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In this paper, the existence and uniqueness of the Fredholm–Volterra integro-differential equation with the nonlocal condition
will be studied. Also, we study the continuous dependence of the initial data.'e numerical solution of the problemwill be studied
using the central difference approximations and trapezoidal rule to transform the Volterra–Fredholm integro-differential
equation into a system of algebraic equations which can be solved together to get the solution. Finally, we solve some examples
numerically to show the accuracy of the proposed method.

1. Introduction

Recently, some researchers were interested in studying the
existence and uniqueness of different types of
integro-differential equation with the different conditions.
El-Sayed et al. studied the existence of solutions to some
integro-differential equations with infinite point and integral
conditions, and they have also studied some properties of
these solutions [1–4]. 'ere are also many authors interested
in studying the numerical solution for integral and integro-
differential equations. Mirzaee and Piroozfar used modified
Simpson’s quadrature rule for solving linear Fredholm in-
tegral equations of the second kind [5]. Rahman et al. solved
the system of linear Volterra Integral equations of the second
kind using Simpson’s quadrature rule [6]. Garba and Bichi
studied the numerical solution for first-order Fredholm
integro-differential equation using finite difference-composite
Simpson method [7]. Ibrahim et al. studied the existence of a
unique solution to nonlinear Fredholm integro-differential
equation of the second order, and they introduced the exact
solution using the direct computation method, introduced
numerical solution using the combination of the finite

difference method with the composite Simpson method to
transform the Fredholm integro-differential equation into a
system of nonlinear algebraic equations, and also computed the
error estimation for the scheme to show the accuracy of the
presented method [8]. Pandey used the finite difference
method and the composite trapezoidal quadrature method to
solve the Fredholm integro-differential equation [9]. Saadati
et al. solved the linear Volterra and Fredholm integro-differ-
ential equation using the combination of the trapezoidal rule
and the finite difference method and compared it with the
variational iteration method (VIM). 'e result of comparison
shows that VIM is better than the trapezoidal method [10].
Ishak and Norazura Ahmed obtained the numerical solution
for the first-order Volterra integro-differential equation using
the trapezoidal method and compared the results with the
Euler method. 'e results of comparisons show that the
trapezoidalmethod is better than the Eulermethod [11]. Raftari
used the homotopy perturbation method (HPM) and the finite
difference method to solve the Volterra integro-differential
equation of the first order. 'e results of applying these
methods demonstrate the validity and applicability of these
techniques.
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In this paper, we study the nonlocal boundary value
problem for the Fredholm–Volterra integro-differential
equation:

u″(x) � F x, u(x), 
b

a
f x, t, u′(t)(  x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt , x ∈ [a, b], (1)

with the nonlocal condition



m

j�0
aju τj  � μ0,

u′(a) � ρ0,

aj ≥ 0,

τj ∈ [a, b].

(2)

We study the existence of solution u(x) ∈ C[a, b]. We
study the continuous dependence of the unique solution on
μ0 and on the nonlocal parameter aj.

As applications, the nonlocal problem of the Fred-
holm–Volterra integro-differential equation (1) with the
integral condition


b

a
u(s)dϕ(s) � μ0 (3)

will be studied.
'is paper is organized as follows. In Section 2, we

discuss the integral representation. We discuss the existence
of solution and the nonlocal integral condition in Section 3.
We discuss the uniqueness of the solution in Section 4. In
Section 5, we discuss the continuous dependence on μ0 and
aj. In Section 6, we present the methodology of numerical
technique and numerical examples. Section 7 gives the
conclusion.

2. Integral Representation

Consider nonlocal problems (1) and (2) with the following
assumptions:

(1) F: [a, b] × R3⟶ R satisfies Caratheodory condi-
tion, i.e., F is measurable in x for any ξ, α, c ∈ R and
continuous for almost all x ∈ [a, b]. 'ere exist a
function M1(x) ∈ L1[a, b] and a positive constant
C1 > 0, such that

|F(x, ξ, α, c)|≤M1(x) + C1|ξ| + C1|α| + C1|c|. (4)

(2) f: [a, b] × [a, b] × R⟶ R satisfies Caratheodory
condition, i.e., f is measurable in x for any v(t) ∈ R
and continuous for almost all x ∈ [a, b]. 'ere exist a
function M2(x, t) ∈ L1[a, b] and a positive constant
C2 > 0, such that

|f(x, t, v(t))|≤M2(x, t) + C2|v(t)|. (5)

(3) g: [a, b] × [a, b] × R⟶ R satisfies Caratheodory
condition. 'ere exist a function M3(x, t) ∈ L1[a, b]

and a positive constant C3 > 0, such that

|g(x, t, v(t))| ≤M3(x, t) + C3|v(t)|. (6)

(4)

sup
x∈[a,b]


x

a
M1(θ)dθ ≤N1,

sup
θ∈[a,b]


b

a
M2(θ, t)dt≤N2,

sup
θ∈[a,b]


θ

a
M3(θ, t)dt≤N3.

(7)

(5) (2C1b
2 + C1C2b

2 + C1C3b
2)< 1.

