
Research Article
Bayesian Estimation for the Doubly Censored Topp Leone
Distribution using Approximate Methods and Fuzzy
Type of Priors

Navid Feroze ,1 Ali Al-Alwan,2 Muhammad Noor-ul-Amin,3 Shajib Ali ,4

and R. Alshenawy 2,5

1Department of Statistics, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
2Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
3Department of Statistics, COMSATS University Islamabad-Lahore Campus, Pakistan
4Department of Mathematics, Islamic University, Kushtia-7003, Bangladesh
5Department of Applied Statistics and Insurance, Faculty of commerce, Mansoura University, Mansoura 35516, Egypt

Correspondence should be addressed to Shajib Ali; shajib_301@yahoo.co.in

Received 3 January 2022; Accepted 19 February 2022; Published 19 March 2022

Academic Editor: Ganesh Ghorai

Copyright © 2022 Navid Feroze et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Topp Leone distribution (TLD) is a lifetime model having finite support and U-shaped hazard rate; these features distinguish
it from the famous lifetime models such as gamma, Weibull, or Log-normal distribution. The Bayesian methods are very much
linked to the Fuzzy sets. The Fuzzy priors can be used as prior information in the Bayesian models. This paper considers the
posterior analysis of TLD, when the samples are doubly censored. The independent informative priors (IPs) which are very
close to the Fuzzy priors have been proposed for the analysis. The symmetric and asymmetric loss functions have also been
assumed for the analysis. As the marginal PDs are not available in a closed form, therefore, we have used a Quadrature
method (QM), Lindley’s approximation (LA), Tierney and Kadane’s approximation (TKA), and Gibbs sampler (GS) for the
approximate estimation of the parameters. A simulation study has been conducted to assess and compare the performance of
various posterior estimators. In addition, a real dataset has been analyzed for the illustration of the applicability of the results
obtained in the study. The study suggests that the TKA performs better than its counterparts.

1. Introduction

Topp and Leone [1] introduced a lifetime distribution and
named it TLD. Nadarajah and Kotz [2] have discussed that
the hazard rate function of the TLD is U-shaped. The distribu-
tions with U-shaped hazard rate are used to model the human
populations where the death rate is high at the infant age owing
to infant diseases and birth defects; thereafter, the death rate
remains constant up to thirties, and then, it increases again.
Some of the manufactured items also have similar life patterns.
The advantage of TLD is that it has only two parameters, while
most of the distributions with U-shaped hazard rate have at
least three parameters which increases the computational diffi-
culties. The regularity conditions are satisfied by the TLD. The

distribution function of the TLD is in a compact form, due to
which it can be very easily applied when the data are censored,
unlike the gamma and lognormal distributions. Another feature
of the distribution, which distinguishes it from the other lifetime
distributions, is that it has a finite support. Due to these distin-
guishing aspects, the TLD has receivedmuch attention from the
researchers recently. Al-Zahrani and Alshomrani [3] analyzed
the stress strength reliability for the TLD. Genc [4] derived
the expressions for single and product moments for the order
statistics from the TLD. Genc [5] considered the estimation of
P ðX > YÞ from the TLD. Mir Mostafaee et al. [6] discussed
the estimation for moments of order statistics from the TLD.
Bayoud [7] estimated the shape parameter of the TLD using
the Bayesian and classical methods under type-I censored

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 4816748, 15 pages
https://doi.org/10.1155/2022/4816748

https://orcid.org/0000-0002-9760-0939
https://orcid.org/0000-0002-3992-8821
https://orcid.org/0000-0002-6570-4733
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4816748


samples. Bayoud [8] used progressive type-II censored samples
to obtain the Bayesian and classical estimates for the shape
parameter of the TLD. The approximate maximum likelihood
method, LA, and importance sampling method have been used
for the estimation. Mir Mostafaee et al. [9] studied the lower k-
record values from the TLD using the Bayesian approach.
Reyad and Othman [10] used the Topp Leone genesis to pro-
duce and generalization of the Burr-XII distribution and called
it Topp-Leone Burr-XII distribution. Different properties and
estimation of the proposed model have been discussed. The
effectiveness of the proposed model has been demonstrated
using three real-life datasets. Rezaei et al. [11] introduced a
new family of distributions from the TLD and discussed the
mathematical properties of this family of distributions.

The U-shaped hazard rate with a fewer number of
parameters and finite support for the TLD distinguishes it
from repeatedly used lifetime models such as Weibull,
Gamma, and Log-normal distributions. Motivated by these
features of the TLD, we planned to estimate this distribution
under a Bayesian framework. The reason for the choice of
Bayesian estimation is that the results under Bayesian infer-
ence are often better than the classical methods even if we do
not have sufficient prior information; for example, please see
Kundu and Joarder [12]. Further, the lifetime data are often
censored. Therefore, we have considered doubly censored
samples from the TLD for the estimation. Doubly censoring
is used to analyze the duration times between two events.
For example, let the ages of certain equipment are not
known when the monitoring of the equipment starts and
tracking of the equipment is stopped after the predeter-
mined observational period. Then, the ages of the equipment
which are still functioning will be doubly censored. The dou-
bly censored samples are very useful in reliability analysis for
the products which are already under use. In medical appli-
cations, the doubly censored samples usually deal with time
between infection and onset of a disease; for example, the
infectious diseases like COVID-19 often produce doubly
censored data. Although Feroze and Aslam [13] and Feroze
and Aslam [14] have considered the analysis of doubly
censored samples from the single and mixture of TLD,
respectively, these contributions considered only single para-
metric TLD which restricted the flexibility of the TLD to a
great extent. In addition, these contributions did not include
any credible intervals.

In addition, the Bayesian methods are very much linked
to the Fuzzy sets. The Fuzzy priors can be used as prior
information in the Bayesian models. The fuzzy approxima-
tions enable users to incorporate more flexible sets of priors
and likelihood functions in the Bayesian inference. This
method allows authors to bypass the closed form conjugacy
link between likelihood function and prior [15]. Stegmaier
and Mikut [16] suggested that the fuzzy priors can improve
the performance of the Bayesian inference. This paper con-
siders the posterior analysis of TLD, when the samples are
doubly censored. The independent informative priors (IPs)
which are very close to the Fuzzy priors have been proposed
for the analysis. It has been noticed that the expressions for
the posterior estimators are not available in the closed form,
so we have used four approximation techniques, namely,

QM, LA, TKA, and GS, for the analysis. The assumption of
independent gamma priors has been made for both of the
parameters; this assumption is not rare; for example, see
Kundu and Howlder [17]. Further symmetric and asymmetric
loss functions have been considered for the estimation.

