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In the present exploration, the authors define and inspect a new class of functions that are regular in the unit disc D≔ fς ∈ℂ
: jςj < 1g, by using an adapted version of the interesting analytic formula offered by Robertson (unexploited) for starlike
functions with respect to a boundary point by subordinating to an exponential function. Examples of some new subclasses are
presented. Initial coefficient estimates are specified, and the familiar Fekete-Szegö inequality is obtained. Differential
subordinations concerning these newly demarcated subclasses are also established.

1. Introduction and Preliminary Results

Let H be the class comprising of all holomorphic functions
in the unit disc D≔ fς ∈ℂ : jςj < 1g. Also, let A signify the
subclass of H entailing of functions h ∈A be of the form

h ςð Þ = ς + 〠
∞

n=2
anς

n, ς ∈D, ð1Þ

with the normalization hð0Þ = h′ð0Þ − 1 = 0. Denote by S ,
the subclass of A comprising univalent functions. Two con-
versant subclasses of A are familiarized by Robertson [1],
are defined with their analytical description as

S∗ αð Þ≔ h ∈A : R
ςh′ ςð Þ
h ςð Þ

 !
> α, ς ∈D

( )
,

C αð Þ≔ h ∈A : R 1 + ςh′′ ςð Þ
h′ ςð Þ

 !
> α, ς ∈D

( )
,

ð2Þ

and are correspondingly known as starlike and convex func-
tions of order αð0 ≤ α < 1Þ. It is well known that S∗ðαÞ ⊂ S

and CðαÞ ⊂ S: In interpretation of Alexander’s relation, h
∈CðαÞ⇔ ςh′ðςÞ ∈ S∗ðαÞ for ς ∈D: For α = 0, the class S∗

≔ S∗ð0Þ condenses to the well-known class of normalized
starlike univalent functions, and C ≔Cð0Þ reduces to the
normalized convex univalent functions.

A function f ∈H is subordinate to g ∈H written as f
≺ g if there exists ω ∈H with ωð0Þ = 0 and ωðDÞ ⊂D such
that f ðςÞ = gðωðςÞÞ for every ς ∈D: In precise, if g is univa-
lent, then f ≺ g if and only if f ð0Þ = gð0Þ and f ðDÞ ⊂ gðDÞ:

Let P symbolize the class of functions p ∈H with the
normalization pð0Þ = 1, i.e., of the form

p ςð Þ = 1 + 〠
∞

n=1
pnς

n, ς ∈D, ð3Þ

and such thatRpðςÞ > 0 for ς ∈D: Functions in P are called
familiarly as the Carathéodory class of functions. Ma and
Minda [2] proposed a appropriate subclass of P denoted
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by P ∗ð1Þ comprising of all Φ that is univalent in D with

Φ 0ð Þ = 1 ;Φ′ 0ð Þ > 0, ð4Þ

ΦðDÞ is symmetric with respect to the real axis

(2) Starlike with respect to 1

He also represented the class Φ ∈P ∗ð1Þ by

Φ ςð Þ = 1 + 〠
∞

n=1
Bnς

n, B1 > 0 ; ς ∈D: ð5Þ

The class P ∗ð1Þ plays a vital part in defining generalized
form of holomorphic functions. Ma and Minda [2] consid-
ered the function Φ ∈P ∗ð1Þ and defined S∗ðΦÞ as the class
of all h ∈A such that ςh′ðςÞ/hðςÞ ≺ΦðςÞ for ς ∈D: The
above functions defined are called as functions of Ma and
Minda kind. Observe that S∗ðαÞ = S∗ðΦÞ with ΦðςÞ = ð1 +
ð1 − 2αÞςÞ/ð1 − ςÞ, ς ∈D:

There are recent articles ([3–6]) where subclasses of A
were defined by using subordination satisfying the relation
ςh′ðςÞ/hðςÞ ≺ΦðςÞ for ς ∈D (see also [7, 8]). In particular,
the exponential function ΦeðςÞ = eς ≔ exp ðςÞ, an entire
function in ℂ has positive real part in D, Φeð0Þ = 1,
Φe′ð0Þ = 1, and ΦeðDÞ = fw ∈ℂ : jlog wj < 1g, is symmetric
with respect to the real axis and starlike with respect to 1.
Further, Φe ∈P

∗ð1Þ and therefore, it is now to make a
remark that the class

Se = f ∈A :
ςf ′ ςð Þ
f ςð Þ ≺Φe ςð Þ = eς, ς ∈D

( )
ð6Þ

is well defined. For an attractive study on starlike functions
connected with the exponential function, an individual can
refer to Mendiratta et al. [9, 10] (see also the works of
[11–13]).

We recall the class of close-to-convex functions denoted
by K introduced and studied by Kaplan [14]. A function h
∈H is called to be close-to-convex if and only if there exist
a function ψ ∈C and β ∈ ð−π/2, π/2Þ such that

R
eiβh′ ςð Þ
ψ′ ςð Þ

 !
> 0, ς ∈D: ð7Þ

Remarking at this time that even though starlikeness of a
fixed order has been discussed and well thought-out in detail
in countless articles in excess of a elongated stage of period,
class of univalent functions g ∈H that mapsD ontoΩ, star-
like domain with reverence to a boundary point is still a con-
ception that is not exclusively explored. Robertson [15]
recognized this examination and introduced a new subclass

G∗ = g ∈H : R eiδg ςð Þ
� �

> 0 ; δ ∈ℝ;∀ς ∈D
n o

, ð8Þ

with

g 0ð Þ = 1, g 1ð Þ≔ lim
r⟶1−

g rð Þ = 0, ð9Þ

and maps (univalently) D onto a domain starlike with
respect to the origin. Presume in addition that the constant
function g ≡ 1 ∈ G∗, in addition, Robertson through a con-
jecture that G∗ coincides with the class G of all g ∈H of
the structure

g ςð Þ = 1 + 〠
∞

n=1
ϑnς

n, ς ∈D, ð10Þ

such that

R
2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς

 !
> 0, ς ∈D, ð11Þ

proving that G ⊂ G∗: Definitely, in the same article Rob-
ertson shown that if g ∈ G and g≢1, then g ∈K and so uni-
valent inD. It is importance of citing that (11) was identified
by much erstwhile by Styer [16]. This surmise of Robertson
that G∗ coincide with the class G was soon after proved by
Lyzzaik [17], where he established that G∗ ⊂ G :

A different analytical categorization of starlike functions
with respect to a boundary point was proposed by Lecko
[18] proving the necessity. The sufficiency part of the catego-
rization was afterwards proved by Lecko and Lyzzaik [19]
(see [[20], Chapter VII] as well). Encouraged by the article
of Robertson [15], Aharanov et al. [21] (see also [22]) inves-
tigated about the class of functions that are sprirallike with
respect to a boundary point. Let

P ς ;Mð Þ≔ 4ςffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ςð Þ2 + 4ς/M

q
+ 1 − ς

� �2 ,
ffiffiffi
1

p
≔ 1, ς ∈D,

ð12Þ

be the Pick function. By using the Pick function Pðς ;MÞ, the
author in [23] considered another closely related class to G ,
the family GðMÞ,M > 1, comprising of all g ∈H of the form
(10) such that

R
2ςg′ ςð Þ
g ςð Þ + ςP′ ς ;Mð Þ

P ς ;Mð Þ

 !
> 0, ς ∈D: ð13Þ

In [24], Todorov established a structural formula and
coefficient estimates by associating G with a functional f ðς
Þ/1 − ς for ς ∈D: For g ∈H in (10), Obradovic̆ and Owa
[25] and Silverman and Silvia [26] separately introduced
the classes

Gα = R
ςg′ ςð Þ
g ςð Þ + 1 − αð Þ 1 + ς

1 − ς

 !
> 0, ς ∈D

( )
, ð14Þ
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where α ∈ ½0, 1Þ: The authors in [26] confirmed a
remarkable fact that for each α ∈ ½0, 1Þ, the class Gα is a sub-
class of G∗: Clearly, G1/2 =G and appealing coefficient
inequalities of G were established in [27].