Lemma 1. Let β � 
m
j�0 aj ≠ 0, and we can represent the

solution of nonlocal problems (1) and (2), if it exists by the
integral equation

u(x) � β− 1 μ0 − 
m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

x

a
v(s)ds, (8)

where

v(x) � ρ0 + 
x

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠dθ. (9)
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Proof. Integrating both sides of (1), we get

u′(x) � u′(a) + 
x

a
F θ, u(θ), 

b

a
f θ, t, u′(t)( dt, 

θ

a
g θ, t, u′(t)( dt dθ, x ∈ [a, b]. (10)

Let u′(x) � v(x) in (10), and we obtain

v(x) � ρ0 + 
x

a
F θ, u(θ), 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt dθ, x ∈ [a, b], (11)

where

u(x) � u(a) + 
x

a
v(s)ds, x ∈ [a, b], (12)

and using nonlocal condition (2), we get



m

j�0
aju τj  � u(a) 

m

j�0
aj + 

m

j�0
aj 

τj

a
v(s)ds, (13)

and then

u(a) � β− 1 μ0 − 
m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦. (14)

We obtain (8) and (9) from (11), (12), and (14). 'is
completes the proof. □

3. Existence of Solution

Definition 1. By a solution of Fredholm–Volterra integral
equation (9), we mean a functionu(x) ∈ C[a, b]that satisfies
(5).

Theorem 1. Let the assumptions (1)–(5) hold. Ben,
Fredholm–Volterra integral equation (9) has at least one
solutionu(x) ∈ C[a, b].

Proof. Define the operator E associated with integral
equation (9) by

Ev(x) � ρ0 + 
x

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds , 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠dθ. (15)

Let Qr � v(x) ∈ R: ‖v‖C ≤ r , where r � (|ρ0| + N1+

C1bβ
− 1|μ0| + C1bN2 + C1bN3)/(1 − (2C1b

2 + C1C2b
2+

C1C3b
2)).

'en, we have that for v(x) ∈ Qr,

‖Ev(x)‖C ≤ ρ0


 + 
x

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠dθ




,

≤ ρ0


 + 
x

a
M1(θ) + C1β

− 1 μ0 − 
m

j�0
aj 

τj

a
v(s)ds




+ C1 

θ

a
|v(s)|ds + C1 

b

a
f|(θ, t, v(t))|dt + C1 

θ

a
g|(θ, t, v(t))|dt⎡⎢⎢⎣ ⎤⎥⎥⎦dθ

≤ ρ0


 + N1 + 
x

a

C1β
− 1 μ0


 + C1β

− 1


m

j�0
aj 

τj

a
|v(s)|ds + C1 

θ

a
|v(s)|ds

+C1 
b

a
M2(θ, t)


dt + C1C2 

b

a
|v(t)|dt + C1 

θ

a
M3(θ, t)


dt + C1C3 

θ

a
|v(t)|dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dθ

≤ ρ0


 + N1 + 
x

a
C1β

− 1 μ0


 + C1b‖v‖ + C1b‖v‖ + C1N2 + C1C2b‖v‖ + C1N3 + C1C3b‖v‖ dθ

≤ ρ0


 + N1 + C1bβ
− 1 μ0


 + 2C1b

2
r + C1bN2 + C1C2b

2
r + C1bN3 + C1C3b

2
r � r.

(16)
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'is proves that E: Qr⟶ Qr and the class of functions
Ev(x) is uniformly bounded in Qr.

Now, let x1, x2 ∈ [a, b] such that |x2 − x1|< δ; then,

Ev x2(  − Ev x1( 


 � ρ0 + 
x2

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠dθ



− ρ0 − 
x1

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠dθ



� 
x1

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠dθ



+ 
x2

x1

F θ, β− 1 μ0 − 
m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠dθ

− 
x1

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠dθ



≤ 
x2

x1

F θ, β− 1 μ0 − 
m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠




dθ

≤ 
x2

x1

M1(θ)dθ + C1β
− 1μ0 + 2C1br + C1N2 + C1C2br + C1N3 + C1C3br δ.

(17)

'is means that the class of functions Ev(x) is equi-
continuous in Qr. □

Let vn(x) ∈ Qr, vn(x)⟶ v(x)(n⟶∞); then, from
the continuity of the three functions F, f, and g, we obtain

F(x, ξn, αn, cn)⟶ F(x, ξ, α, c), f(x, t, vn

(t))⟶ f(x, t, v(t)) and g(x, t, vn(t))⟶ g(x, t, v(t)) as
n⟶∞. Also,

lim
n⟶∞

Evn(x) � lim
n⟶∞

ρ0 + 
x

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
vn(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
vn(s)ds, 

b

a
f θ, t, vn(t)( dt, 

θ

a
g θ, t, vn(t)( dt⎛⎝ ⎞⎠dθ⎡⎢⎢⎣ ⎤⎥⎥⎦.

(18)

Using assumptions (1)–(3) and Lebesgue dominated
convergence theorem [13], we obtain

lim
n⟶∞

Evn(x) � ρ0 + 
x

a
lim

n⟶∞
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
vn(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
vn(s)ds, 

b

a
f θ, t, vn(t)( dt, 

θ

a
g θ, t, vn(t)( dt⎛⎝ ⎞⎠dθ � Ev(x).

(19)

'en,Evn(x)⟶ Ev(x) as n⟶∞.'ismeans that the
operator E is continuous in Qr. 'en, by Schauder fixed point
theorem [14], there exists at least one solution v(x) ∈ C[a, b]

of integral equation (9). 'us, based on Lemma 1, nonlocal
problems (1) and (2) possess a solution u(x) ∈ C[a, b].