The rest of the paper is placed in the following sections.
The model and likelihood function have been introduced in
Section 2. The Bayesian estimation has been considered in
Section 3. The results regarding the simulation study have
been reported in Section 4. The real-life example has been
presented in Section 5. The concluding remarks have been
given in Section 6.

2. The Model

In this section, the TLD and likelihood function under dou-
bly censored samples have been presented.

The probability density function (pdf) of the TLD is

f xð Þ = θ1
θ2

2 − 2x
θ2

� � 2x
θ2

−
x2

θ22

� �θ1−1
, 0 < x < θ2, θ1, θ2 > 0,

ð1Þ

where θ1 and θ2 are model parameters from TLD.
The cumulative distribution function for TLD is

F xð Þ = 2x
θ2

−
x2

θ22

� �θ1

, 0 < x < θ2, θ1, θ2 > 0: ð2Þ

Suppose that a random sample of size “n” is selected
from the TLD. Further assume the complete information
for ordered observations xr ,⋯, xs was available, and the
information regarding the smallest “r − 1” and largest
“n − s” items was incomplete. Therefore, m = s − r + 1 obser-
vations can only be used for the analysis from the sample of
size “n.” Using the doubly censored sample x = ðxr ,⋯, xsÞ,
the likelihood function is

L x θ1, θ2jð Þ∝ F xr θ1, θ2jð Þ½ �r−1 1 − F xs θ1, θ2jð Þ½ �n−s
Ys
i=r

f xi θ1, θ2jð Þ:

ð3Þ

Putting results in (3), we have

L x θ1, θ2jð Þ∝ θm1
θm2

2xr
θ2

−
x2r
θ22

� �θ1 r−1ð Þ

� 1 − 2xs
θ2

−
x2s
θ22

� �θ1
" #n−sYs

i=r
2 − 2xi

θ2

� � 2xi
θ2

−
x2i
θ22

� �θ1−1
:

ð4Þ

3. Posterior Estimation

This section reported the posterior estimation for the model
parameters assuming doubly censored samples. The gamma
priors have been assumed for model parameters. The
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posterior estimation has been carried out using two loss
functions. Various approximation methods have been sug-
gested for numerical solutions of the estimates.

3.1. Prior and Posterior Distribution (PD). In this subsection,
we have assumed IP for the construction of the PD for the
parameters θ1 and θ2. Consider the informative gamma
priors for the parameters θ1and θ2 as g1ðθ1Þ∝ θa−11 e−bθ1 ,
θ1 > 0 and g2ðθ2Þ∝ θc−12 e−dθ2 , θ2 > 0, respectively. Now,
under the assumption of independence the combined IP
for the parameters θ1 and θ2 is

g θ1, θ2ð Þ∝ θa−11 θc−12 e−bθ1e−dθ2 , θ1, θ2 > 0: ð5Þ

The prior given in (5) is quite close to the Fuzzy
priors [15].

From (4) and (5), the joint PD for model parameters θ1
and θ2 under IP are

g θ1, θ2 xjð Þ = L x θ1, θ2jð Þg θ1, θ2ð ÞÐ∞
0
Ð∞
0 L x θ1, θ2jð Þg θ1, θ2ð Þdθ1dθ2

: ð6Þ

Putting values in (6), we have the PD as

L x θ1, θ2jð Þ∝ θm+a−1
1
θm−c+1
2

e−bθ1e−dθ2
2xr
θ2

−
x2r
θ22

� �θ1 r−1ð Þ

� 1 − 2xs
θ2

−
x2s
θ22

� �θ1
" #n−sYs

i=r
2 − 2xi

θ2

� � 2xi
θ2

−
x2i
θ22

� �θ1−1
:

ð7Þ

3.2. Loss Functions. The posterior estimation has been car-
ried out using following two loss functions.

(1) Squared Error Loss Function (SELF): Legendre [18]
and Gauss [19] proposed the SELF that can be
defined as Lðθ1, θ1,SÞ = ðθ1 − θ1,SÞ2, where θ1 is the
model parameter. Using SELF, the Bayes estimator
(BE) for the parameter θ1 is θ1,S = Eðθ1Þ.

(2) Precautionary Loss Function (PLF): the PLF, intro-
duced by Norstrom [20], has the following
expression Lðθ1,P , θ1Þ = θ−11,pðθ1,P − θ1Þ2. Using PLF,

the BE is θ1,P = ½Eðθ21Þ�
1/2
.

3.3. Quadrature Method (QM). It should be noted that the
assumed priors are flexible; however, the BEs under SELF
and PLF cannot be obtained in an explicit form. This is
due to the fact that the ratio of the integrals in the BEs can-
not be solved directly. In such situations, the BEs can be
obtained numerically using QM which can be used to
evaluate an integral numerically.

The BEs for the parameters θ1 and θ2 under SELF using
the PD based on IP distribution are

θ1,S =
ð∞
0

ð∞
0
θ1g θ1, θ2 xjð Þdθ1dθ2,

θ2,S =
ð∞
0

ð∞
0
θ2g θ1, θ2 xjð Þdθ1dθ2:

ð8Þ

In the Bayesian QM, we choose a set of points between
the finite integral in an order to ensure the stability of our
uncertainty. Consider the posterior densitygðθ1, θ2jxÞ,
where θ1 and θ2 are the parameters. We evaluate this density
over a number of the points in the entire range as

ð∞
0

ð∞
0
g θ1, θ2 xjð Þdθ1dθ2 = 〠

m

i=0
〠
m

i=0
wig θ1,i, θ2,i

��x� �
, ð9Þ

where wi are the increments. The Mathematica software has
been used to obtain BEs and associated PRs for the parame-
ters θ1 and θ2 using SELF and PLF under IPs.

3.4. Lindley’s Approximation (LA). The QM is not suitable in
many situations, for example, in the case of functions with
singularities; the method is not well suited. In such situa-
tions, some other approximation methods, such as LA, can
be used. The LA has an important role in Bayesian inference.
Using this method, we can compute BEs without performing
any complex numerical integration. Hence, if we need to
obtain only the BEs, the LA can be efficiently used to serve
this purpose. Bayoud [8] used LA to estimate the shape
parameter of the TLD considering uncensored data. We
have considered the more general and complex case by
performing the LA for both parameters of the TLD using
censored data.

