m x m unitary matrixes U,, U, and
n x n unitary matrixes V;, V, such that

A0 0
0 A, 0

Z,=U, ] Vi=U AV (1> 24,>-21,,>0)
0 0 A,
0 0
0 u, 0

X, =U, ] V,=U, AV, (1>p 2py2--2p, 20).
0 0 - u,

Then, it turns out to

det (I—Zle') = det (1 ~UAV, VZ’/KZ’UZ’>
= det (UlUl' - UIAIVIVZ’/TZ’UZ’)
= det U, det (UI’ —AIVIVZ’/(Z’UZ’>
= det (1— AIVIVZ'/YZ’UZ’U1>
= det (1—AIVIVZ’/IZ’VZVI’UZ’UI),
(30)

and according to Lemma 8, there exists an arrange square
matrix P such that

| det (1 - Z,X, ’)| > | det (1 - AlPAzP')l = H(l - )Li‘uki)

| (31)

m
=1

5
Hence, using (18), we have
. i
2|det (1—21)?1’)1/'" zlz/y[g(l—/\iyk)} )
o] el
e 0wl o)
+{ﬂ 1-p,? } m:det 1-2,2,)" +det (1-x,%5, )"
[(1-w7)| =det(1-227) " vder )(32)

where k; is the rearrangement of i. Moreover, referring to
the condition of equalities for (31) and (32), we obtain the
inequality

— N\ /m — o\ Um N Vm
2|det (I—le1 ) > det (I—ZIZI ) + det (I—Xle ) ,

(33)

which becomes an equality if and only if Z, = X.

When m < n, there exists an unitary matrix U™ such
that

Z= (Zl<'">, o) U,X = (Xl(’”),Xz) U. (34)
By (32), we obtain

2

det (1 - zf(’) ”m' =2

det (I -7Z,X, ')

_ 1/m _
> det (1—zlzl’> + det (I—XIXI')
— 1/m — — )\ Im
> det (I - 7,7, ) + det (1 ~ XX, - X,X, )
- 1/m -
= det (I—ZZ) + det (I—X )
(35)
Thus, the inequality

1/m

_ 1/m _ 1/m _
2det(1—zx’> zdet(I—ZZ') +det(1—xx’)

(36)

holds when m <n, and "= holds if and only if Z=X. By
the inequality of arithmetic and geometric means, we have

K/m

2|W|K/m|Y!| < |W|2K/m + |Y|2K/m’ (37)

and the equality holds if and only if [W | = | Y'|. Therefore,
combining (36) with (37) gives that



— 1\ Um Kim — )\ Um
2det(1—zx) — (W, Y) 22det(I—ZX>
— 1/
=2f(W, ¥)<"| 2 2]det (1-2%")
_ — o\ U/
— 2w |7 2 det (I—Zz’) "

— 1/
+ det (I —XX’) " _ |W‘2K/m _ |Y|2K/m

= {det (I—ZZ')W” -

_ 1/
IWIZK””] + {det (I—XX’) " \YIZK””}.

(38)

The first inequality becomes an equality if and only if
det (I1-ZX ')Um AW, Y)Y >0, and the second inequality
becomes an equality if and only if W =0, Y =0, or W =kY
(k>0), which implies ~=" holds only when W=Y in
(38). Hence, in this case, there is equality in (38) if and only
if (Z,W)=(X,Y). O

Corollary 15. Let Z,X e C™", W,Y eCN, and K> 0. If I

-27'>0, 1-XX' >0, |W* <det (I-2Z"), and |Y* <
det (I - XX"). Then, the following inequality holds

N 2
det (I - ZX') (W, YK

> {det (1-22')"-

— 1/m
\W|2K/’“} {det (I—XX') - \Y|2K/’“} .

(39)
Proof. This proof only follows the elementary inequality

((a+b)/2) = Vab(a=0,b>0); here, we omit the details.
O

Corollary 16. Let Z,X e C™". If - ZZ' >0 and - XX'
> 0, then,

_ 1/m _ 1/m _ 1/m
2|det (1—2)(’) > det (1—22’) + det (I—XX') .