3.1. Nonlocal Integral Condition. Let v(x) ∈ C[a, b] be the
solution of integral equation (9). Let aj � ϕ(xj) − ϕ(xj− 1), ϕ
be increasing function, τj ∈ (xj− 1, xj), and
a � x0 <x1 < x2 < . . . <xN � b; then, as m⟶∞, nonlocal
condition (2) will be
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m

j�0
ϕ xj  − ϕ xj− 1  u τj  � μ0, (20)

lim
m⟶∞



m

j�0
ϕ xj  − ϕ xj− 1  u τj  � 

b

a
u(s)d(s) � μ0. (21)

Theorem 2. Let the assumptions (1)–(5) hold; then, nonlocal
problems (1) and (3) have at least one solution given by

u(x) �
1

ϕ(b) − ϕ(a)
μ0 − 

b

a

θ

a
v(s)dsdϕ(θ)  + 

x

a
v(s)ds,

(22)

where

v(x) � ρ0 + 
x

a
F θ,

1
ϕ(b) − ϕ(a)

μ0 − 
b

a

θ

a
v(s)dsdϕ(θ)  + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt , 

θ

a
g(θ, t, v(t))dtdθ . (23)

Proof. As m⟶∞, the solution of nonlocal problems (1)
and (3) will be

u(x) � lim
m⟶∞

β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

x

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦

�
1

ϕ(b) − ϕ(a)
μ0 − lim

m⟶∞


m

j�0

τj

a
v(s)ds ϕ xj  − ϕ xj− 1  ⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

x

a
v(s)ds

�
1

ϕ(b) − ϕ(a)
μ0 − 

b

a

θ

a
v(s)dsdϕ(θ)  + 

x

a
v(s)ds,

(24)

where

v(x) � ρ0 + 
x

a
F θ,

1
ϕ(b) − ϕ(a)

μ0 − 
b

a

θ

a
v(s)dsdϕ(θ)  + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt dθ. (25)

□
4. Uniqueness of the Solution

Let F, f, and g satisfy the following assumptions:

(i) F: [a, b] × R3⟶ R is measurable in x for any
ξ, α, c ∈ R and satisfies the Lipschitz condition

F(x, ξ, α, c) − F x, ], α1, c1( 




≤C1|ξ − ]| + C1 α − α1


 + C1 c − c1


.
(26)

(ii) f: [a, b] × [a, b] × R⟶ R is measurable in x for
any v(t) ∈ R and satisfies the Lipschitz condition

|f(x, t, v(t)) − f(x, t, w(t))|≤C2|v(t) − w(t)|. (27)

(iii) g: [a, b] × [a, b] × R⟶ R is measurable in x for
any v(t) ∈ R and satisfies the Lipschitz condition

|g(x, t, v(t)) − g(x, t, w(t))| ≤C3|v(t) − w(t)|. (28)

Theorem 3. Let the assumptions(i) − (iii) hold; then, the
solution of Fredholm–Volterra integral equation (9) is
unique.

Proof. Let v(x), w(x) be two solutions of Fred-
holm–Volterra integral equation (9); then,

|v(x) − w(x)|≤ 
x

a
|F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
f(θ, t, v(t))dt⎛⎝ ⎞⎠dθ
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− F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
w(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
w(s)ds, 

b

a
f(θ, t, w(t))dt, 

θ

a
g(θ, t, w(t))dt⎛⎝ ⎞⎠|dθ

≤ 
x

a
C1 β

− 1


m

j�0
aj 

τj

a
w(s) − v(s)ds + 

θ

a
v(s) − w(s)ds





⎡⎢⎢⎣

+ C1 
b

a
(f(θ, t, v(t)) − f(θ, t, w(t)))dt




+ C1 

θ

a
(g(θ, t, v(t)) − g(θ, t, w(t)))dt





≤C1 
x

a
β− 1



m

j�0
aj 

τj

a
|w(s) − v(s)|ds + 

θ

a
|w(s) − v(s)|ds⎡⎢⎢⎣

+ 
b

a
|f(θ, t, v(t)) − f(θ, t, w(t))|dt + 

θ

a


b

a
|g(θ, t, v(t)) − g(θ, t, w(t))|dtdθ

≤C1‖w − v‖b
2

+ C1‖w − v‖b
2

+ C1 
x

a


b

a
C2|v(t) − w(t)|dtdθ

+ C1 
x

a

θ

a
C3|v(t) − w(t)|dtdθ

≤ 2C1‖w − v‖b
2

+ C1C2b
2
‖w − v‖ + C1C3b

2
‖w − v‖

≤ 2C1b
2

+ C1C2b
2

+ C1C3b
2

 ‖w − v‖. (29)

Hence,

1 − 2C1b
2

+ C1C2b
2

+ C1C3b
2

  ‖w − v‖≤ 0. (30)

Since 2C1b
2 + C1C2b

2 + C1C3b
2 < 1, then w(x) � v(x)

and the solution of Fredholm–Volterra integral equation (9)
is unique. 'us, based on Lemma 1, nonlocal problems (1)
and (2) possess a unique solution u(x) ∈ C[a, b]. □

5. Continuous Dependence

5.1. Continuous Dependence on μ0

Definition 2. Be solutionu(x) ∈ C[a, b]of nonlocal Fred-
holm–Volterra problems (1) and (2) depends continuously
onμ0, if

∀ε> 0, ∃ δ(ε) s.t μ0 − μ∗0


< δ⇒ u − u
∗����
����< ε, (31)

where u∗ is the solution of the nonlocal problem

u
∗
″(x) � F x, u

∗
(x), 

b

a
f x, t, u

∗′
(t) dt, 

x

a
g x, t, u

∗′
(t) dt , x ∈ [a, b], (32)

with the nonlocal condition



m

j�0
aju
∗ τj  � μ∗0 , u

∗′
(a) � ρ0,

aj⩾0, τj ∈ [a, b].