For g ∈H assumed as in (10) and −1 < E ≤ 1 ; −E < F ≤ 1
, Jakubowski and Włodarczyk [28] defined the class GðE, FÞ
as

R J ςð Þð Þ > 0, ς ∈D, ð15Þ

where

J ςð Þ = 2ςg′ ςð Þ
g ςð Þ + 1 + Eς

1 − Fς
: ð16Þ

By desirable quality of the initiative proposed in [2],
Mohd and Darus in [29] presented a new class S∗

b ðΦÞ, where
Φ ∈P ∗ð1Þ, of all g ∈H of the form (10) such that

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
≺Φ ςð Þ, ς ∈D: ð17Þ

An additional appealing class on the above direction was
in recent times analyzed by Lecko et al. [30].

The most important intend of the present article is to
illustrate and do a organized inquiry of the function class
defined as below.

Definition 1. For g ∈H and as assumed in (10), we let a new
class Ge as

Ge = g ∈H :
2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
≺ eς, ς ∈D

( )
: ð18Þ

Remark 2. Note that the condition (18) is well defined, for

p ςð Þ≔ 2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
, ς ∈D ð19Þ

is holomorphic in D:

Based on the description of the class Ge and on the ana-
lytical characterization of the class G∗ of starlike functions
with respect to a boundary point, we can prepare the next
result.

2. Representation Theorem and
Coefficient Results

Let us start the section with the following representation the-
orem which in fact offers a handy procedure to build func-
tions in our new class Ge.

Theorem 3. A function g ∈ G e if and only if there exists p
∈H such that p ≺Φe and

g ςð Þ = 1 − ςð Þ exp 1
2

ðς
0

p ζð Þ − 1
ζ

dζ
� �

, ς ∈D: ð20Þ

Proof. Let us suppose that g ∈ G e, then, a function p defined
by (19) is holomorphic and satisfies p ≺Φe: Also, (19) can be
rewritten in the type

2g′ ςð Þ
g ςð Þ + 2

1 − ς
= p ςð Þ − 1

ς
, ς ∈D: ð21Þ

This upon integration give

log g ςð Þð Þ2
1 − ςð Þ2 =

ðς
0

p ζð Þ − 1
ζ

dζ, ς ∈D,  log 1≔ 0: ð22Þ

This in essence gives

g ςð Þð Þ2 = 1 − ςð Þ2 exp
ðς
0

p ζð Þ − 1
ζ

dζ
� �

, ς ∈D, ð23Þ

which imply (20).☐

Let us presume p ≺Φe. By defining a function g as in
(20), and by observing that pð0Þ = 1, it is noticeable that g
is holomorphic in D: A working out shows that g satisfies
(21); so, (19). Thus, g ∈ G e, which ends the confirmation of
the theorem.

Let Ψe be a holomorphic function which is the solution
of the differential equation (see also [[10], p. 367])

ςΨe ′ ςð Þ
Ψe ςð Þ = eς, ς ∈D, Ψe 0ð Þ = 0, Ψe ′ 0ð Þ = 1, ð24Þ

i.e.,

Ψe ςð Þ = ς exp
ðς
0

eζ − 1
ζ

dζ

 !
= ς + ς2

+ 3
4 ς

3 + 17
36 ς

4+⋯, ς ∈D:

ð25Þ

Next, we present few examples for the class Ge:

Example 4.