(40)

Proof. Substituting W =0 and Y =0 into (28) leads to this
inequality. O

Remark 17. Since((a + b)/2) >/ab(a > 0,b > 0), we get

‘dEt (]_ZX’) }2 _ ‘(I_ZZ,)UW, 2m
> E det (I—ZZ')W + % det (I‘XX’)W} ’ (41)

. {det (1-22')" de (I_XX')“"T

= det (1 - ZZ') det (1 - XX’),
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which yields the Hua inequality discovered by Hua Loo-
Keng in [24].

4. Boundedness of yC, : H* — L)

In this section, we characterize the bounded weighted
composition operator in the case yC, : H*(Y;) — 7
(Y;). The following theorem describes such properties.

We will begin by introducing some notations. Let ¢ =

(611> B15 = D> Brnsq) be @ holomorphic self-map of Y,
denoting
94,,(Z, W) 94,,(Z, W) 94,,(Z, W)
0z, 0z,,, ow
DY(Z, W) = a¢mn(2, w) a¢mn<IZ’ w) a¢mn(2) w)
0z, 0z, ow
94 (ZW) 0 09,,0(Z W) 04, (2 W)
0z, 0z,,, ow
(42)
Theorem 18. For K>1 and a>m, let ¢= (¢, ¢, "

@ > Drunss) be a holomorphic self-map of Y, v a holo-
morphic function on Yy, and (Zy, Wy) = ¢(Z, W). If

W € (%;(a,m)’

_ )\ U/m «
{det (1 —zz’) - \W|2K’”’}
sup — 7 [Y(Z, W)|[D§(Z, W) < oo,
(Z,W)eY, {det (I Z¢Z¢ ) _ |W¢|2K/m:|

(43)

then the weighted composition operator yC, : H*(Y)
— B (Y,) is bounded.

Conversely, if the weighted composition operator yCy
c H®(Y;) — B™(Y,) is bounded, then,

v e B
_ o\ Um Kim «
det (1—22) - W]
e, e WL WG(Z W) < o,
Videt (1-2,2, ) Wl
(44)
where
1 N Im N
Gzw)={ ¥ | Y o det (I—Z¢Z¢') tr{(!—Zv,Zw,) Iwzd,’}
12 12
3% W)+ {W |2y ’a¢mn+l @z W) ’
2kl 2kl (45)

o X e (1-2,2)) | (1-22,) 12y |

I<usm
2}1/2

1<v<n

9w
oW

(2KIm)-2 /a¢m,,+1
oW

x (zw+—(w| W, z,w)
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Proof. Assume that (43) holds. There exists a positive con-
stant C,; such that

_ A\ «
{det (I—Zz’) m—|W|2K/”‘]

[det (1-2,2,)" - |w, \2’“'"}

7 [W(Z, W)|ID§(2, W)[ < Cy,

(46)

forall (Z, W) € Y; and (Zy, W) = §(Z, W) € Y. Firstly, we
know that

VCN@W=| Y s wyi

1<usm W
1<v<n

(2 W)

af a¢mn+l
+ 5y (92 W))TH(Z’ W), -,

mn+1

af a(puv
Y @ w) stz w)

Zmn

+

af a¢mn+1
P (9(Z. W) L (z, W),

mn+1 mn

L (g wy) B z,w)

1<v<n (47)

(92 W)) Lt 7, W)) .

)%

mn+1
Therefore, it leads to

[V(Caf) (2. W)[?