(33)

Theorem 4. Let the assumptions (1)–(5) of Beorem 1hold;
then, the solution of nonlocal Fredholm–Volterra problems (1)
and (2) depends continuously onμ0.

Proof. Let u(x), u∗(x) be two solutions of nonlocal
Fredholm–Volterra problems (1) and (2) and (23)–(33),
respectively. 'en,

v(x) − v
∗
(x)


 � | 

x

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠⎡⎢⎢⎣

− F θ, β− 1 μ∗0 − 
m

j�0
aj 

τj

a
v
∗
(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v
∗
(s)ds , 

b

a
f θ, t, v

∗
(t)( dt, 

θ

a
g θ, t, v

∗
(t)( dt⎛⎝ ⎞⎠⎤⎥⎥⎦dθ|
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≤ 
x

a
|F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠

− F θ, β− 1 μ∗0 − 
m

j�0
aj 

τj

a
v
∗
(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v
∗
(s)ds, 

b

a
f θ, t, v

∗
(t)( dt, 

θ

a
g θ, t, v

∗
(t)( dt⎛⎝ ⎞⎠|dθ

≤ 
x

a
C1 β

− 1 μ0 − μ∗0(  + β− 1


m

j�0
aj 

τj

a
v
∗
(s) − v(s)( ds + 

θ

a
v(s) − v

∗
(s)ds





⎡⎢⎢⎣

+C1 
b

a
f(θ, t, v(t)) − f θ, t, v

∗
(t)( ( dt




+ C1 

θ

a
g(θ, t, v(t)) − g θ, t, v

∗
(t)( ( dt




dθ

≤ 
x

a
C1β

− 1 μ0 − μ∗0


 + C1β
− 1



m

j�0
aj 

τj

a
v
∗
(s) − v(s)


ds + C1 

θ

a
v(s) − v

∗
(s)


ds⎡⎢⎢⎣

+C1 
b

a
f(θ, t, v(t)) − f θ, t, v

∗
(t)( 


dt + C1 

θ

a
g(θ, t, v(t)) − g θ, t, v

∗
(t)( 


dtdθ

≤C1β
− 1 μ0 − μ∗0


b + C1 v − v

∗����
����b

2
+ C1 v − v

∗����
����b

2

+ C1 
x

a


b

a
C2 v(t) − v

∗
(t)


dt + C1 

x

a

θ

a
C3 v(t) − v

∗
(t)


dtdθ

≤C1bβ
− 1δ + 2C1 v − v

∗����
����b

2
+ C1C2b

2
v − v
∗����
���� + C1C3b

2
v − v
∗����
����. (34)

Hence,

v − v
∗����
����≤

C1bβ
− 1δ

1 − 2C1b
2

+ C1C2b
2

+ C1C3b
2

 
. (35)

Since

u(x) − u
∗
(x)


 � β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

x

a
v(s)ds − β− 1 μ∗0 − 

m

j�0
aj 

τj

a
v
∗
(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

x

a
v
∗
(s)dsβ− 1 μ0 − μ∗0


 + 2b v − v

∗����
����,

(36)

then

u − u
∗����
����≤ β− 1δ +

2C1b
2β− 1δ

1 − 2C1b
2

+ C1C2b
2

+ C1C3b
2

 
� ε.

(37)

'erefore, the solution of nonlocal Fredholm–Volterra
problems (1) and (2) depends continuously on μ0. □

5.2. Continuous Dependence on aj

Definition 3. Be solutionu(x) ∈ C[a, b]of nonlocal Fred-
holm–Volterra problems (1) and (2) depends continuously
onaj, if

∀ε> 0, ∃ δ(ε) s.t aj − a
∗
j



< δ⇒ u − u
∗����
����< ε, (38)

where u∗(x) is the solution of the nonlocal problem

u
∗
″(x) � F x, u

∗
(x), 

b

a
f x, t, u

∗′
(t) dt, 

x

a
g x, t, u

∗′
(t) dt , x ∈ [a, b], (39)
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with the nonlocal condition



m

j�0
a
∗
j u
∗ τj  � μ0, u

∗′
(a) � ρ0, aj⩾0, τj ∈ [a, b].

(40)

Theorem 5. Let the assumptions (1)–(5) ofBeorem 1hold;
then, the solution of nonlocal problems (1) and (2) depends
continuously on aj.