(1) For a specified A ∈ℝ and ς ∈D, let us name

pA ςð Þ≔ 1 + Aς,

gA ςð Þ≔ 1 − ςð Þ exp Aς
2

� �
, ς ∈D:

ð26Þ
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Note down that gA ∈H with gAð0Þ = 1. Observe that

2ςgA′ ςð Þ
gA ςð Þ + 1 + ς

1 − ς
= pA ςð Þ, ς ∈D: ð27Þ

We finish that gA ∈ Ge for ∣A ∣ ≤1 − 1/e.

(2) Given −1 < A ≤ 1 and −A < B < 1, define

w = pA,B ςð Þ≔ 1 + Aς
1 − Bς

, ς ∈D: ð28Þ

Then, we identify that pA,BðDÞ is an open disk symmet-
rical with respect to the real axis centered at ð1 + ABÞ/ð1 −
B2Þ of radius ðA + BÞ/ð1 − B2Þ. In particular, for B = A, this
disk is given by

w −
1 + A2

1 − A2

����
���� < 2A

1 − A2 , ð29Þ

with diametric end points xL ≔ ð1 − jAjÞ/ð1 + jAjÞ and xR
≔ ð1 + jAjÞ/ð1 − jAjÞ. Since xL ≥ 1/e and xR ≤ e iff jAj ≤ ðe
− 1Þ/ðe + 1Þ, we perceive that then pA,A ≺Φe: As a result, a
function g ∈H with gð0Þ = 1 defined by

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
= pA,A ςð Þ, ς ∈D, ð30Þ

i.e., the function

g ςð Þ = 1 − ς

1 − Aς
, ς ∈D, ð31Þ

belongs to the class Ge for ∣A ∣ ≤ðe − 1Þ/ðe + 1Þ.

Theorem 5. Let 0 < r < 1: If g ∈ G e, then

(i)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ψe −rð Þ

r

r
1 − rð Þ ≤ ∣g ςð Þ∣ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψe −rð Þ

r

r
1 + rð Þ, ∣ς∣ = r:

ð32Þ

(ii)

arg g ς0ð Þ
1 − ς0ð Þ2

����
���� ≤ 1

2 max
∣ς∣=r

arg Ψe ςð Þ
ς

, ∣ς0∣ = r,  arg 1≔ 0:

ð33Þ

Proof. Let g ∈ Ge.

(i) Describe the function

h ςð Þ≔ ς g ςð Þð Þ2
1 − ςð Þ2 , ς ∈D: ð34Þ

Obviously, h is a holomorphic function in D, and an
uncomplicated working out yields

ςh′ ςð Þ
h ςð Þ = 2ςg′ ςð Þ

g ςð Þ + 1 + ς

1 − ς
, ς ∈D: ð35Þ

It is straightforward to witness from the above that g ∈
G e if and only if

ςh′ ςð Þ
h ςð Þ ≺ eς, ς ∈D: ð36Þ

By the result of Corollary 1′ of [2], we obtain

−Ψe −rð Þ ≤ ∣h ςð Þ∣ ≤Ψe rð Þ, ∣ς∣ = r, ð37Þ

i.e., by using (34),

−Ψe −rð Þ ≤ ς g ςð Þð Þ2
1 − ςð Þ2

����
���� ≤Ψe rð Þ, ∣ς∣ = r, ð38Þ

which gives (32).

(ii) By (36), a function h defined by (34) belongs to S∗

ðΦeÞ. Due to Corollary 3′ of [2], the inequality

arg h ς0ð Þ
ς0

����
���� ≤max

∣ς∣=r
arg Ψe ςð Þ

ς
, ∣ς0∣ = r ð39Þ

is valid. Using now (34) in turn yields (33).☐

Next, we ascertain some coefficient results for the class
g ∈ G e. Let B≔ fω ∈H : jωðςÞj ≤ 1, ς ∈Dg and B0 be the
subclass of B consisting of functions ω such that ωð0Þ = 0:
We comment at this time that the elements of B0 are
termed as Schwarz functions.

