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In the present paper, we will observe that the Sildgean differential operator can be written in terms of Stirling numbers.
Furthermore, we find a necessary and sufficient condition and inclusion relation for Pascal distribution series to be in the class
P, (A, @) of analytic functions with negative coefficients defined by the Siligean differential operator. Also, we consider an integral

operator related to Pascal distribution series. Several corollaries and consequences of the main results are also considered.

1. Preliminaries

Special functions are used in many applications of physics,
engineering, and applied mathematics and statistics. Special
polynomials have a close connection with number theory,
and one of the most important sets of special numbers is the
class of Stirling numbers (of the first and second kind),
introduced in 1730 by the Scottish mathematician James
Stirling.

In combinatorics, a Stirling number of the second kind
(or Stirling partition number) is the number of ways to
partition a set of k objects into j nonempty subsets and is
denoted by S(k, j) or by b ; as used in this paper. These
numbers occur in the field of mathematics called combi-
natorics and the study of partitions. In this paper, we will
observe that the Siligean differential operator DX can be
written in terms of Stirling numbers.

Let A denote the class of analytic functions f in the
open unit disk D ={z € C: |z|] <1} and normalized by
the conditions f(0)=0= fr(0)—1 has the following
representation:

f@)=z+) az" (1)
n=2

Furthermore, let  be a subclass of A consisting of
functions of the form

f2)=z- i |a,|z", zeD. (2)
n=2
For a function f(z) in A, we define
D'f(2) = f (2), (3)
D'f(z) = zf' (z), (4)
and in general, we have
D'f(2) =2(D"'f(2)), keN. (5)

The differential operator D¥ was introduced by Silagean

(1].
We note that
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2
Df(2) =2(D" ' f (2))
=bpzf (2) + b, 2 f (2)
+b,2 1 (2) 4+ by Pz (6)
k
=Y b2 fV (), (keN),
j=1
where

brj = jbr1j+ b 11> andbyy = by = 1. (7)

For example,
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where
by, =2b,, +b,, =3,

(11)
b3,1 = b3,3 =1

(iii) If k = 4, we have
D'f(z) =2(D*f (2))’
=2f' (2) +72°f (2) +62° " () + 2* f P (2)
=by,zf' (2) + by, 2 f' (2)
+ b4,3z3fm (z) + b4,4z4f(4) (2),

() If k = 2, we have (12)
D*f(2) = Z(le(z))' =zf'(z) where
+2°f" (2) = byzf' (2) + b2’ f" (2), byy =2b5, +bs, =7,
(8) by =3bs3+bs, =6, (13)
by, =by, =1
where
b, =by,, = 1. (9) (iv) If k = 5, we have
(ii) If k = 3, we have
D’f(z) = 2(D’f (2))’
=zf'(2) +32° " (2) + 2 " ()
= by, 2f' (2) + b3, 27 f (2) + by32° f'' (2),
(10)
D°f(2) =2(D*f (2))
=z2f'(2) +152° f" (2) +252° f""' (2) + 102 f W (2) + 2° f O (2) (14)

=bs,2f" (2) + b5, 27 f (2) + bs32° £ (2) + bsu2 £ (2) + bs52° f O (2),

where
bs,z = 2b4’2 + b4,1 =15,
bs; = 3b,3 +b,, = 25,
b5)4 = 4b4’4 + b4)3 =10,
b5, =bss = 1.

(15)

Table 1 represents the coefficients by of z* f ¥ (2).
Table 1 (see [2]) shows the first few possibilities for Stirling
numbers of the second kind. Also, from this table, we note that:

(2) by, = (k(k-1)/2) = 5

(3) by, =211

(4) bys = (1/6) (3% - 3.2 + 3)

(5) bk,l = bk,k = l

(6) by; =0, when j>k.

(7) b,; =0 (modp) iff 1<j<p, where p is a prime
number.