Proof. Let β∗ � 
m
j�0 a∗j ≠ 0 and v(x), v∗(x) be two solutions

of nonlocal Fredholm–Volterra problems (1) and (2) and
(39)–(40), respectively. 'en,

v(x) − v
∗
(x)


≤ 

x

a
F θ, β− 1 μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v(s)ds, 

b

a
f(θ, t, v(t))dt, 

θ

a
g(θ, t, v(t))dt⎛⎝ ⎞⎠



− F θ, β∗− 1 μ0 − 
m

j�0
a
∗
j 

τj

a
v
∗
(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

θ

a
v
∗
(s)ds, 

b

a
f θ, t, v

∗
(t)( dt, 

θ

a
g θ, t, v

∗
(t)( dt⎛⎝ ⎞⎠


dθ

≤ 
x

a
C1|β

− 1 μ0(  − β∗− 1 μ0(  + β∗− 1


m

j�0
a
∗
j 

τj

a
v
∗
(s)ds − β− 1



m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣

+ 
θ

a
v(s)ds − 

θ

a
v
∗
(s)ds| + C1 

b

a
f(θ, t, v(t)) − f θ, t, v

∗
(t)( ( dt





+ C1 
θ

a
g(θ, t, v(t)) − g θ, t, v

∗
(t)( ( dt




dθ

≤ 
x

a
C1 β

− 1 μ0(  − β∗
− 1

μ0( 


 + C1β
∗− 1



m

j�0
a
∗
j 

τj

a
v
∗
(s) − v(s)


ds⎡⎢⎢⎣

+ C1β
∗− 1



m

j�0
a
∗
j − aj



⎛⎝ ⎞⎠ 
τj

a
|v(s)|ds + C1β

− 1β∗
− 1



m

j�0
aj − a

∗
j



 

m

j�0
aj 

τj

a
|v(s)|ds

+ C1 
θ

a
v(s) − v

∗
(s)


ds + C1 

b

a
f(θ, t, v(t)) − f θ, t, v

∗
(t)( 


dt

+ C1 
θ

a
g(θ, t, v(t)) − g θ, t, v

∗
(t)( 


dtdθ

≤C1β
− 1β∗

− 1
mδμ0 + C1 v − v

∗����
����b

2
+ C1β

∗− 1
mδ‖v‖b

2
+ C1β

∗− 1
mδ‖v‖b

2

+ C1 v − v
∗����
����b

2
+ C1C2b

2
v − v
∗����
���� + C1C3b

2
v − v
∗����
����

≤C1β
− 1β∗

− 1
mδμ0 + 2C1β

∗− 1
mδ‖v‖b

2
+ 2C1b

2
+ C1C2b

2
+ C1C3b

2
  v − v

∗����
����.

(41)

Hence,

v − v
∗����
����≤

C1β
− 1β∗

− 1
mδμ0 + 2C1β

∗− 1
mδ‖v‖b

2

1 − 2C1b
2

+ C1C2b
2

+ C1C3b
2

  
. (42)

Since

u(x) − u
∗
(x)


 � |

1


m
j�0 aj

μ0 − 

m

j�0
aj 

τj

a
v(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

x

a
v(s)ds −

1


m
j�0 a
∗
j

μ0 − 
m

j�0
a
∗
j 

τj

a
v
∗
(s)ds⎡⎢⎢⎣ ⎤⎥⎥⎦ + 

x

a
v
∗
(s)ds|≤

mδ μ0




ββ∗
+ 2mδbβ∗

− 1
r + 2b v − v

∗����
����,

(43)
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then

‖u − u
∗
‖≤

mδ|μ0|
ββ∗

+ 2mδbβ∗ − 1
r + 2b

C1β
− 1β∗ − 1

mδμ0 + 2C1β
∗ − 1

mδ‖v‖b
2

1 − 2C1b
2

+ C1C2b
2

+ C1C3b
2

  
� ϵ.

(44)

'us, the solution of nonlocal Fredholm–Volterra
problems (1) and (2) depends continuously on aj. □

6. Methodology of Numerical Technique

In this section, we wish to determine the numerical solution
of equation (1). We divide the domain [a, x] and [a, b] of
equation (1) into N finite points as
a � x0 <x1 < . . . < xN− 1 <xN � x � b. We use uniform step
length h � ((b − a)/N) � ((xi − a)/i), i≥ 1, as
xj � a + jh � tj, j � 0, 1, 2, . . . , N. 'en, we use the trape-
zoidal rule to approximate the integral parts of (1) as follows
[10]:


b

a
k xi, tj u′ tj dt≃

h

2
k xi, t0( u′ t0(  + 2 

N− 1

j�1
k xi, tj u′ tj  + k xi, tN( u′ tN( ⎡⎢⎢⎣ ⎤⎥⎥⎦, (45)


xi

a
K xi, tj u′ tj dt≃

hi

2
K xi, t0( u′ t0(  + 2 

N− 1

j�1
K xi, tj u′ tj  + K xi, tN( u′ tN( ⎡⎢⎢⎣ ⎤⎥⎥⎦, (46)

where K(xi, tj) � 0 for tj ≤ xi, j≥ 1.
'en, we use central difference approximations to ap-

proximate the derivative parts of (1) as

ui
″≃

ui+1 − 2ui + ui− 1

h
2 ,

ui
′≃

ui+1 − ui− 1

2h
,

(47)

where ui
″ � u′′(xi), ui

′ � u′(xi).

6.1. Numerical Examples. Now, we apply 'eorem 1 on
some examples of the nonlocal Fredholm–Volterra integro-
differential equation and we solve it numerically by using the
finite difference-trapezoidal method. 'e results obtained
are tabulated in Tables 1–4, and all results for these examples
are obtained by using Wolfram Mathematica.