2

_ of 3., of 90,110
= X | X Gy GEW)GEE W) g (92 W) R 2 W)
1<k<m | 1<usm

1<i<n | 1sv<n

e
“w W)

| Y ey Fe@we e w)

1<uzem 0¥ Y sy
1<v<n

2

0 d
2y | ¥ Lpzwlegw
Y, 0z
1<k<m | 1<u<m
1<l<n | 1<v<n
2

2 Y gz wy Lz w)

1<k<m Y 2kl
1<l<n
2
f Puv of L ’
+20 Y ) W EW)| +25r —(#(E W) T (L W)
lgugm
1<v<n

7
a 2 a 2
2| ¥ [Lpzw| L w@w)
1<u<m uv mn+1
1<v<n
9 : 91
x Wz, Wyl o+ (2, W)
15%:911 1<usm 9z lgém azkl
1<l<n 1<v<n 1<l<n
d r! 2 ,
Y [ s z.w| | ~2ivrio(z, w)Pipec wir.
1<u<m
1<v<n
(48)
Namely,

IV (Cof) (2, W)| < V2IVF($(2Z, W))||ID$(2Z, W)|.  (49)

For a function fe€ H®(Y;), we obtain the following

estimate

{det (I—ZZ')W—|W|2K/”’} IV Cf) (2 W)

IN

IN

o

det (1 77 ’)”m |W|2K’”‘
~|v1// (Z, W) - (Cuf ) (2, w(z W) -V(Cof ) (Z, W)
det (1-22")" |W|2’<“" [z W (Cuf) (2 W)

 fder (1-227)" - |W\2’<""T|w<z, W[V (Cof) (2 W)

et (1-22/) " = | vy z, wlif gz w)
+Vade (1-22') " - Wy, wlvsez, w))
. |D§(Z, W)| < [det (1 - zZ’) " |W|2K’m] "y w)|

NSV “«
{det (I—ZZ’) m—|W\2K’m}

9 W)+ V3 - .
{det (1-2,2,)" - |w¢y”</'"}

W2 W) IDP(Z, W) x [det (1-2,2,') " - |W¢|2K"”} ’

VSO W) o 1l oo + V2C1 1f | gy
(50)

Since y € B%™ and (22), it leads to

_ o\ Um o
CAF o = | (WCa) 0. 0)] + sup [det (1-22) ,|W|2K/m}

<

(ZW)eY,

V(WCaf) (2, W) < [y(0,0)[1£ (#(0, 0))] + [[¥l| ggem [1f 1] o
+V2C,| fllgrnm < W0 [ flloo + [l gtem 1l oo+ V2CCi [l
Gllfllo

(51)



which implies that yC,: H®(Y,) — B (Y,) is
bounded.
Conversely, assume that yC, : H*(Y;) — B (Y )

is bounded. It follows that there exists a positive constant
C such that

Let f=1; we have ||y g4en <C, which implies y €
B'*™_ For (X,Y) €Y, define a test function Fxy) €H(Y,
) by

— 1/m
det (I - XX') — |y 2Kim

f(X,Y) (Z, W)= (53)

_ 1/ :
det (1-2X') (W, y)Kim
From (28), it follows that

— 1/m
det (1 —XX') — [y

— 1/i
det (I—XX’) " |y [Kim

<
(172) {det (1-22") " |W|2K’"’} +(112) {det (1-xx) . |Y|2K’”‘]

— 1/i
2 [det (1-xx") " |Y\2K’”‘}

Im

— 1
det (I—XX') — [y pKim

(54)
which implies f y ) € H*(Y) and [|f iy y) [l <2
For the test function f, we have
— 1/m
o ey det (1-xX") " - |y
)
oY, o\ Vm kim)?
[det (1 -Z,X ) —(W,.Y) }
Fuy (2 X),
— )\ Um
o ey det (I—XX’) — |y pKim
aY( ) >1(¢(Z’ W) Um i’
mn+ ! 2K/m
{det (I—Z¢X ) —(W,.Y) ]
K (Kim)=151
- —(W,, Y Y,
m(We ¥)
(55)
where F,,(Z4,X) = (1/m) det (I - Z,X")""te[(1 - Z,X')""

1,,X']. It leads to
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‘v (CNQX Y>) (zw) ‘

f

2

9 d
03 E T ey Ry S gz, w) Pt )