(@) by j = jbryj + by jr (k)

Furthermore, for k = 2, 3,4, 5, we observe that
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TaBLE 1: Stirling numbers of the second kind.

zf' (2) 22 f"(2) 2f"(2) 2@ (2) 2f0(z) 2 £ (z) 27 (z) - Zf® (2)
D'f(z) 1 0 0 0 0 0 0 0 0
D*f (z) 1 1 0 0 0 0 0 0 0
D*f(2) 1 3 1 0 0 0 0 0 0
D*f (z) 1 7 6 1 0 0 0 0 0
Df (z) 1 15 25 10 1 0 0 0 0
DSf(2) 1 31 90 65 15 1 0 0 0
D’ f(z) 1 63 301 350 140 21 1 0 0
: 1 : : : : : : : 0
Dk f (2) 1 b, bis biy by bis by 1
D’f(z)=2"f" (2) + zf (2),
o 00 (16)
z+ Zn a,z' =z + Z[n(n— 1) + nla,z",
n=2 n=2
D’f(2)=2f" (2) +32°f" (2) + zf ' (2),
z+ Yy was =z+) [n(n-1)(n-2) (17)
n=2 n=2
+3n(n-1) +nla,z",
Df(2) =2 fP(2)+62° f" (2) + 72 [ (2) + zf " (2),
z+ Yy nlas =z+ ) [n(n-1)(n-2)(n-3)+6n(n-1)(n-2)+7n(n-1)+n]. (9
n=2 n=2
and
D’ f(2) =2°f (2) + 152" W (2) + 252° " (2) + 1022 " (2) + 2" (),
z+ Znsanz” =z+ Z[n(n— Dn-2)(n-3)(n-4)+10n(n-1)(n-2)(n-3) (19)
n=2 n=2
+25n(n-1)(n-2) +15n(n-1) + nla,z".
From (16)-(19), we conclude that
n=(mn-1)+1=by,,(n-1)+b,,
W=m-1)n-2)+3n-1)+1=by;(n-1)(n-2)+bs,(n—1)+by,, (20)
w=m-1)n-2)(n-3)+6(n-1)n-2)+7(n-1+1
=by,(n-1)(n-2)(n-3)+by;(n-1)(n-2)+b,,(n-1) + by,
nt=m-1)n-2)n-3)(n-4)+10(n-1)(n-2)n-3)+25(n-1)(n-2)+15(n—-1) + 1 (21)

=bss(n—-1)(n-2)(n-3)(n-4)+bs,(n-1)(n-2)(n-3) +bs3(n—-1)(n—2) +bs,(n—1) + bs,.



In general, we have
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" =b b (=D +b (-1 (-2)+- -+ by (n-1)(n-2)(n-3)--- (n-k)

k
=l + Y b j (=D (=2)(n=3)--- (n-j), k=123,

Jj=1

For functions f € A given by (1) and g € A given by
g(z) =z+Y2,b,z", we recall that the well-known Hada-
mard product of f and g is given by

(fxg)(z)=z+ 020: ab,z", zeD. (23)
n=2

For € € C/{0} and -1 <D < € < 1, we say that a function
f € A is in the class Z° (€, D) if it satisfies the inequality

(22)

| fl(2)-1
(6 -D)e-D[f (2) - 1]

|<1, z € D. (24)

The function class %#° (€, D) was introduced by Dixit
and Pal [3].

With the help of the differential operator D, we say that
a function f(z) belonging to A is said to be in the class
@ (A, a) if and only if

g | (L= V=(D'f (@) +4=(D"f ()
(1-M)D*f (2) + AD*"' f (2)

for some a(0<a<1),A(0<A<1), and for all z in D.
Furthermore, we define the class P (A, a) by

P.lha)=QA,0)NT. (26)

The class Pg (A, &) was introduced and studied by Aouf
and Srivatava [4].

We note that, by specializing the parameters k and A, we
obtain the following subclasses:

(i) Py(0,0) =T " (a) and Py(1,a) = € (), where
I (a) and € («) represent the classes of starlike
functions of order a and convex functions of order «
with negative coeflicients, respectively, introduced
and studied by Silverman [5]

(ii) Pr (1, a) = G () (see [4]), where € (a) represents
the class of functions f(z) € I satisfying the
inequality

2(D"' £ (2))'
R % >, (k € NO) (27)
D™ f(2)
(iii) Py (0,a) = T} (a) (see [4]), where T (a) repre-
sents the class of functions f (z) € I satisfying the
inequality

z Dkf(z) '
m{(Dkf(Z))} >, (k € NO) (28)

In statistics and probability, distributions of random
variables play a basic role and are used extensively to de-
scribe and model a lot of real-life phenomenon; they de-
scribe the distribution of the probabilities over the values of
the random variable. In recent years, many researchers have

} >a, (keNy=Nu{0}), (25)

examined some important features in the geometric function
theory, such as coefficient estimates, inclusion relations, and
conditions of being in some known classes, using different
probability distributions such as the Poisson, Pascal, Borel,
Mittag-Leftler-type Poisson distribution, etc.(see, for ex-
ample, [6-10]).