Assuming a sufficiently large sample, Lindley [21] pro-
posed that any ratio of the integral of the form

I θð Þ = E h θ1, θ2ð Þ½ � =
Ð

θ1,θ2ð Þh α, βð Þel x θ1,θ2jð Þ+G θ1,θ2ð Þd θ1, θ2ð ÞÐ
θ1,θ2ð Þe

l x θ1,θ2jð Þ+G θ1,θ2ð Þd θ1, θ2ð Þ ,

ð10Þ

where hðθ1, θ2Þ is any function of θ1 or θ2, lðθ1, θ2jxÞ is the
log-likelihood function, and Gðθ1, θ2Þ is the logarithmic of
joint prior for the parameters θ1 and θ2, can be evaluated as

I θð Þ = g bθ1, bθ2
� �

+ g1d1 + g2d2 + d3 + d4ð Þ + 1
2 A1B1 + A2B2ð Þ,

ð11Þ
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where bθ1 and bθ2 are MLEs of the parameters θ1 and θ2,
respectively,

Bi = g1σi1 + g2σi2, Ai = σ11L11i + σ22L22i + 2σ12L12i, di
= P1σi1 + P2σi2, i = 1, 2,

d3 = g12σ12, d4 =
1
2 g11σ11 + g22σ22ð Þ, Pi

= ∂G θð Þ
∂θi

, i = 1, 2, θ = θ1, θ2ð Þ,

gij =
∂2h θð Þ
∂θi∂θj

, Lij =
∂2l x θjð Þ
∂θi∂θj

, i, j = 1, 2, Lijk

= ∂3l xjθð Þ
∂θi∂θj∂θk

, i, j, k = 1, 2,
ð12Þ

and σij is the ði, jÞth element of the inverse of the matrix
fLijg, all evaluated at the MLEs of the parameters.

Now, the log-likelihood function from (4) can be
obtained as

l x θ1, θ2jð Þ∝m log θ1 +m log θ2 + θ1 r − 1ð Þ log 2xr
θ2

−
x2r
θ22

� �
+ n − sð Þ log 1 − 2xs

θ2
−
x2s
θ22

� �θ1
" #

+ 〠
s

i=r
log 2 − 2 xi

θ2

� �
+ θ1 − 1ð Þ〠

s

i=r

2xi
θ2

−
x2i
θ22

� �
:

ð13Þ

The maximum likelihood estimates (MLEs) of the
parameters θ1 and θ2 can be obtained by differentiating
(13) with respect to θ1 and θ2 and equating to zero,
respectively, as

Let Ti = ð2xi/θ2Þ − ðx2i /θ22Þ, Ti1 = ð2x2i /θ32Þ − ð2xi/θ22Þ, Ti2
= −ð6x2i /θ42Þ + ð4xi/θ32Þ, Ti3 = 2xi/ð2 − ð2xi/θ2ÞÞ, Tr = ð2xr/
θ2Þ − ðx2r /θ22Þ, Tr1 = ð2x2r /θ32Þ − ð2xr/θ22Þ, Tr2 = −ð6x2r /θ42Þ + ð4
xr/θ32Þ, Ts = ð2xs/θ2Þ − ðx2s /θ22Þ, Ts1 = ð2x2s /θ32Þ − ð2xs/θ22Þ,
and Ts2 = −ð6x2s /θ42Þ + ð4xs/θ32Þ; then,

m
θ1

+ r − 1ð Þ log Trð Þ − n − sð ÞTθ1
s log Tsð Þ

1 − Tθ1
s

+ 〠
s

i=r
Tið Þ = 0,

ð14Þ

m
θ2

−
r − 1ð Þθ1Tr1

Tr
−

n − sð Þθ1Ts1T
θ1−1
s

1 − Tθ1
s

+ θ1 − 1ð Þ〠
s

i=r

Ti1
Ti

� �
+ θ−22 〠

s

i=r
Ti2 = 0:

ð15Þ
Based on (14) and (15), the approximate MLEs have

been obtained using numerical methods. The second order
derivatives of the log-likelihood function are presented in
the following:

L11 = −
m

θ21
−
2 n − sð ÞTθ1

s log Tsð Þ
1 − Tθ1

s

−
2 n − sð ÞT2θ1

s log Tsð Þ
1 − Tθ1

s

n o2 ,

ð16Þ

L12 = −
r − 1ð ÞTr1

Tr
−

n − sð ÞTθ1−1
s Ts1

1 − Tθ1
s

� 1 − θ1 log Tsð Þ − θ1T
θ1
s log Tsð Þ
1 − Tθ1

s

" #
+ 〠

s

i=r

Ti1
Ti

� �
,

ð17Þ

L22 = −
r − 1ð Þθ1T2

r1
T2
r

−
r − 1ð Þθ1Ts2

Tr1

−
n − sð Þθ1 θ1 − 1ð ÞTθ1−1

s T2
s1

1 − Tθ1
s

−
n − sð Þθ1Ts2T

θ1−1
s

1 − Tθ1
s

−
n − sð Þθ21T2

s1T
2θ2−2
s

1 − Tθ1
s

n o2 −
m

θ22

+ θ1 − 1ð Þ〠
s

i=r

Ti1
Ti

� �2
+ Ti2

Ti

( )

+ 〠
s

i=r
−T2

i3θ
−4
2 − 2Ti3θ

−3
2

	 

:

ð18Þ

Now, ((16)–(18)) have been evaluated at the MLEs of θ1
and θ2.

As the third order derivatives with respect to θ1 and θ2
contain long expressions, therefore, they have not been pre-
sented in the paper.

Based on the second order derivatives, the matrix
fLijg is

Lij
	 


= −
L11 L21

L12 L22

" #
, and its inverse is Lij

	 
−1 = σ11 σ21

σ12 σ22

" #
:

ð19Þ

Now, using LA, the BEs for the parameters θ1 and
θ2 under IP using SELF are, respectively, presented as

θ1,S = bθ1 +
1
2 σ11A1 + σ21A2ð Þ + a − 1bθ1 − b

 !
σ11 +

c − 1bθ2
− d

 !
σ12,

θ2,S = bθ2 + 1
2 σ12A1 + σ22A2ð Þ + a − 1bθ1

− b

 !
σ21 +

c − 1bθ2
− d

 !
σ22:

ð20Þ
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Again, using LA, the BEs for the parameters θ1 and
θ2 under IP using PLF are, respectively, presented as

θ1,P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibθ2
1 + 2bθ1σ11 + σ11A1 + σ21A2

� �
+ a − 1bθ1

− b

 !
σ11 +

c − 1bθ1 − d

 !
σ12

vuut ,

θ2,P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibθ2
2 +

1
2 2bθ2σ22 + σ12A1 + σ22A2
� �

+ a − 1bθ1
− b

 !
σ21 +

c − 1bθ2
− d

 !
σ22

vuut :

ð21Þ

3.5. Tierney and Kadane’s Approximation (TKA). The
LA requires the evaluation of the third derivatives from
the log-likelihood function which at times gets tedious,
especially in case of problems with several parameters.
This issue can be resolved by considering rather easily
computable approximation called TKA. The additional
advantage of this approximation is that it has less error
as compared to LA. Therefore, in this subsection, we
have considered TKA for the approximate Bayes esti-
mation of the parameters from the doubly censored
TLD. Consider Qðθ1, θ2Þ =Gðθ1, θ2Þ + lðxjθ1, θ2Þ, where

Table 2: BEs and PRs (in parenthesis) under IP for n = 30.