Example 1. Consider the equation

u″(x) −
1
8
u
2
(x) �

1
240

− 2x
5

− 6x
2 sin(2x) + 9x sin2(x) + 3 sin3(x)cos(x) 

−
1
48

x
3
2

− e
− sin(1)

  −
1
8
cos2(x) − cos(x) +

1
48


1

0
tx + x cos(t)e

u′(t)
 dt

+
1
40


x

0
tx + sin(x)u′

2
(t) dt, u(0.4) + u(0.6) � 1.746, u′(0) � 0.

(48)

'e exact solution of this problem is u(x) � cos(x). Firstly, we apply the assumptions of 'eorem 1 to prove
that this example has a continuous solution:

F x, u(x), 
b

a
f x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt 

�
1
240

− 2x
5

− 6x
2 sin(2x) + 9x sin2(x) + 3 sin3(x)cos(x)  −

1
48

x
3
2

− e
− sin(1)

  −
1
8
cos2(x) − cos(x)

+
1
8
u
2
(x) +

1
48


1

0
tx + x cos(t)e

u′(t)
 dt +

1
40


x

0
tx + sin(x)u′

2
(t) dt.

(49)
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'en,

F x, u(x), 
b

a
f x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt 




≤

1
240

− 2x
5

− 6x
2 sin(2x) + 9x sin2(x) + 3 sin3(x)cos(x)  −

1
48

x
3
2

− e
− sin(1)

  −
1
8
cos2(x) − cos(x)





+
1
8

u
2
(x)


 +

1
8


1

0

1
6

tx + x cos(t)e
u′(t)



dt +
1
8


x

0

1
5

tx + sin(x)u′
2
(t)



dt,

(50)

and also

f x, t, u′(t)dt( 


≤
1
6

(xt) +
1
6

e
u′(t)



,

g x, t, u′(t)dt( 


≤
1
5

(xt) +
1
5

u′
2
(t)



,

(51)

where M1(x) � (1/240)(− 2x5 − 6x2 sin(2x) + 9x sin2(x) +

3 sin3(x)cos(x)) − (1/48)x((3/2)− e− sin(1)) − (1/8)cos2(x)

− cos(x) ∈ L1[a, b], M2(x, t) � (1/6)(xt) ∈ L1[a, b], M3
(x, t) � (1/5)(xt) ∈ L1[a, b], C1 � (1/8), C2 � (1/6), C3 �

(1/5), b � 1; then, 2C1b
2 + C1C2b

2 + C1C3b
2 � (2/8) +

(1/48) + (1/40) � (71/240)< 1. It is clear that the

assumptions (1)–(5) of 'eorem 1 hold; therefore, the given
nonlocal problem has a continuous solution.

Now, we use the finite difference-trapezoidal method
with N � 10 to find the numerical solution of this problem.
Table 1 and Figure 1 give the comparison between the
numerical and exact solutions of this problem.

'rough our observation of Table 1, the interval [0, 1] was
divided into 10 subintervals of equal length. We obtain so-
lutions at the endpoints of subintervals and show that the
method used is effective, and this is evident from the absolute
error that was calculated for the difference between the nu-
merical and real solutions. Also, by looking at Figure 1, we find
that the numerical solution and the real solution are very close,
which means that the numerical solutions are good.

Table 4: 'e exact and numerical solutions of example 4.

xi Approximate solution Exact solution Absolute error

0.0 1.00094 1. 9.4143 E-4
0.1 1.10594 1.10517 7.7156 E-4
0.2 1.222 1.2214 5.9439 E-4
0.3 1.35027 1.34986 4.0876 E-4
0.4 1.49204 1.49182 2.1332 E-4
0.5 1.64873 1.64872 6.5459 E-6
0.6 1.82191 1.82212 2.1332 E-4
0.7 2.0133 2.01375 4.4832 E-4
0.8 2.22484 2.22554 7.0085 E-4
0.9 2.45863 2.4596 9.7372 E-4
1.0 2.71701 2.71828 1.2703 E-3

Table 1: 'e exact and numerical solutions of example 1.

xi Numerical solution Exact solution Absolute error

0.0 1.00007 1.00000 7.1195 E-5
0.1 0.99507 0.99500 6.7119 E-5
0.2 0.98012 0.98007 5.5076 E-5
0.3 0.95537 0.95534 3.6189 E-5
0.4 0.92108 0.92106 1.3545 E-5
0.5 0.87758 0.87758 6.6020 E-6
0.6 0.82532 0.82534 1.3545 E-5
0.7 0.76485 0.76484 9.2025 E-6
0.8 0.69679 0.69671 8.5149 E-5
0.9 0.62186 0.62161 2.4584 E-4
1.0 0.54083 0.54030 5.3145 E-4

Table 2: 'e exact and numerical solutions of example 2.

xi Approximate solution Exact solution Absolute error

− 1.0 − 0.845787 − 0.841471 4.31629 E-3
− 0.8 − 0.720890 − 0.717356 3.53409 E-3
− 0.6 − 0.567342 − 0.564642 2.69934 E-3
− 0.4 − 0.391242 − 0.389418 1.82331 E-3
− 0.2 − 0.199588 − 0.198669 9.18883 E-4
0.0 0.000000 0.000000 0.00000
0.2 0.199588 0.198669 9.18883 E-4
0.4 0.391242 0.389418 1.82331 E-3
0.6 0.567342 0.564642 2.69934 E-3
0.8 0.720890 0.717356 3.53409 E-3
1.0 0.845787 0.841471 4.31629 E-3

Table 3: 'e exact and numerical solutions of example 3.