The probability density function of a discrete
random variable X which follows the Pascal distribution is
given by

r+
Prob(er)=< >0’(1—0)m, r=0,1,2,3,....

(29)

Very recently, El-Deeb et al. [11] introduced a power
series whose coefficients are probabilities of the Pascal
distribution

Oo(n+m—2

Al(2)=z+) )a”_l(l—a)mz”, zeD
n=2

m-—1
(30)

where m > 1and 0 < 0 <1 and we note that, by a ratio test, the
radius of convergence of above series is infinity. We also
define the series

Y (2) =2z - A (2)

X/n+m-2
=z—z< )0"_1(1—0)'"2", z e D.
n=2 m-—1

(31)

Now, we considered the linear operator



Journal of Function Spaces

IM(z): A — A (32)

defined by the Hadamard product

IV (2) = A (2) = f(2)

°°<n+m—2

:Z+Z 7 '(1-0)"a,Z", zeD.
n=2 m-—1

(33)

Motivated by several earlier results on connections be-
tween various subclasses of analytic and univalent functions,
using hypergeometric functions, generalized Bessel func-
tions, Struve functions, Poisson distribution series, and
Pascal distribution series (see, for example, [12], [13-15],
[7-9, 16-23], [24]), we determine a necessary and sufficient
condition for Y7 (z) to be in our class Py (A, «). Further-
more, we give sufficient conditions for
I (F(C,D)) c P (M, a). Finallzy, we give conditions for
the integral operator ' f (z) = 0 (Y™ (¢)/t)dt belonging to
the class P, (4, a).

The following results will be required in our
investigation.

Y (n-1)(n-2)(n-3)(n-4)
n=>5

Y (n-1)(n-2)

n=3

<
<
(
(

Lemma 1 (see [4]). Let the function f (z) be defined by (2).
Then, f(z) € P, (A, a) if and only if

OZO:nk(n—oc)(1+(n—1)/\)|an|§1—(x, z €D. (34)
n=2

The result (34) is sharp.

Lemma 2 (see [3]). If f € &°(C, D) is of the form (1), then

lel

|an|s (C-9) neN-{1}. (35)

7)
The result is sharp for the function

z n-1
f(z)=j <1+(0:—s>)1+€t_

o l>dt, (z € D;n e N-{1}).
0

(36)

2. Necessary and Sufficient Conditions

By simple calculations, we derive the following relations:

=3 (37)

m
o
n+m-—2 m—1
an—l_

(1 _ O_)m+1 >
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and, in general, for s =1,2,3,..., we have

Y (n-1)(n-2)(n=3)- (n-s)

n=s+1

(1 _ O_)m+s .

<m+s—1>
<n+m—2>an_1=s'as m—1 (38)

m-—1

Unless otherwise mentioned, we shall assume in this Theorem 1. Let k>1.Then, Y7 (z) € P, (A, «) if and only if
paper that 0<a <1, 0<A<lm>1,and 0<o<1.

First of all, with the help of Lemma 1, we obtain the
following necessary and sufficient condition for Y7/’ (z) to be

in P, (A, a).
m+j—1
k 3 j m-—1
Z(Abk+3>j+1 +(1=A = al)byy ji +a(d - l)bk+1,j+1)]!0 T mtg
j=1 (1-o0)
< m+k >
-1
+(Mbpygen + (1= A= ad)) (k+ D 2L (39)
( m+k+1 >
-1
A+ 2oL
— o)
<l-a
Proof. In view of Lemma 1, we only need to show that Using (22) and (38), we have