AM LF θ1 = 0:50 θ2 = 0:50 θ1 = 1:00 θ2 = 1:00 θ1 = 1:50 θ2 = 1:50 θ1 = 2:00 θ2 = 2:00

QM

SELF
0.61823 0.63872 1.18516 1.22941 1.75983 1.79332 2.29007 2.49253

(0.02781) (0.02900) (0.06249) (0.06907) (0.10315) (0.13004) (0.13540) (0.19178)

PLF
0.63730 0.66016 1.20812 1.25961 1.78651 1.82135 2.31782 2.54941

(0.04260) (0.04312) (0.04984) (0.06117) (0.05729) (0.07930) (0.06627) (0.11521)

LA

SELF
0.61934 0.71175 1.24480 1.31849 1.77169 1.88293 2.46622 2.60841

(0.02147) (0.02759) (0.05573) (0.06767) (0.08422) (0.10971) (0.10430) (0.14632)

PLF
0.63261 0.73417 1.26621 1.34813 1.79613 1.90438 2.48949 2.62091

(0.02966) (0.03155) (0.04064) (0.06008) (0.05249) (0.07753) (0.06057) (0.09587)

TKA

SELF
0.60729 0.65056 1.20208 1.24821 1.75466 1.82566 2.26273 2.45938

(0.01195) (0.01640) (0.03149) (0.04710) (0.06035) (0.08488) (0.07026) (0.09437)

PLF
0.61186 0.65942 1.21461 1.27451 1.77546 1.86912 2.29239 2.52041

(0.01841) (0.02676) (0.02720) (0.04263) (0.04464) (0.06990) (0.06438) (0.08654)

GS

SELF
0.61968 0.66384 1.22661 1.27368 1.79047 1.86291 2.30892 2.50958

(0.01235) (0.01727) (0.03588) (0.04741) (0.07169) (0.08866) (0.07689) (0.10870)

PLF
0.62123 0.66583 1.23203 1.27981 1.80007 1.87398 2.32215 2.52594

(0.02137) (0.02647) (0.03290) (0.04351) (0.06177) (0.06894) (0.08050) (0.10942)

Table 1: BEs and PRs (in parenthesis) under IP for n = 15.

AM LF θ1 = 0:50 θ2 = 0:50 θ1 = 1:00 θ2 = 1:00 θ1 = 1:50 θ2 = 1:50 θ1 = 2:00 θ2 = 2:00

QM

SELF
0.64768 0.66956 1.23349 1.28384 1.83394 1.86712 2.40370 2.60133

(0.02914) (0.03035) (0.06560) (0.07194) (0.10827) (0.13635) (0.14151) (0.20020)

PLF
0.66356 0.69243 1.26583 1.31651 1.86667 1.90783 2.41512 2.66793

(0.04433) (0.04526) (0.05187) (0.06418) (0.06010) (0.08316) (0.06918) (0.12064)

LA

SELF
0.64973 0.74495 1.29516 1.37123 1.85958 1.96068 2.56812 2.72349

(0.02240) (0.02886) (0.05817) (0.07047) (0.08794) (0.11494) (0.10865) (0.15229)

PLF
0.66361 0.76528 1.31925 1.40722 1.88491 1.99844 2.60632 2.72845

(0.03086) (0.03297) (0.04230) (0.06305) (0.05499) (0.08133) (0.06315) (0.10016)

TKA

SELF
0.63510 0.68001 1.25705 1.29944 1.83774 1.90447 2.35670 2.58210

(0.01245) (0.01709) (0.03292) (0.04900) (0.06277) (0.08841) (0.07366) (0.09832)

PLF
0.63657 0.69139 1.27408 1.33544 1.85413 1.94446 2.38959 2.64411

(0.01922) (0.02790) (0.02856) (0.04438) (0.04656) (0.07314) (0.06710) (0.09013)

GS

SELF
0.64947 0.69434 1.27788 1.32688 1.87776 1.94516 2.41864 2.61734

(0.01296) (0.01805) (0.03760) (0.04958) (0.07516) (0.09258) (0.07997) (0.11334)

PLF
0.64956 0.69362 1.28410 1.34288 1.88588 1.95209 2.42161 2.63855

(0.02224) (0.02763) (0.03434) (0.04526) (0.06480) (0.07221) (0.08435) (0.11457)
∗AM: approximation methods; LF: loss functions.
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Gðθ1, θ2Þ is the logarithmic of the joint IP for the
parameters ðθ1, θ2Þ given in (5), and lðxjθ1, θ2Þ is the
logarithmic of likelihood function given in (4).

Further consider Hðθ1, θ2Þ =Qðθ1, θ2Þ/n and H∗ðθ1, θ2Þ
= ½log hðθ1, θ2Þ +Qðθ1, θ2Þ�/n, where log hðθ1, θ2Þ is the
logarithmic of the function of the parameter(s) θ1 or θ2.
Then, according to Tierney and Kadane [22], the expression
Efhðθ1, θ2jxÞg using (7) can be reexpressed as

E h θ1, θ2 xjð Þf g =
Ð∞
0
Ð∞
0 enH

∗ θ1,θ2ð Þdθ1dθ2Ð∞
0
Ð∞
0 enH θ1,θ2ð Þdθ1dθ2

: ð22Þ

Now using the Laplace’s method, the approximation for
Efhðθ1, θ2jxÞg can be given as

ĥ θ1, θ2ð Þ = det ∑∗

det∑

� 
1/2
exp n H∗ bθ∗

1 , bθ∗2� �
−H bθ1, bθ2

� �n oh i
,

ð23Þ

where ðbθ∗
1 , bθ∗

2 Þ and ðbθ1, bθ2Þ maximize H∗ðθ1, θ2Þ and
Hðθ1, θ2Þ, respectively, and ∑∗and ∑ are the negatives

Table 4: BEs and PRs (in parentheses) under IP for n = 100.