1<k<m | 1<u<m w
1<i<n | 1<v<n

2 d
> Tan e, W) e 2, w) +%<¢<Z>w»%<&m

1<usm BY“

1<v<n

— 1/m
det (I—XX') — |y [Kim

2
1<k<m | 1<usm [det (172¢2,)1/m —(w, Y>K/m:|
I<l<n | 1<vsn

- 1/m K,
det(I—XX) — |y[Kim K

[det (I - ZVQ’(’) o (W, Y>K/”’]

+

2 m

— 1/i
det (1-xX') "y pKm
N

A\ Um 2 'guV(ZWX)
1<usm [det (I —Z¢X') -(We Y>K/m]

1}1/2

9,

Fo (24 X) S (Z, W)

Zn

—(w,, Y)&m Ty L (Z, W)

20

3.,
aw &W)

1<v<n
24 112
det (1-xx")" = [y K 3
+ ( ”)m 5 %<W¢, Y> (K/m)- b ¢mn+1 (Z W)
[det (1-2,%") "= (w,, Y)“"“]
det (I—XX')W — |y
A\ Um 2
det (1-2,X') " = (Wy, v)""
2
09, K )15 O
xgy Y Fu(Z4X) o (ZW)+ (W, y)®my! ‘bz L(Z, W)
1<k<m | 1<u<m K u
1<ln | 1<v<n
2 1/2
+ Y Fu(ZpX )B‘pw(z w) +_(w y)Emy ’a‘p'""“ il (7, W)
usm
1<v<n
(56)
Then, it follows that
m a
[det (I—ZZ')” - |W\2K’"‘] |v(c¢f(xvy))(z, W))
o
[det (1- zZ’)"m - \W|2'</'"] [det (1-xx') " |Y|2K/”‘]
- - .
det (I—Z¢X')” — (W, 7)™
2
X3 X | X Fulzpx )a% (@ W) o (W 1)y Yt g,y
kI
1<ksm  |l1<u<m
1<I<n l1<v<n
12
9 (Kim)-157 Ot :
+ Y Fu(ZpX) Wwew) +f<w y)®mty iz w)
l<usm
1<v<n
(57)
Let
(X, Y)=(Zy Wy) =(Z, W), (58)
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Since f(¢(Z, W)) =1, (52) and (57), we obtain

20 [[YCof | o > [det (1-22')" - \W|<2K>’"‘]a|\7(wc¢f)(z, w)|=
{det (1 - zZ’)”m - \W\ZW] a|w(z, W)V (Cof ) (Z, W)Y (Z, W) - (Cof ) (2. W)

1/m

> [det (1 - ZZ’) - |W\2K’”’] a)w(z, W)-V(Cyf )(Z, W)|

- [ (1-22)" = wps] 1wz, w)- otz w)

a«

[det (1 722’)”"1 - \W\ZK/"‘]
> v(z W)
det (1-2,2}) " = "

9,y Kiw By men
{0y Y FullpZy) (W) + W[ Wt (2, W)
I<k<m | 1<u<m K u
1<i<n | 1<v<n

2 12

09, K (KIm)-2777 0P i
Y FulZe2y) S (G W)+ W W=t (2, W)
1<u<m
1<v<n

- [det (1-22") " |W|2K””} Vy(z, W)

[det (1 - ZZ’) " \W\ZK/"‘] ‘

2 m ly(2, W)|G(Z, W)
det (1-2,27) " - |w,[*""

- [det (1-22") " |W|2K”“} V(2 W)|.

(59)

Since y € B%™ we obtain

N\ o
{det (1-22') . |W|2K’m}
Sup _ 1/m
(ZW)eY; det (1 - z¢z¢’) — W

lv(Z, W)IG(Z, W) < co.

(60)
The proof is completed. |

Remark 19. Let m=1, W=0 and K=1, we obtain the
following results in the case of the unit ball B={Ze C"
|2 <1} Let a=1.If

v e,
-1z (61)

1-|Z
) ¥ (2)[|D$(Z)] < oo,

then the weighted composition operator yC,, : H*(B) —
% (B) is bounded. Conversely, the weighted composition

operator yC,, : H*(B) — 9B(B) is bounded, then
yveRB

@) (- i2p)
e 1-$(2)

ID$(2)"¢(2)" | <co, .

where

n

mwaw(Z

kl=1

94(2)

N 112

. 63

o ) (63)

Li and Stevi¢ investigated the boundedness of this

weighted composition operator in [7], which is as the same

as the above results; therefore, our main results cover and
substantially improve the work of [7].