Q<1 - a, where
Sk n+m-—2 1
Q=)n (n—oc)(1+(n—1))t)( )d‘ (1-0)".
n=2 m-—1

(40)

m-—1

00 n+m-2
Q=Y M +(1-1-al)™ —a(1 —A)nk]< >a"‘1 (1-0)"
n=2

00 k+2
= Z|:)L<bk+3,l + Zbk+3,]‘+1 (1’1— 1)(71_2) (n_ 3) (1’1—]))
n=2

j=1

k+1
+ (1 -A- al)(blﬁz)l + Z bk+2,j+1 (1’1— 1)(1’1— 2)(1’1— 3) (7’1—]))

i

k
+OC(A - 1)<bk+1,1 + zbk+l,]'+l (1’1— 1)(71_ 2)(1’1—3) (7’1-]))]

J=1
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n+m-—2
X 1 -o0)"
m-—1

[e) n+m-—2
= Z Abys (-0
n=2

m-—1

m-—1

0 n+m-—2
+ Y Wz gz (n—1) (n=2)(n=3)-- (n—(k+2))< >a"‘1(1 -o)"
n=2

00 n+m-—2
+ Y Wz par (n=1)(n=2)(n=3)-- (n—(k + 1))( >a"1(1 -o)"

n=2 m-—1

o [ k n+m-—2
+Z<Zlbk+3,m n-1)(n-2)(n-3)-- (n—j)>< >a’“(1 — o)™

n=2 \ j=1 m-—1

00 n+m-—2
+ Y (1=A=al)b,,, " (1-0)"

n=2 m-—1

0 n+m-—2
+Z (1-A=albpypn(n-1)(n-2)(n=3)--- (n—(k + 1))< >0"1(1 -o)"

n=2 m-—1

o [ k n+m-—2 .
+Z<Z(1—A—aA)bk+2,jﬂ(n—1)(n—z)(n—3>---(n—j)>< )o"‘ (1-o0)"

n=2 \ j=1 m-—1

00 n+m-—2
+ Y a(d = Dby, " (1-0)"

n=2 m-—1

o [ k n+m-—2
+Z<Z(x(/1—l)bk+1,]-+1 n-1)(n-2)(n-3)-- (n—j)>< >a”‘1(1-a)’”

n=2 \ j=1 m-—1

00 n+m-—2 1
=(Mgyay + (1= A= al)byyy + &A= Dbyyy) Y (1 -0)"

n=2 m-—1

0 n+m-—2
+ Abji3 43 Z (n-1)(n-2)(n-3)--- (n—(k+2))< >a”‘1(1—a)’”

n=k+2 m-—1

+(Mgyapn + (1= = a)byrpyn) Y. (n=1)(n=2)(n=3)- (n=(k+1))

n=k+1
n+m-—2
X 1 -o0)"
m-—1

k
+ < (Abk+3,]’+1 + (1= A= aM)byyy juy + (A~ 1)bk+1,j+1)>
st

0 n+m-—2
><<Z (n—l)(n—Z)(n—3)~--(n—j)< >a”_1(1—o)m>
n=j+1 m-—1
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( m+k+1 >
Ak + 2ok M !
(1 _ 0)k+2
m+k
(M’k+3 iz T (1=A = “/\)) (k+ 1o k+1(1—)1k+1
m+j—1
k g m-—1
+ ) (Mgajor + (1= A = @by joy + a(A = Dby, 5, ) flo .

= (1-0)

Therefore, we see that the last expression is bounded Theorem 2. Let k>2 and feR(C,D). Then,

above by 1 — « if (39) is satisfied. O IV f(2) P (M, ) if

3. Inclusion Properties

Making use of Lemma 2, we will study the action of the
Pascal distribution series on the class P, (A, a).