AM LF θ1 = 0:50 θ2 = 0:50 θ1 = 1:00 θ2 = 1:00 θ1 = 1:50 θ2 = 1:50 θ1 = 2:00 θ2 = 2:00

QM

SELF
0.53116 0.51939 1.03240 1.02490 1.52928 1.51997 2.05749 2.01327

(0.00753) (0.00878) (0.01622) (0.01957) (0.02545) (0.03766) (0.04065) (0.04449)

PLF
0.53679 0.52547 1.03889 1.03309 1.53657 1.53067 2.06574 2.02453

(0.01335) (0.01421) (0.01493) (0.01889) (0.01630) (0.02449) (0.02093) (0.03132)

LA

SELF
0.53189 0.54310 1.04861 1.07361 1.54299 1.56460 2.17465 2.07817

(0.00930) (0.00832) (0.01590) (0.01797) (0.02382) (0.02737) (0.03148) (0.03829)

PLF
0.54263 0.55927 1.06368 1.09430 1.55883 1.57608 2.18699 2.07883

(0.01401) (0.01222) (0.01218) (0.01902) (0.01651) (0.02360) (0.01966) (0.02778)

TKA

SELF
0.52153 0.49642 1.01262 1.01639 1.52816 1.51701 1.99523 1.98892

(0.00519) (0.00494) (0.00898) (0.01251) (0.01706) (0.02117) (0.02121) (0.02123)

PLF
0.52484 0.50233 1.02033 1.03454 1.54089 1.54691 2.01385 1.99911

(0.00869) (0.01036) (0.00894) (0.01063) (0.01403) (0.02129) (0.02088) (0.02509)

GS

SELF
0.53217 0.50654 1.03329 1.03714 1.55935 1.54797 2.03594 1.99941

(0.00537) (0.00517) (0.01021) (0.01260) (0.02027) (0.02211) (0.02320) (0.02446)

PLF
0.53287 0.50721 1.03497 1.03885 1.56226 1.55092 2.03998 2.00350

(0.01007) (0.01026) (0.01079) (0.01378) (0.01940) (0.02099) (0.02611) (0.03170)

Table 3: BEs and PRs (in parentheses) under IP for n = 50.

AM LF θ1 = 0:50 θ2 = 0:50 θ1 = 1:00 θ2 = 1:00 θ1 = 1:50 θ2 = 1:50 θ1 = 2:00 θ2 = 2:00

QM

SELF
0.57532 0.60966 1.09683 1.18003 1.63681 1.77049 2.20793 2.36178

(0.01614) (0.01635) (0.03209) (0.03942) (0.05209) (0.07967) (0.08252) (0.09564)

PLF
0.58730 0.62306 1.11020 1.19838 1.65177 1.79506 2.22522 2.39332

(0.02676) (0.02693) (0.02902) (0.03719) (0.03212) (0.04939) (0.04130) (0.06390)

LA

SELF
0.60470 0.67696 1.16473 1.28825 1.67752 1.84105 2.34247 2.45587

(0.01692) (0.01645) (0.03389) (0.04117) (0.04907) (0.05718) (0.06335) (0.07114)

PLF
0.61736 0.69769 1.18319 1.31516 1.69751 1.85778 2.36014 2.46160

(0.02358) (0.02173) (0.02669) (0.03928) (0.03240) (0.04667) (0.03867) (0.05611)

TKA

SELF
0.59292 0.61876 1.12476 1.21959 1.66140 1.78504 2.14918 2.33839

(0.00943) (0.00976) (0.01915) (0.02865) (0.03516) (0.04424) (0.04267) (0.04589)

PLF
0.59710 0.62668 1.13499 1.24333 1.67797 1.82338 2.17329 2.37863

(0.01465) (0.01841) (0.01786) (0.02786) (0.02755) (0.04208) (0.04111) (0.05064)

GS

SELF
0.60502 0.63138 1.14771 1.24448 1.69532 1.82147 2.19305 2.36281

(0.00975) (0.01028) (0.02181) (0.02885) (0.04177) (0.04622) (0.04670) (0.05286)

PLF
0.60625 0.63275 1.15126 1.24850 1.70124 1.82813 2.20150 2.37240

(0.01698) (0.01830) (0.02161) (0.02844) (0.03815) (0.04150) (0.05139) (0.06403)
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of the inverse Hessians of H∗ðθ1, θ2Þ and Hðθ1, θ2Þ eval-

uated at ðbθ∗
1 , bθ∗

2 Þ and ðbθ1, bθ2Þ, respectively.
Here, we have

H θ1, θ2ð Þ = 1
n

k + m + a − 1ð Þ log θ1 + m + c − 1ð Þ log θ2
"

+ θ1 r − 1ð Þ log Trð Þ + n − sð Þ log 1 − Tθ1
s

n o
+ 〠

s

i=r
log Ti2

2xi

� �
+ θ1 − 1ð Þ〠

s

i=r
Ti − bθ1 − dθ2

#
,

H∗ θ1, θ2ð Þ = 1
n

k + log h α, βð Þ + m + a − 1ð Þ log θ1
�

+ m + c − 1ð Þ log θ2 + θ1 r − 1ð Þ log Trð Þ

+ n − sð Þ log 1 − Tθ1
s

n o
+ 〠

s

i=r
log Ti2

2xi

� �
+ θ1 − 1ð Þ〠

s

i=r
Ti − bθ1 − dθ2



,

ð24Þ

Table 6: BEs and PRs (in parentheses) under IP for n = 30.

AM LF θ1 = 0:50 θ2 = 1:00 θ1 = 1:00 θ2 = 0:50 θ1 = 1:00 θ2 = 1:50 θ1 = 1:50 θ2 = 1:00

QM

SELF
0.62668 1.26329 1.16015 0.61629 1.14789 1.75451 1.67768 1.20143

(0.02811) (0.05687) (0.06142) (0.03441) (0.06627) (0.12750) (0.10015) (0.09348)

PLF
0.64785 1.28845 1.17357 0.62697 1.16465 1.78251 1.69636 1.23185

(0.04339) (0.08487) (0.04862) (0.03044) (0.03679) (0.07767) (0.04886) (0.05588)

LA

SELF
0.62753 1.39492 1.20395 0.66033 1.15687 1.83660 1.80788 1.25356

(0.02173) (0.05390) (0.05401) (0.03373) (0.05442) (0.10779) (0.07618) (0.07093)

PLF
0.63973 1.43801 1.24945 0.67341 1.15143 1.85978 1.82285 1.26839

(0.03021) (0.06195) (0.04015) (0.03019) (0.03398) (0.07596) (0.04426) (0.04604)

TKA

SELF
0.61395 1.28398 1.18086 0.62393 1.13753 1.79721 1.66750 1.18297

(0.01214) (0.03202) (0.03117) (0.02344) (0.03912) (0.08283) (0.05171) (0.04610)

PLF
0.61825 1.29581 1.17465 0.63768 1.16034 1.82330 1.69281 1.22325

(0.01877) (0.05283) (0.02685) (0.02137) (0.02904) (0.06841) (0.04705) (0.04193)

GS

SELF
0.62677 1.30537 1.19250 0.63650 1.16492 1.83310 1.69403 1.20715

(0.01248) (0.03404) (0.03464) (0.02359) (0.04686) (0.08691) (0.05677) (0.05223)

PLF
0.63215 1.30956 1.21303 0.63733 1.15345 1.83859 1.71454 1.21606

(0.02179) (0.05197) (0.03217) (0.02184) (0.03977) (0.06776) (0.05899) (0.05325)

Table 5: BEs and PRs (in parentheses) under IP for n = 15.