5. Compactness of yC, : H* — B
In this section, we characterize the compact weighted com-
position operator yC, : H®(Y;) — B (Y)).

Theorem 20. For K> 1 and a>m, let ¢=(¢,;, b, b0
Guns1) be a holomorphic self-map of Y,, v a holomorphic
function on Yy, and (Zy, W) = ¢(Z, W). If

_\ 1im ¢
s {det (1-2zz')" - \wf’“'"} Vy(Z, W)| =0,
RN @
{det (1-2zz') " - \W|2K""}

lim
$(Z,W)—dY, {

N\ Um o 7 [W(Z, W)||D$(Z, W)| =0,
o122 ) "]

(64)

then the weighted composition operator yCy : H*(Y;) —
B@m (Y, is compact.

Conversely, if the weighted composition operator yC,
c H®(Y,;) — B“"(Y,) is compact, then

_ o\ lim @
sodim {det (z—zz’) - \W\ZK””} IVy(Z, W)l =0,

{det (1- zZ’)”m - \W|2K/'"}
ly/(Z, W)IG(Z, W) =0,

lim ;

YZW) =Y g <I—Z¢Z¢') Im |2K/m

=Wy
(65)
where G(Z, W) is the same as (45).

Proof. Suppose that (64) holds. We have

_ 1/m *
{det (1 - zz’) - |W|2K/’”}
sup

_ 1/
(Z,W)eY; [det (I—Z¢Z¢,> m _ |W¢|2K/m:|

5 [W(Z W) [ID§(Z, W)| < co.

(66)

Following from Theorem 18, we obtain that yC,
: H®(Y;) — B*™(Y,) is bounded. Let {fi}is be a
bounded sequence, and f, converges to 0 uniformly on com-
pact subsets of Y;. Let M = sup,, [|f /- By the assumptions,
for any & > 0, there is a constant 6 € (0, 1) such that
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{det (I - ZZ') o
[det (1-22')"-

~ o\ Um 2K/m
{det(I—Z(pZ‘p) - Wl }

|W|2K’”’} IVy(Z, W)l<e,  (67)

|W|2K/m:|a

w W (Z W) [DY(Z, W) <,

(68)
whenever dist(¢(Z, W), 0Y;) < 8. Taking (49), (67), (68), and
Theorem 12 into account, it turns out that

[det (1-22)"- |W|2K"”} Y (uCaf) (2 W)

[ 1/m
= [det (1 7z ’) _ jwpkim]

-]Vy/Z W) - (Cyf ) (Z, W) +q/(Z W)

= |det (I ')1
[det( z’) ’”-|W|2K""} W(Z. W) -V (Cof ) (Z, W)

i L .
det <1—zz’) o wpKim
-z

V(Cofi) (2 W)

-] [y w) - () (2 w)

IV (Z, W)|f((2. W)
[det ( _ Z;)”m _ |W|2K/m:|a

{det (1-2,2,)" - yw¢|2’<’"“} '

|w(Z, W)||Dp(Z, W)| x {det (1 - z¢z‘¢’) " yw”z’“’”}

V(62

IN

+V/2

W)\ < elfi(@(Z W))| +V2e| f| g

< (1 + \/EC)stk”OQ < (1 + ﬁc)Me
(69)
In addition, we set
Es = {dist(¢(Z, W), 0Y;) = 6}. (70)

Note that Ej is a compact subset of Y,. For € defined in
(67), it leads to f,, — 0 uniformly on Ez as k — oo. Cau-
chy’s estimate gives that [Vf, | —0 as k — 0o on compact
subsets, in particular on ¢(Eg). Hence, as k — 0o, by (49)
we obtain

[det (1-22)"- \W\”“'”} e )@ W)
< {det (1-22')"-
[det (1-22')"-
[det (1-2,2,)" - }w¢|2'</m]

=\ Um
x |det (1-2,2,") " -

\W\”"f"} V(2 W) (2 W))|

|W|2K/m:| ¢

V3 5 [ (Z W) [|D(Z, W)

>W¢IZK””] VF($(Z, W))| — 0.