(C - D)l

<l-a

-

k—

=1 (1_ U)

m+j-1 m+k

) ol

1

m-—1
(1- o)

! (
(Wb jor + (1= A= abb, 1+ a(h = Dby ] (lo/ " +A(k + Dlg®D +(Wbgp ey + (1= A = ad)) (K)lo*

k-1
+1 =) (1= (1= 0)") Y [Mbpupjur + (1= A = @by joy + (A = Dby o] ()l (:” al)f
j=1 -
(m+k> (m+k— 1)
+A(k+1)'a(k+” & #(Wbg g + (1 -1 ot/\))(k)'o:7_1)1{+(1—¢x)(1—(1—0)"’)
— -0

(42)

Proof. In view of Lemma 1, it suffices to show that L< 1 - a,

where
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innk(n—cx)(1+(n—1))l)

n=2

n+m-2\ ., " Applying Lemma 2, we find from equations (22) and (38)
( B >0 (1-0)"|a,|-  that

(43)

(o) n+m-—2
L<(C- @)|e|[2(an"“ +(1-A-abr* —a(1 —)L)nkl)< >o’“ (1- a)ml

n=2 m-—1

00 k+1
=(C-D)e|(1 - ta)m[ I:A<bk+2’l + Z bk+2’j+1 n-1)(n-2)(n-3)--- (n—j)>

n=2 j=1

k
+(1 —A—(Xl)(bkﬂ’l + Zbk+1,j+1 (1’1— 1)(?1—2)(1’1—3) (1’1—]))

j=1

k-1 n+m-—2
+a(d - 1)<bk,1 + Y b (n=1)(n=2)(n=3)-- (n—j)>]< >0”1]

=1 m-—1

0 n+m-2
(€ - D)lel(1-0)" {Z(Abm,l (1= A= al)by s +a(d = l)bk,1)< >a
n=2

m-—1

00 n+m-—2
+ Apprpn ) (n=1)(n=2)(n=3)- (n—(k + 1))< >a’“
n=2

m-—1

m-—1

oY n+m-—2
+Abi o Z(n— N(n-2)(n—3)--- (n—k)< >0"_1
n=2

) n+m-—2
+(1=A=al)by, g . (n=1)(n=2)(n=3)-- (n—k)< )d“

n=2 m-—1

k-1 k-1 k-1
+ <)L Dbt (1=A=ad) Y by +a(A=1) ) bk)ﬁl)

j=1 j=1 j=1

00 n+m-2
xZ(n—l)(n—2)(n—3).-.(n—j)< >0”1]
n=2 m-—1
= (€ - D)lel [(Abyn; + (1 =4 = al)byyy + (X = Dby ) (1= (1-0)™)
<m+k> <m+k—1>
vy \m—1 k m-—1
+ Abk+2,k+2 (k + 1)'0' m + Abk+2>k+1 (k)'o’ (1_—0)k

<m+j—1> <m+k—1>
k-1
o i\ m-1 m-1

+/\Zbk+z,j+1 (No'————" W

oy + (1= A = al)byyy oo (K)0F
j=1 -
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m+j-1 m+j—1
k-1 A k-1 Y
+(1-A-al) ) by i (D! ————L+a(X-1) ) by (lo/—F~
( )Zl koot (D= ( )Zl ot (D=
i i
m+j—1
k-1 A
=(C-D)lel| Y [Absp jir + (1= = ad)byyy sy + (A= Dby i, | (j)!afW (44)
i1 -
< m+k > < m+k—1 )
k1) \Mm—1 K\ m-1
+A(k+1)lo Qo@D +(Mpapr + (1= = ad)) (K)o ETE
+l-a)(1-(1-0)")].
i) = [ Y4 (45)
However, this last expression is bounded by 1 — «, if (42) G, f(2)= 0 t.
holds. This completes the proof of Theorem 2. O
4. An Integral Operator

In this section, we consider the integral operator &7’ defined
by

k-1
Y Mo + (1= A = al)by,y oy + (A= Dby 1, | ()10
j=1

+A(k + 1)lg®V
(1 _ o_)m+k+1

<l-a

Proof. From definitions (31) and (45), it is easily verified that
o /n+m-—2 2"

Gl f(z)=z2z-) I(1-0)"=  (47)
n=2 m-—1 h

Then, by Lemma 1, we need only to show that H<1 - a,
where

H = ink(n—oc)(l+(n— 1)A)
n=2

1 n+m-—2 (48)
><—< >a”_1(1 -o)".
h m-—1

+ (Wb + (1= A= ad)) (k)lo*

Theorem 3. Let k>2.Then, the integral operator &7 f (z)
defined by (45) is in the class P, (A, &) if and only if

m+j-1

< m-—1 >

(1_0_)m+j

m+k-1 (46)
< m-—1 >

(1

_ O_)m+k

or equivalently,

H= i(lnkﬂ +(1-A- oc/X)nk +a(d- l)nkfl)
n=2

<n+m—2) w1 m
. o (1-0)".