AM LF θ1 = 0:50 θ2 = 1:00 θ1 = 1:00 θ2 = 0:50 θ1 = 1:00 θ2 = 1:50 θ1 = 1:50 θ2 = 1:00

QM

SELF
0.65652 1.32428 1.20746 0.64358 1.19623 1.82671 1.76093 1.25387

(0.02945) (0.05951) (0.06447) (0.03584) (0.06955) (0.13369) (0.10466) (0.09758)

PLF
0.67454 1.35143 1.22964 0.65529 1.21691 1.86714 1.76757 1.28912

(0.04515) (0.08908) (0.05060) (0.03194) (0.03859) (0.08145) (0.05101) (0.05852)

LA

SELF
0.65833 1.46000 1.25266 0.68675 1.21426 1.91243 1.88258 1.30887

(0.02267) (0.05638) (0.05638) (0.03512) (0.05683) (0.11292) (0.07936) (0.07382)

PLF
0.67108 1.49895 1.30178 0.70292 1.20834 1.95163 1.90840 1.32043

(0.03143) (0.06473) (0.04179) (0.03168) (0.03560) (0.07969) (0.04615) (0.04810)

TKA

SELF
0.64206 1.34211 1.23486 0.64953 1.19139 1.87479 1.73675 1.24200

(0.01266) (0.03337) (0.03259) (0.02439) (0.04069) (0.08627) (0.05421) (0.04803)

PLF
0.64322 1.35863 1.23216 0.66817 1.21176 1.89680 1.76458 1.28329

(0.01960) (0.05508) (0.02819) (0.02225) (0.03029) (0.07159) (0.04904) (0.04367)

GS

SELF
0.65690 1.36534 1.24235 0.66309 1.22171 1.91403 1.77453 1.25899

(0.01310) (0.03557) (0.03630) (0.02467) (0.04913) (0.09075) (0.05904) (0.05447)

PLF
0.66098 1.36422 1.26429 0.66874 1.20844 1.91522 1.78797 1.27028

(0.02267) (0.05424) (0.03358) (0.02271) (0.04172) (0.07098) (0.06181) (0.05576)
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where k is any constant independent of the parameters θ1
and θ2.

∂H θ1, θ2ð Þ
∂θ1

= 1
n

m + a − 1
θ1

+ r − 1ð Þ log Trð Þ
�

−
n − sð ÞTθ1

s log Tsð Þ
1 − Tθ1

s

+ 〠
s

i=r
Ti − b

#
= 0,

ð25Þ

∂H θ1, θ2ð Þ
∂θ2

= 1
n

m + c − 1
θ2

+ r − 1ð Þθ1Tr1
Tr

�
−

n − sð Þθ1Ts1T
θ1−1
s

1 − Tθ1
s

+ θ1 − 1ð Þ〠
s

i=r

Ti2
Ti

� �
+ θ−22 〠

s

i=r
Ti3 − d

#
= 0:

ð26Þ

Table 8: BEs and PRs (in parentheses) under IP for n =100.

AM LF θ1 = 0.50 θ2 = 1.00 θ1 = 1.00 θ2 = 0.50 θ1 = 1.00 θ2 = 1.50 θ1 = 1.50 θ2 = 1.00

QM

SELF
0.53842 1.02728 1.01061 0.51377 0.99751 1.48707 1.50730 0.97042

(0.00761) (0.01722) (0.01594) (0.00975) (0.01635) (0.03693) (0.03007) (0.02169)

PLF
0.54567 1.02558 1.00918 0.51422 1.00171 1.49803 1.51187 0.97824

(0.01360) (0.02797) (0.01456) (0.00940) (0.01047) (0.02399) (0.01543) (0.01519)

LA

SELF
0.53893 1.06439 1.01419 0.53769 1.00753 1.52610 1.59414 0.99874

(0.00941) (0.01626) (0.01541) (0.00896) (0.01539) (0.02689) (0.02299) (0.01856)

PLF
0.54873 1.09544 1.04960 0.54662 0.99931 1.53917 1.60136 1.00605

(0.01427) (0.02400) (0.01203) (0.00956) (0.01069) (0.02312) (0.01437) (0.01334)

TKA

SELF
0.52725 0.97976 0.99474 0.50805 0.99069 1.49337 1.47037 0.95667

(0.00527) (0.00964) (0.00889) (0.00623) (0.01106) (0.02066) (0.01561) (0.01037)

PLF
0.53032 0.98711 0.98676 0.51761 1.00704 1.50899 1.48712 0.97025

(0.00886) (0.02045) (0.00882) (0.00533) (0.00913) (0.02084) (0.01526) (0.01216)

GS

SELF
0.53826 0.99606 1.00456 0.51830 1.01455 1.52320 1.49375 0.96175

(0.00543) (0.01019) (0.00986) (0.00627) (0.01325) (0.02167) (0.01713) (0.01175)

PLF
0.54223 0.99759 1.01901 0.51734 1.00107 1.52163 1.50620 0.96455

(0.01027) (0.02014) (0.01055) (0.00692) (0.01249) (0.02063) (0.01913) (0.01543)

Table 7: BEs and PRs (in parentheses) under IP for n = 50.

AM LF θ1 = 0:50 θ2 = 1:00 θ1 = 1:00 θ2 = 0:50 θ1 = 1:00 θ2 = 1:50 θ1 = 1:50 θ2 = 1:00

QM

SELF
0.58318 1.20582 1.07368 0.59154 1.06765 1.73217 1.61751 1.13840

(0.01631) (0.03206) (0.03154) (0.01964) (0.03346) (0.07812) (0.06104) (0.04662)

PLF
0.59702 1.21604 1.07845 0.59650 1.07682 1.75678 1.62859 1.15643

(0.02725) (0.05300) (0.02831) (0.01851) (0.02063) (0.04837) (0.03045) (0.03099)

LA

SELF
0.61270 1.32674 1.12650 0.64519 1.09538 1.79575 1.71717 1.18025

(0.01713) (0.03214) (0.03285) (0.02052) (0.03171) (0.05618) (0.04627) (0.03449)

PLF
0.62431 1.36656 1.16752 0.65694 1.08821 1.81427 1.72814 1.19129

(0.02402) (0.04267) (0.02637) (0.01974) (0.02098) (0.04573) (0.02826) (0.02695)

TKA

SELF
0.59942 1.22122 1.10490 0.60962 1.07707 1.75722 1.58382 1.12477

(0.00958) (0.01905) (0.01896) (0.01426) (0.02279) (0.04317) (0.03140) (0.02242)