We will pertain two lemmas below to prove our main
results.

Lemma 6. (see [2]). If p ∈P is of the form (3), then for μ ∈ℂ,

p2 − μp21
�� �� ≤ 2 max 1, 2μ − 1j jf g: ð40Þ

In particular, if μ is a real number, then

p2 − μp21
�� �� ≤

−4μ + 2, μ ≤ 0,
2, 0 ≤ μ ≤ 1,
4μ − 2, μ ≥ 1:

8>><
>>: ð41Þ

When μ < 0 or μ > 1, the equality holds true if and only if
pðςÞ = ð1 + ςÞ/ð1 − ςÞ≕LðςÞ, ς ∈D, or one of its rotations.
If 0 < μ < 1, then the equality holds true if and only if pðς
=Lðς2Þ,ς ∈D, or one of its rotations. If μ = 0, the equality
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holds true if and only if

p ςð Þ = 1
2 1 + λð ÞL ςð Þ + 1

2 1 − λð ÞL −ςð Þ, ς ∈D, ð42Þ

where 0 ≤ λ ≤ 1, or one of its rotations. If μ = 1, then the
equality holds true if p is a reciprocal of one of the functions
such that the equality holds true in the case when μ = 0.

Lemma 7. (see [31]). If p ∈P is of the form (3) and βð2β
− 1Þ ≤ δ ≤ β, then

p3 − 2βp1p2 + δp31
�� �� ≤ 2: ð43Þ

At the moment, we are in a position to state the theorem
which give a few better bounds for early coefficients and the
Fekete-Szegö inequalities for f ∈ Ge.

Theorem 8. If g ∈ G e is of the form (10), then

ϑ1 + 1j j ≤ 1
2
, ð44Þ

ϑ1j j ≤ 3
2
, ð45Þ

2ϑ2 − ϑ21 + 1
�� �� ≤ 1

2
, ð46Þ

∣ϑ2∣ ≤
3
4
, ð47Þ

3ϑ3 − 3ϑ1ϑ2 + ϑ31 + 1
�� �� ≤ 1

2
, ð48Þ

and for δ ∈ℝ,

ϑ2 − δϑ21
�� �� ≤ 1

4
max 1, δ − 1j jf g + 2 2δ − 1j j + 4 δj jð Þ: ð49Þ

Inequalities (44), (45), (46), (47), and (48) are sharp.

Proof. In view of (18), there exists ω ∈B0 such that

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
=Φe ω ςð Þð Þ = exp ω ςð Þð Þ, ς ∈D: ð50Þ

By an application of (10), one can easily obtain with sim-
ple computation that

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
= 1 + 2 ϑ1 + 1ð Þς + 2 2ϑ2 − ϑ21 + 1

� 	
ς2

+ 2 3ϑ3 − 3ϑ1ϑ2 + ϑ31 + 1
� 	

ς3+⋯, ς ∈D:

ð51Þ

Define the function p by

p ςð Þ = 1 + ω ςð Þ
1 − ω ςð Þ = 1 + p1ς + p2ς

2+⋯, ς ∈D: ð52Þ

Clearly, p ∈P : Moreover,

ω ςð Þ = p ςð Þ − 1
p ςð Þ + 1 = p1

2 ς + p2
2 −

p21
4

� �
ς2

+ p3
2 −

p1p2
2 + p31

8

� �
ς3+⋯, ς ∈D:

ð53Þ

Hence,

exp ω ςð Þð Þ = 1 + ω ςð Þ + ω ςð Þð Þ2
2 + ω ςð Þð Þ3

6 +⋯ = 1 + p1ς
2

+ p2
2 −

p21
8

� �
ς2 + p3

2 −
p1p2
4 + p31

48

� �
ς3+⋯, ς ∈D:

ð54Þ

☐

Substituting (51) and (54) into (50), by comparing the
corresponding coefficients, we obtain