m-—1

(49)

The remaining part of the proof of Theorem 3 is similar to
that of Theorem 2, and so, we omit the details. O

5. Corollaries and Consequences

By specializing the parameter A = 1 in Theorems 1-3, we
obtain the following corollaries.
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<m+j—1>
L o i m-—1

(bk+2,j+1 - abk+l,j+l)]!gj (1 _ O')j

<m+k—1>
m-—1

+(Brsoirr = Wi ) (k)!aklia)k + bryagen (k + Do’

k

[
I
—

m+k
( ) 2
k+1) \ M — 1

(1 _ 0) (k+1)

+(bk+2,1 - “bk+1,1) (1-t(1- U)m)]

<l-oa

Corollary 1. Let k>1.Then, Y7’ (z) € G («) if and only if

<m+j—l>
m-—1

(1 _ U)m+j

<m+k> <m+k+1> (50)
EANCk WP R ANk

_ 0)m+k+l (1 _ 0_)m+k+2

M=

A
(bk+3,j+1 - “bk+2,j+1)J!‘7

-
Il
—

+(brasper = @) (k + Dlo™!

<l-a

Corollary 2. Let k=2 and fe R(C,D). Then,

INf(2) € G(a) if
m+j-1
k-1 < m-—1 >
(C-D)lel ;(bk+2,]‘+1 - “bk+1,j+1) (j)!ajﬁ
<m+k—1> <m+k> (51)
A\ m-1/ m

+(bk+2,k+1 - 0‘) (k)!o* +(k + Dlg*rD

(1- o) (1- o)®D
+1-a)(1-(1-0)")]
<l-a
Corollary 3. Let k>2.Then, the integral operator &7 f (z) By specializing the parameter k = 2 in Theorems 1-3, we

defined by (45) is in the class G («) if and only if obtain the following corollaries.
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Corollary 4. The series Y (z) € P, (A, &) if and only if

(8A —4ad —3a+7)

+2(19A - 50l — a + 6)

Journal of Function Spaces

2
o
m-—1

(1 _ 0)m+1 (1 _ O_)m+2
<m+2> <m+3> (53)
-1 m-—1
+6(N—ad+1) o~ Ly oapt T L
( o )U (1_ O_)rn+3 g (1 _ U)m+4

<l-a

Corollary 5. Let f € (€, D). Then, I f(z) € P, (A, )

if
m
(m—1>
1-
3 m-—1

(1-0)

(C-D)lel|{(4h -2al+3 -a) 0

<m+1>
m-—1
_—

+2(5A—ak+ 1)
( «a )o (1= o)

+(1-a)(1-(1-0)") ]

<l-a

(4A - 201 +3 —a)o

<l-a

Remark 1. Using relation (22) and Lemma 1, we can obtain
new necessary and sufficient conditions and inclusion re-
lations for the Pascal distribution series to be in the class
P (A, «) for k=3,4,....

6. Conclusions

The Sildgean differential operator plays an important role in
the geometric function theory. Several authors have used this
operator to define and consider the properties of certain known
and new classes of analytic univalent functions (see, for ex-
ample, [25, 26]). In the present paper, and due to the earlier
works (see, for example, [11, 16, 18]), we find a necessary and
sufficient condition and inclusion relation for the Pascal

+2(51 — ad + 1)d?

Corollary 6. The integral operator G f (z) defined by (45) is
in the class P, (A, &) if and only if

<m+1> <m+2>
m-—1 + 610 m-—1

(-of (1= (35)

distribution series to be in the class P, (A, «) of analytic
functions associated with the Stirling numbers and Séldgean
differential operator. Furthermore, we consider an integral
operator related to the Pascal distribution series. Some inter-
esting corollaries and applications of the results are also dis-
cussed. Making use of the relation (22) could inspire
researchers to find new necessary and sufficient conditions and
inclusion relations for the Pascal distribution series to be in
different classes of analytic functions with negative coefficients
defined by the Saligean differential operator.
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