PLF
0.60334 1.23147 1.09765 0.62208 1.09663 1.77869 1.60486 1.15444

(0.01494) (0.03634) (0.01763) (0.01397) (0.01792) (0.04119) (0.03005) (0.02453)

GS

SELF
0.61194 1.24155 1.11580 0.62191 1.10302 1.79232 1.60902 1.13655

(0.00985) (0.02026) (0.02106) (0.01436) (0.02730) (0.04531) (0.03448) (0.02540)

PLF
0.61690 1.24450 1.13351 0.62174 1.09013 1.79361 1.62546 1.14214

(0.01731) (0.03593) (0.02113) (0.01427) (0.02456) (0.04079) (0.03766) (0.03116)
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Now, ðbθ1, bθ2Þ can be obtained by solving (25) and (26).
The determinant for the negative of the inverse Hessian

of Hðθ1, θ2Þ evaluated at ðbθ1, bθ2Þ is

det 〠 = H11H22 −H2
12

� �−1, ð27Þ

where H11 = ∂2Hðθ1, θ2Þ/∂θ21jbθ 1,bθ 2
, H22 = ∂2Hðθ1, θ2Þ/∂θ22j

bθ 1,bθ 2
, and H12 = ∂2Hðθ1, θ2Þ/∂θ1∂θ2jbθ1,bθ2

.

The second order derivatives from Hðθ1, θ2Þ contains
lengthy expressions; therefore, they have not been presented
here. Similarly, MLEs and the second order derivatives for
the H∗ðθ1, θ2Þ can be obtained. Further, the BEs and the
PRs under IP can be obtained by using (23).

3.6. Gibbs Sampler. Unfortunately, by using QM, Lindley’s
method, and TKA, it is impossible to obtain the highest pos-
terior density (HPD) credible intervals. The HPD credible
intervals can be obtained by using the GS. Hence, in this
subsection, we have used the GS to obtain the approximate
BEs along with HPD credible intervals.

Consider a PD with two parameters θ1 and θ2. Assuming
that the full densitiesgðθ1jθ2, xÞ and gðθ2jθ1, xÞ are extract-
able, we need to obtain gðθ1jxÞ and gðθ2jxÞ. Using GS, we
start with choosing initial guess values for parameters θ1
and θ2. The said initial values are denoted by θ10 and θ20.

Then, we generate random samples from the conditional
distributions in the following sequence:

θ11 ~ g θ1 θ20, xjð Þ,
θ21 ~ g θ2 θ11, xjð Þ,
θ12 ~ g θ1 θ21, xjð Þ,
θ22 ~ g θ2 θ12, xjð Þ,
θ1m ~ g θ1 θ2 m−1ð Þ, x

���� �
,

θ2m ~ g θ2 θ1m, xjð Þ:

ð28Þ

In order to employ the GS for the PD (7), we extract the
conditional distribution for θ1 given θ2 under IP as

g1 θ1jθ2, xð Þ∝ θm+a−1
1 exp

� θ1 r − 1ð Þ log 2xr
θ2

−
x2r
θ22

� �
+ 〠

s

i=r
log 2xi

θ2
−
x2i
θ22

� �( )" #

� 1 − 2xs
θ2

−
x2s
θ22

� �θ1
" #n−s

:

ð29Þ

Table 10: ML estimates under different sample sizes.

n θ1 = 0:50 θ2 = 0:50 θ1 = 1:00 θ2 = 1:00 θ1 = 1:50 θ2 = 1:50 θ1 = 2:00 θ2 = 2:00

15
0.67236 0.69601 1.28258 1.33429 1.90678 1.93951 2.49437 2.69919

(0.03021) (0.03142) (0.06817) (0.07471) (0.11246) (0.14161) (0.14669) (0.20745)

30
0.63965 0.66035 1.22963 1.27257 1.82424 1.86098 2.37228 2.58149

(0.02865) (0.02998) (0.06462) (0.07139) (0.10682) (0.13486) (0.14024) (0.19852)

50
0.59220 0.62906 1.13391 1.21837 1.69285 1.83541 2.28006 2.44215

(0.01657) (0.01686) (0.03317) (0.04063) (0.05374) (0.08241) (0.08504) (0.09863)

100
0.54507 0.53529 1.06582 1.05575 1.57692 1.56095 2.11160 2.07552

(0.00772) (0.00901) (0.01674) (0.02001) (0.02622) (0.03846) (0.04158) (0.04571)

Table 11: BEs and PRs (in parentheses) using real dataset-1.

LF
AM

QM LA TKA GS
θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

SELF
3.06256 39.11757 3.11065 40.97670 3.00389 38.79277 3.06520 39.58474

(1.17810) (1.71383) (1.15486) (1.57371) (0.65224) (1.09555) (0.74158) (1.10344)

PLF
3.08182 39.43016 3.15535 41.76638 3.02676 39.48551 3.07019 39.65001

(1.08441) (1.65428) (0.88467) (1.46566) (0.64934) (0.93091) (0.68371) (1.00677)

AIC (SELF) 99.25209 91.57919 80.66709 83.10349

BIC
(self)

102.83561 95.16271 84.25061 86.68701

AIC (PLF) 97.88159 91.14069 78.57859 78.95319

BIC
(PLF)

101.46511 94.72421 82.16211 82.53671

10 Journal of Function Spaces



The conditional distribution of the parameter θ2 given θ1
under IP is

g2 θ2 θ1, xjð Þ∝ θ−m+c−1
2

2xr
θ2

−
x2r
θ22

� �θ1 r−1ð Þ

� 1 − 2xs
θ2

−
x2s
θ22

� �θ1
" #n−sYs

i=r
2 − 2xi

θ2

� � 2xi
θ2

−
x2i
θ22

� �θ1−1
:

ð30Þ

Now, using the conditional distributions from (29) and
(30), the GS can be implemented following the methodology
proposed by Pandey and Bandyopadhyay [23] using Win-
bugs software. The generated samples for the parameters
θ1 and θ2 can be used for the estimation of the parameters
using SELF and PLF. The BE and the posterior risks (PRs)
for the parameter θ1 using SELF and IP can be obtained by
using the formulae θ1,S =∑m

i=1θ1,i/m and ρðθ1,SÞ =∑m
i=1

ðθ1,i − θ1,SÞ2, respectively. Similarly, the BE and PR for the
parameter θ1 using PLF and IP can be calculated by using the

formulaeθ1,P =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i=1θ1
2
,i/m

q
and ρðθ1,PÞ = 2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∑m

i=1θ1
2
,i/mÞ

q
− ð∑m

i=1θ1
2
,i/mÞg, respectively. A similar process can be

followed to implement GS for the PD under IP and for the
PDs for the parameter θ2.