2 ϑ1 + 1ð Þ = p1
2 , ð55Þ

2 2ϑ2 − ϑ21 + 1
� 	

= p2
2 −

p21
8 , ð56Þ

2 3ϑ3 − 3ϑ1ϑ2 + ϑ31 + 1
� 	

= p3
2 −

p1p2
4 + p31

48 :
ð57Þ

Since (e.g., ([[32]], Vol. I, p. 80)),

pnj j ≤ 2, n ∈ℕ: ð58Þ

From (55), we obtain (44). Rewriting (55) as ϑ1 = p1/4 − 1,
(45) easily follows. Further, (56) together with (40) yields

2 2ϑ2 − ϑ21 + 1
� 	�� �� = p2

2 −
p21
8

����
���� ≤ 1, ð59Þ

which proves (46).
Upon applying (55) for ϑ1 in (56), we get

4ϑ2 =
p2
2 − p1: ð60Þ

Hence, by applying (41), we obtain (47).
An application of (43) in (57) gives

6ϑ3 − 6ϑ1ϑ2 + 2ϑ31 + 2
�� �� = p3

2 −
p1p2
4 + p31

48

����
���� ≤ 1, ð61Þ

i.e., the inequality (48).
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Using (60) and making use of the expression for ϑ1 and
in turn by applying (41) and (58), we get

ϑ2 − δϑ21
�� �� ≤ 1

8 p2 −
δ

2 p
2
1

����
���� + 2 2δ − 1j j p1j j + 8 δj j

� �
, δ ∈ℝ,

ð62Þ

which leads to the inequality (49).
Equalities in (44) and (45) hold for the function p =L ;

in (46) for the function pðςÞ =Lðς2Þ, ς ∈D, in (47) for the
function pðςÞ =Lð−ςÞ, ς ∈D and in (48) for the function p
ðςÞ =Lðς3Þ, ς ∈D:

3. Differential Subordination Results
Involving Ge

In this segment, we derive certain differential subordination
result concerning the class Ge.

To demonstrate differential subordination results, we
recollect the next lemma (see ([[33]], Theorem 8.4 h, p.
132)).

Q is starlike univalent in D, or
h is convex univalent in D

Lemma 9. Suppose q is univalent in D,θ and φ be holo-
morphic in a domain D containing qðDÞ with φðwÞ ≠ 0 when
w ∈ qðDÞ. Let QðςÞ≔ ςq′ðςÞφðqðςÞÞ and hðςÞ≔ θðqðςÞÞ +Q
ðςÞ for ς ∈D: Suppose that either

Assume also that
(iii)

R
ςh′ ςð Þ
Q ςð Þ > 0, ς ∈D: ð63Þ

If p ∈H with pð0Þ = qð0Þ,pðDÞ ⊂D, and

θ p ςð Þð Þ + ςp′ ςð Þφ p ςð Þð Þ ≺ θ q ςð Þð Þ + ςq′ ςð Þφ q ςð Þð Þ, ς ∈D,
ð64Þ

then p ≺ q and q are the best dominant.

Theorem 10. Let g ∈H and gð0Þ = 1. If g satisfies the subor-
dination condition,

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
≺ 1 + ς, ς ∈D: ð65Þ

Then,

p ςð Þ≔ g ςð Þð Þ2
1 − ςð Þ2 ≺ eς, ς ∈D: ð66Þ

Proof. Let D≔ℂ \ f0g: Let θðwÞ≔ 1,w ∈ℂ and φðwÞ≔ 1/

w,w ∈D: Note that ΦeðDÞ ⊂D and θ and φ are holo-
morphic in D: Thus,

Q ςð Þ≔ ςΦe′ ςð Þφ Φe ςð Þð Þ = ςΦe ′ ςð Þ
Φe ςð Þ = ς, ς ∈D ð67Þ

is well defined and holomorphic. Clearly, Q is a univalent
starlike function and so for a function hðςÞ≔ θðΦeðςÞÞ +Q
ðςÞ = 1 +QðςÞ,ς ∈D, we achieve