xi Approximate solution Exact solution Absolute error

0.0 0.99967 1.00000 3.20617 E-4
0.1 1.00468 1.00500 3.24861 E-4
0.2 1.01972 1.02007 3.49559 E-4
0.3 1.04493 1.04534 4.06892 E-4
0.4 1.08056 1.08107 5.09384 E-4
0.5 1.12696 1.12763 6.70039 E-4
0.6 1.18456 1.18547 9.02486 E-4
0.7 1.25395 1.25517 1.22112 E-3
0.8 1.33579 1.33743 1.64126 E-3
0.9 1.43091 1.43309 2.17931 E-3
1.0 1.54023 1.54308 2.85299 E-3

10 Journal of Function Spaces



Example 2. Consider the equation

u″(x) −
1
7

u(x) �
1
56

−
1
2

x
2

+ 2 sin(x) − 1 cos(x) − sin(x)(x sin(x) − sin(1) − cos(1)) 

−
8 sin(x)

7
+

1
70


1

− 1
tx + sin(xt)u′(t)( dt

+
1
56


x

− 1
t cos(x) + t sin(x)u′(t)( dt, u(− 1) + u(1) � 0, u′(− 1) � cos(− 1).

(52)

'e exact solution of this problem is u(x) � sin(x). Firstly, we apply the assumptions of 'eorem 1 to prove
that this example has a continuous solution:

F x, u(x), 
b

a
f x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt 

�
1
56

−
1
2

x
2

+ 2 sin(x) − 1 cos(x) − sin(x)(x sin(x) − sin(1) − cos(1))  −
8 sin(x)

7
+
1
7

u(x)

+
1
70


1

− 1
tx + sin(xt)u′(t)( dt +

1
56


x

− 1
t cos(x) + t sin(x)u′(t)( dt.

(53)

'en,

F x, u(x), 
b

a
f x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt 




≤

1
56

−
1
2

x
2

+ 2 sin(x) − 1 cos(x) − sin(x)(x sin(x) − sin(1) − cos(1))  −
8 sin(x)

7





+
1
7

|u(x)| +
1
7


1

− 1

1
10

tx + sin(xt)u′(t)


dt +
1
7


x

− 1

1
8

t cos(x) + t sin(x)u′(t)


dt,

(54)

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

x
u 

(x
)

Num.
Exact

Figure 1: Comparison between the numerical and exact solutions of example 1.
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and also

f x, t, u′(t)dt( 


≤
1
10

|tx| +
1
10

u′(t)


,

g x, t, u′(t)dt( 


≤
1
8

|t cos(x)| +
1
8

u′(t)


,

(55)

where

M1(x) �
1
56

−
1
2

x
2

+ 2 sin(x) − 1 cos(x) − sin(x)(x sin(x) − sin(1) − cos(1))  −
8 sin(x)

7
∈ L

1
[a, b],

M2(x, t) �
1
10

(tx) ∈ L
1
[a, b],

M3(x, t) �
1
8

(t cos(x)) ∈ L
1
[a, b],

C1 �
1
7
,

C2 �
1
10

,

C3 �
1
8
,

b � 1.

(56)

'en, 2C1b
2 + C1C2b

2 + C1C3b
2 � (2/7) + (1/70)+

(1/56) � (89/280)< 1. It is clear that the assumptions
(1)–(5) of 'eorem 1 hold; therefore, the given nonlocal
problem has a continuous solution.

Now, we use the finite difference-trapezoidal method
with N � 10 to find the numerical solution of this problem.
Table 2 and Figure 2 give the comparison between the
numerical and exact solutions of this problem.

'rough our observation of Table 2, the interval [− 1, 1]

was divided into 10 subintervals of equal length. We obtain

solutions at the endpoints of subintervals and show that the
method used is effective, and this is evident from the ab-
solute error that was calculated for the difference between
the numerical and real solutions. Also, by looking at Fig-
ure 2, we find that the numerical solution and the real
solution are very close, which means that the numerical
solutions are good.

Example 3. Consider the equation

u″(x) −
1
12

u(x) �
1
60

−
x
3

2
− sinh(x)(xcosh(x) − sinh(x)  +

11cosh(x)

12
+

1
84

−
sinh(x)

2
−
cosh(x)

e
 

+
1
84


1

0
tsinh(x) + tcosh(x)u′(t)( dt +

1
60


x

0
tx + tsinh(x)u′(t)( dt,


1

0
u(x)dx � sinh(1), u′(0) � 0.

(57)

'e exact solution of this problem is u(x) � cosh(x).
Firstly, we apply the assumptions of 'eorem 1 to prove

that this example has a continuous solution:
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F x, u(x), 
b

a
f x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt  �

1
60

−
x
3

2
− sinh(x)(xcosh(x) − sinh(x))  +

11cosh(x)

12
+

1
84

−
sinh(x)

2
−
cosh(x)

e
  +

1
12

u(x)

+
1
84


1

0
tsinh(x) + tcosh(x)u′(t)( dt +

1
60


x

0
tx + tsinh(x)u′(t)( dt.