4. Simulation Study

As the performance of the BEs cannot be compared analyt-
ically, we have carried out a simulation study to compare
different estimators numerically. The comparison among
the BEs is based on the level of the convergence of the esti-
mates and the amounts of the PRs. The following parametric
space has been used for the estimation: ðθ1, θ2Þ = fð0:50,
0:50Þ, ð1, 1Þ, ð1:50, 1:50Þ, ð2, 2Þg and ðθ1, θ2Þ = fð0:50, 1Þ, ð1
, 0:5Þ, ð1, 1:50Þ, ð1:50, 1Þg. The samples of sizes n = 15, 30,
50, and 100 have been considered. The values for the hyper-
parameters have been considered in such a way that, for
these values, the mean of the concerned prior is equal to
the true parametric value. The samples have been assumed

to be 20% censored: 10% from the left and 10% from the
right. The test termination point in each sample is assumed
to be so that observed the said censoring rate. The results for
the simulated samples have been presented in Tables 1–8.
The results using parametric space ðθ1, θ2Þ = fð0:50, 0:50Þ,
ð1, 1, 1:50, 1:50, 2, 2Þg, using samples of sizes 15, 30, 50,
and 100, have been reported in Tables 1–4, respectively.
Similarly, the results for sample sizes 15, 30, 50, and 100,
using parametric space ðθ1, θ2Þ = fð0:50, 1, 1, 0:5, 1, 1:50,
1:50, 1Þg, have been given in Tables 5–8, respectively.

The results using simulated samples have been presented
in Tables 1–10. The said results advocate that the proposed
estimates are consistent in nature because the estimated
values of the parameters converged to the true parametric
values with increase in the sample size. The performance
of the BEs has been better as compared to ML counterparts.
The convergence under BEs was better as compared to
MLEs. In additions, the amounts of PRs associated with each
estimate become smaller as sample size increases. The per-
formance of loss functions and different approximation
methods has been compared on the basis of amounts of
PRs associated with each estimate.

It is interesting to note that for smaller choice of true
parametric values, the SELF performs better than PLF. Con-
versely, the performance of PLF seems better for estimation.
There is a sense of competition among the performance of
different approximation methods; however, the TKA pro-
vides the minimum amounts of the PRs among all the
approximation methods with few exceptions. The amounts
of the PRs are directly proportional with the magnitude of
the true parametric values which is in accordance with the
theory. In general, the parameter (θ1) has been estimated
more efficiently than the parameter (s).

5. Real-Life Example

In this section, the data regarding the failure times (in
minutes) for a specific type of electrical insulation has been
used for the illustration of the results obtained in the previ-
ous section. The data has been used by Fernandez [24] and is
reported by Lawless [25]. The twelve items have been

Table 12: BEs and PRs (in parentheses) using real dataset-2.

LF
AM

QM LA TKA GS
θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

SELF
0.56486 3.00998 0.57480 3.06395 0.57424 3.08697 0.57364 3.07860

(0.10653) (0.42577) (0.10317) (0.41086) (0.08898) (0.35404) (0.09519) (0.38078)

PLF
0.57204 3.04820 0.58334 3.09551 0.58712 3.09182 0.58650 3.12185

(0.09892) (0.36318) (0.09606) (0.35396) (0.08219) (0.30227) (0.08930) (0.32614)

AIC (SELF) 34.86567 32.26568 26.28640 29.03856

BIC
37.66807 35.06807 29.08879 31.84095

(self)

AIC (PLF) 34.24837 31.70037 25.84067 28.53779

BIC
36.74210 34.22010 28.42020 31.08980

(PLF)
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considered for the experiment out of which the experimenter
was unable to observe the smallest two failure times and exper-
iment was terminated after the ninth failure. The data is as fol-
lows: -, -, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, -, -, and -.
Therefore, we have n = 12, r = 3, s = 9, andm = 7. The descrip-
tive statistics for the data aremean = 54:94, variance = 689:50,
standard error = 9:92, skewness = 0:39, and kurtosis = −1:17.
The data has been censored in such a way that same number
of observations has been censored from left and right.We have
named this dataset as dataset-1. The other dataset used in the
study has been named as dataset-2. The dataset-2 represents
the failure times of the air condition system of an airplane,
reported by Linhart and Zucchini [26]. The dataset-2 consists
of observations 1, 3, 5, 7, 11(3), 12, 14(3), 16(2), 20, 21, 23, 42,
47, 52, 62, 71(2), 87, 90, 95, 120(2), 225, 246, and 261. The
number in the parenthesis represents the repeated observa-
tions. The chi-square and the Kolmogorov–Smirnov tests have
been used to confirm that the data can be modeled using TLD.
The BEs and corresponding PRs, based on these data, have
been presented in Tables 11 and 12, respectively. For conve-
nience, the numerical values for the hyperparameters have
been assumed to be a = b = c = d = 1 for the estimation.

Tables 11 and 12 contain the BEs and associated PRs
using different approximation methods. The amounts for
the PRs under PLF are on average smaller to those under
SELF. As far as the approximation is concerned, the perfor-
mance of the TKA seems superior to its counterparts, as the
least magnitudes of the PRs are associated with these esti-
mates. Hence, the results obtained by analyzing the real data
are in agreement to those obtained from simulated samples.
The marginal density plots for model parameters under
different approximation methods have been presented in
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Figure 3: The marginal density for θ1 under LA for dataset-1.
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Figure 2: The marginal density for θ2 under QM for dataset-1.
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Figure 1: The marginal density for θ1 under QM for dataset.
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Figure 5: The marginal density for θ1 under TKA for dataset-1.
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Figure 6: The marginal density for θ2 under TKA for dataset-1.
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Figure 7: The marginal density for θ1 under GS for dataset-1.
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Figure 4: The marginal density for θ2 under LA for dataset-1.
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Figures 1–8. For brevity, we have presented the density plots
only for dataset-1. The density plots for parameter θ1 are
positively skewed. However, the skewness is not that high
for density curves of parameter θ2. The density plots under
PLF are representing slightly more skewness as compared
to those for SELF. From these graphs, it can also be seen that
the graphs for marginal densities under SELF and PLF are
relatively closer under TKA for both parameters. However,
the graphs for marginal densities using other approximation
techniques, such as QM, LA, and GS, are quite different
under SELF and PLF. This simply suggests that the estimates
under TKA are relatively robust with respect to choice of
loss functions.

6. Conclusion

This paper considers the posterior analysis for the parameters
of the TLD assuming doubly censoring. As the expressions for
the BEs cannot be obtained explicitly, we considered different
approximation methods to obtain the numerical solutions.
The performance of the BEs is compared based on amounts
of PRs. The analysis of simulated and real datasets suggests
that there is a sense of competition among different approxi-
mation methods; however, the performance of the TKA is
the best among the approximate methods used in the study.
The study can be extended for application of TLD inmodeling
doubly censored heterogeneous data.
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