R
ςh′ ςð Þ
Q ςð Þ =R

ςQ′ ςð Þ
Q ςð Þ = 1 > 0, ς ∈D: ð68Þ

Hence, for any function p belonging to H with pð0Þ =
Φeð0Þ = 1 such that pðDÞ ⊂D, i.e., for p nonvanishing in D

, by applying Lemma 9, we infer that from the subordination

1 + ςp′ ςð Þ
p ςð Þ ≺ 1 + ςΦe′ ςð Þ

Φe ςð Þ = 1 + ς, ς ∈D, ð69Þ

it follows the subordination p ≺Φe:☐

Next, we at this time take g ∈H with gð0Þ = 1 and gðςÞ
be nonzero for ς ∈D satisfying (65). Let a function p be
taken as in (66). Then, one can notice that pð0Þ =Φeð0Þ = 1
, pðςÞ ≠ 0, for ς ∈D, and p is holomorphic. Since

1 + ςp′ ςð Þ
p ςð Þ = 2ςg′ ςð Þ

g ςð Þ + 1 + ς

1 − ς
, ς ∈D, ð70Þ

from (69), the conclusion (66) follows, which complete the
proof.

Theorem 11. Let g ∈H with gð0Þ = 1. If g satisfies

2ςg′ ςð Þ
g ςð Þ + 1 + ς

1 − ς
≺ eς + ς, ς ∈D, ð71Þ

then

p ςð Þ≔ ς
g ςð Þ
1 − ς

� �2 ðς
0

g ζð Þ
1 − ζ

� �2

dζ

 !−1

≺ eς, ς ∈D: ð72Þ

Proof. Let D≔ℂ \ f0g: Let ϕðwÞ≔w,w ∈ℂ, and ψðwÞ≔ 1
/w,w ∈D: Note that ΦeðDÞ ⊂D and ϕ and ψ are holo-
morphic in D: Thus, the function Q defined by (67), i.e.,
the identity function, is univalent starlike. Hence, for a func-
tion hðςÞ≔ θðΦeðςÞÞ +QðςÞ =ΦeðςÞ +QðςÞ,ς ∈D, we obtain

R
ςh′ ςð Þ
Q ςð Þ =R

ςΦe′ ςð Þ
Q ςð Þ +R

ςQ′ ςð Þ
Q ςð Þ

=RΦe ςð Þ +R
ςQ′ ςð Þ
Q ςð Þ > 0, ς ∈D:

ð73Þ

Thus, for any function p ∈H with pð0Þ =Φeð0Þ = 1 such
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that pðDÞ ⊂D, i.e., pðςÞ ≠ 0 for ς ∈D, by applying Lemma 9,
we deduce that from the subordination

p ςð Þ + ςp′ ςð Þ
p ςð Þ ≺Φe ςð Þ + ςΦe′ ςð Þ

Φe ςð Þ = eς + ς, ς ∈D, ð74Þ

it follows the subordination p ≺Φe:☐

Let now take g ∈H with gð0Þ = 1 and gðςÞ ≠ 0 for ς ∈D
satisfying (65). Define a function p as in (72). We see that

p 0ð Þ = lim
ς⟶0

ς
g ςð Þ
1 − ς

� �2 ðς
0

g ζð Þ
1 − ζ

� �2
dζ

 !−1

= g 0ð Þð Þ2 lim
ς⟶0

ς
ðς
0

g ζð Þ
1 − ζ

� �2
dζ

 !−1

= 1 =Φe 0ð Þ,
ð75Þ

pðςÞ=0 for ς ∈D and p is holomorphic. Since

p ςð Þ + ςp′ ςð Þ
p ςð Þ = 2ςg′ ςð Þ

g ςð Þ + 1 + ς

1 − ς
, ς ∈D, ð76Þ

from (74), (71) follows which completes the proof.
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