(71)
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According to the two inequalities (69) and (71), as k —
00, we have

1Y Cofill gom

= |(wC¢fk) (0,0)] + (stt/lFeY
V(¥ Cof) (2 W)
=y(0,0) - f(4(0,0))[ + up

|V(¥Cyfi) (2, W)| — 0.

{det (1 - zZ’) " |W|2K”"} '
{det (1-22") " \W|2K""} ’

(72)

Consequently, making use of Lemma 11, we get yC,
: H®(Y,;) — B*™(Y,) is compact.

Conversely, suppose that yC,, : H*(Y;) — Bem (Y )
is compact. Let {(X', Y')}.., = {¢(Z', W')},,, be a sequence
on Y, such that ¢(Z, W) — 0Y,, as i— oo. If the
sequence is nonexistent, conditions (c) and (d) obviously
hold. Moreover, let us introduce a test function sequence

{fi}i21:

det (1 XX") S
fi(Z, W)=

- (73)

det (I—Z)Z"’)1 — (W, Y

The proof of Theorem 12 gives f; € H* and ||f,ll,, <2
Due to (28), it gives that

det (1 Xixi ’) — |y

e |det (I—Z)Z“) — (W, YY"
det (1- X‘X") — |y
T an) {det (1722') m7|W|z:</m} L (12) [det (1- XX") ‘Y,lmm}
{det (1 XX”) |Y'|2K’”‘]
o det (I—ZZ’) WK
(74)

Taking i — » 00, we have (X', Y') — Y. This implies
det (I- XIX") —|YIP""™ — 0, as i—> oco. Let E be a
compact subset of Y. For (Z, W) € E, it is easy to see that

det (I —ZZ')I/m —|[W[* ™ has a positive lower bound.
Hence, we obtain f; — 0 uniformly on all compact subsets
of Y}, as i — oo.

Since yC,, : H®(Y;) — B%™ (Y)) is compact, accord-
ing to Lemma 11, we have

dim [y Coflgam =0. (75)
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For the test function f,, we have

af. det (1-XX") " — Y/
ez w) (= 1,> :
uy AN i\ Kim
{det (1-2,x") " (W, ") }
F (25 X7,
af. det (1-X'X7") " — |y
] e z
aYmn+1 ! Kim
[det (1-2x ) — (W, Y') ]
K i\ (Kim)=1 i
-a<W¢,Y> Y,
(76)
where Fu(Z s X') = (1/m) det (I—Z¢)Ei')l/mtr[

(1-2,X"") "1, X""]. Thus,

det (1 —Xf)Z"’)l i

[V(Cof i) (25 W1)| =

_ K2
i il i i
det (I—Z¢X‘ ) - <W¢,Y>

x3 X
1<k<m | 1<u<m
1<l<n | 1gv<n

Y 5 (2hx) e 2w

LK K/m 0 2
<Wip> Yz>( Yz’ ¢mn+1 (Zz Wz)
0z,

F, (zjb,xf> g% (Z', W)

Yl>(K/m Yz’ a¢mn+l (Zz Wz)

ow’

(77)
and we have
IV(yCof i) (25, W)l = 1Vy (Z', W) - (Cyf ) (2, W)
FY(ZL W)V (Cof ) (2 W)
[TV W) (02 W) (2. W)
V(Cof ) (2 W],

Let

(78)

(.7 = (2 Wy) =92 W), (9)

11
Since f;(¢(Z', W)) =1 and (78), we obtain that

G g = [t (1=22) " < w1 ot ) (2, w)
_ [det (1-zz)" - | ] vy (2, W)
+ [det (1-zz2")" - ywﬂ v (Z, W)
> ' [det (1-z2")" - |wf|ﬂ Yy (2, wf)‘
[[aen (1-227) " - W] iz wy vicur) 2w
_ [det (1-zz)" - | } ‘Vw(zi, wi)|
[det (1- zzt’)
ey