(58)

'en,

F x, u(x), 
b

a
f x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt 




≤

1
60

−
x
3

2
− sinh(x)(xcosh(x) − sinh(x))  +

11cosh(x)

12
+

1
84

−
sinh(x)

2
−
cosh(x)

e
 





+
1
12

|u(x)| +
1
12


1

0

1
7

tsinh(x) + tcosh(x)u′(t)


dt +
1
12


x

0

1
5

tx + tsinh(x)u′(t)


dt,

(59)

and also

f x, t, u′(t)dt( 


≤
1
7

|tsinh(x)| +
1
7

u′(t)


,

g x, t, u′(t)dt( 


≤
1
5

|tx| +
1
5

u′(t)


,

(60)

where

M1(x) �
1
60

−
x
3

2
− sinh(x)(xcosh(x) − sinh(x))  +

11cosh(x)

12
+

1
84

−
sinh(x)

2
−
cosh(x)

e
  ∈ L

1
[a, b],

M2(x, t) �
1
7

(tsinh(x)) ∈ L
1
[a, b],

u 
(x

)
–1.0 –0.5 0.0 0.5 1.0

–0.5

0.0

0.5

x
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Figure 2: Comparison between the numerical and exact solutions of example 2.
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M3(x, t) �
1
5

(tx) ∈ L
1
[a, b],

C1 �
1
12

,

C2 �
1
7
,

C3 �
1
5
,

b � 1. (61)

'en, 2C1b
2 + C1C2b

2 + C1C3b
2 � (2/12) + (1/84)+

(1/60) � (41/210)< 1. It is clear that the assumptions
(1)–(5) of 'eorem 1 hold; therefore, the given nonlocal
problem has a continuous solution.

Now, we use the finite difference-trapezoidal method
with N � 10 to find the numerical solution of this problem.
Table 3 and Figure 3 give the comparison between the
numerical and exact solutions of this problem.

'rough our observation of Table 3, the interval [0, 1]

was divided into 10 subintervals of equal length. We obtain

solutions at the endpoints of subintervals and show that the
method used is effective, and this is evident from the ab-
solute error that was calculated for the difference between
the numerical and real solutions. Also, by looking at Fig-
ure 3, we find that the numerical solution and the real
solution are very close, which means that the numerical
solutions are good.

Example 4. Consider the equation

u″(x) −
1
9
u
2
(x) � −

1
144

x + 2e
x

− 2( x
2

−
1
324

e
2
x + x + 2 x + e

x
−

e
2x

9

+
1
81


1

0
xt + x

2
tu′

2
(t) dt +

1
72


x

0
tx + x

2
u′(t) dt,

u(0.4) + u(0.6) � 3.31394, u′(0) � 1.

(62)

'e exact solution of this problem is u(x) � ex. Firstly, we apply the assumptions of 'eorem 1 to prove
that this example has a continuous solution:

F x, u(x), 
b

a
f x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt  �

−
1
144

x + 2e
x

− 2( x
2

−
1
324

e
2
x + x + 2 x + e

x
−

e
2x

9

+
1
9
u
2
(x) +

1
81


1

0
xt + x

2
tu′

2
(t) dt +

1
72


x

0
tx + x

2
u′(t) dt.

(63)

'en,

F x, u(x), 
b

a
f x, t, u′(t)( dt, 

x

a
g x, t, u′(t)( dt 





≤ −
1
144

x + 2e
x

− 2( x
2

−
1
324

e
2
x + x + 2 x + e

x
−

e
2x

9





+
1
9

u
2
(x)


 +

1
9


1

0

1
9

xt + x
2
tu′

2
(t)



dt +
1
9


x

0

1
8

tx + x
2
u′(t)


dt,

(64)
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and also

f x, t, u′(t)dt( 


≤
1
9

|tx| +
1
9

u′(t)


,

g x, t, u′(t)dt( 


≤
1
8

|tx| +
1
8

u′(t)


,

(65)

where

M1(x) � −
1
144

x + 2e
x

− 2( x
2

−
1
324

e
2
x + x + 2 x

+ e
x

−
e
2x

9
∈ L

1
[a, b],

M2(x, t) �
1
9

(tx) ∈ L
1
[a, b],

M3(x, t) �
1
8

(tx) ∈ L
1
[a, b],

C1 �
1
9
,

C2 �
1
9
,

C3 �
1
8
,

b � 1.

(66)

'en, 2C1b
2 + C1C2b

2 + C1C3b
2 � (2/9) + (1/81) +

(1/72) � (161/684)< 1. It is clear that the assumptions
(1)–(5) of 'eorem 1 hold; therefore, the given nonlocal
problem has a continuous solution.

Now, we use the finite difference-trapezoidal method
with N � 10 to find the numerical solution of this problem.
Table 4 and Figure 4 give the comparison between the
numerical and exact solutions of this problem.

'rough our observation of Table 4, the interval [0, 1]

was divided into 10 subintervals of equal length. We obtain
solutions at the endpoints of subintervals and show that the

method used is effective, and this is evident from the ab-
solute error that was calculated for the difference between
the numerical and real solutions. Also, by looking at Fig-
ure 4, we find that the numerical solution and the real
solution are very close, which means that the numerical
solutions are good.

7. Conclusion

'e existence and uniqueness of the nonlocal boundary
value problem for the Fredholm–Volterra integro-differ-
ential equation with the nonlocal condition and the integral
condition have been studied. 'e continuous dependence of
the solution on μ0 and aj has been introduced. Also, we used
the central difference approximations and trapezoidal rule to
obtain a numerical solution for problems. 'e error esti-
mation has been derived in this paper. Finally, we solve some
numerical examples to illustrate the accuracy of the pro-
posed method [12].
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