{det (1-2 z”) |wt|2’<""} '

T i . [2Kim l//(Zi’ Wi)|G(Zi’ Wi)|’
det (1—z¢z¢) —)w¢‘

V(€ ) (2 W)

- W] ez, w9 caf) 2w |

Vy (Z, W)

(80)

where

Gz w)=¢ Y | Y Fu(Z.2) (2w

1<ksm | 1<usm

1<l<n | 1v<n
m) 2
+ K ¢’ (2K W;/ a¢zz;l (Z1 W')
i i a uv i i
oy gw(z¢,z¢) (25 W)
1<ven
(2K im)- 1/a¢mn+1 i i 2k
+f‘w¢’ p S (2w b
(81)
So we get
[det (1 Z’Z") |W1|2K””}
lim
¢(Z",W")—>6Y] det (I_Z;)Zzpl) Im _ ‘W;’ZK/"!
S . 82
Ny (Z, W [G(Z, W)= lim (82)
¢(2,wh)—oY,

[det (1 z z”)

if one of these two limits exists.

i|2Kim i A7
W e w),
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Next, let
det <1—XUE"’)1 - |y
gi(Z, W)= — \Um  Kim
det (1-2X") " = (W, Y")
83
det (1- XX") e ) )
det (1—2}2“) —(w, Yi)y<

for a sequence {(Z', W')},,, in Y, such that ¢(Z', W') —
0Y,, as i —> 00. Then,

det (I—X")E”> [y

lg,(2, W)l =1

K/m

det (1—2}2“)1 — (W, Y7

det (I- XX") |y
+

det (I—Z)E”) —(w, Yy
det (1 -x'x") i (84)

<l —
det (I—ZX”)U —(w, Yy

_ 1/2
det (I —X’X"’)1 — [y

+

det (1-2X"") M w, v

=1fi(Z W)l +1fi(2, W),

It is easy to obtain {g,},., is a bounded sequence in H*
and g, — 0 uniformly on every compact subset of Y.

Moreover, we notice that g,(¢(Z', W')) =0 and
. G(Z', W)
Vagi(¢(2, W')) = o \Um C2Kim]
z{det (1-zz,") " - |ws| ]
(85)
By the similar method as above,
> [de (1- zz*') - W] v (vc,g) (2 W)
= [det (1- zz”) Wi vy (2w
(€40 (2. W) +y (2, W) V(Cogi) (2, W)
= [det (1 ZZ") — [wipe (86)
Do G(Z, Wi
0+y(ZL W) ) (—I_, I/m) |2Kim
Z{det (1-zz,") " - |wy }
{det (1 -7i7! ’) -|wi |2K"”} ’

= 2 {det <I*Z;Z_;I)1/m - )W;‘zmm} (7, W)|G(Z, W)

Journal of Function Spaces
And by (82),

lim {det (I—Ziii’)llm—|wf|2K’m} vy (2, W) =o.

¢(Z’,W')—>BYI
(87)
All of the proofs are complete. O
Remark 21. Let m =1, W =0, and K = 1; we get the following
results in the case of the unit ball B= {Z € C" : |Z|* < 1}. Let
a=11If
lim,_, (1-1Z*)IVy/(2)| =
v ()1 (1-17 (88)
m # ID$(Z)| =

i 1)
then, the weighted composition operator yCy : H*(B)

—> B(B) is compact. Conversely, the weighted composi-
tion operator yC, : H*(B) — %(B) is compact; then,

limg ) (1=121°) IV (2)l =
lv(Z2) | (1—|Z|) ) (89)
¢(Z)H1w| $(2)'¢(2)'| =0,
where
1/2
- [09,(2)
IDg(Z)1 = = : 90
" ( o7, ) 0)

It turns out to be the same as the results obtained by Li
and Stevi¢ in [7].
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