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In the article, we have proposed a new type of hybrid iterative scheme which is a hybrid of Picard and Thakur et al. repetitive
schemes. This new hybrid iterative scheme converges faster than all leading schemes like Picard-S∗ hybrid, Picard-S, Picard-
Ishikawa hybrid, Picard-Mann hybrid, Thakur et al. and Abbas and Nazir, S-iterative, Ishikawa and Mann iterative schemes for
contraction mapping. By using the Picard-Thakur hybrid iterative scheme, we can find the solution of delay differential equations
and also prove some convergence results for nonexpansive mapping in a uniformly convex Banach space.

1. Introduction

In this article, the set of all positive integers is denoted by I+.
Let N denote the nonempty convex subset of a normed space
and S be its convex subset, and V : S⟶ S is called contrac-
tion mapping if ∥V j −V k∥≤δ∥j − k∥ for all j, k ∈ S and δ ∈ ð0
, 1Þ. If δ = 1, then, themappingV is called nonexpansive map-
ping. An element j ∈ S is said to be a fixed point ofV ifV j = j,
and the set of fixed points of V is denoted by FðV Þ:

In 1890, Picard [1] presented an iterative scheme for
approximating the fixed point which is defined by the
sequence fjng as

j1 = j ∈ S,
jn+1 =V jn,

(
n ∈ I+: ð1Þ

The Krasnoselskii [2] iterative sequence fung is defined as

u1 = u ∈ S,
un+1 = 1 − μð Þun + μV un,

(
n ∈ I+, ð2Þ

where μ ∈ ð0, 1Þ.
In 1953, Mann [3] proposed an iterative scheme which is

defined as

v1 = v ∈ S,
vn+1 = 1 − θnð Þvn + θnV vn,

(
n ∈ I+, ð3Þ

where fθng ∈ ð0, 1Þ:
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In 1974, Ishikawa [4] gave the concept of the two-step
iterative scheme and the sequence fwng of this iterative is
defined as

w1 =w ∈ S,
wn+1 = 1 − θnð Þwn + θnV tn,
tn = 1 − ϑnð Þwn + ϑnVwn,

8>><
>>: n ∈ I+, ð4Þ

where fθng, fϑng ∈ ð0, 1Þ.
In 2007, Agarwal et al. [5] introduced a more generalized

form of the Ishikawa iterative scheme and they called it the S
-iterative scheme and the sequence fpng of the iterative
scheme is defined as

p1 = p ∈ S,
pn+1 = 1 − θnð ÞV pn + θnV qn,
qn = 1 − ϑnð Þpn + ϑnV pn,

8>><
>>: n ∈ I+, ð5Þ

where fθng, fϑng ∈ ð0, 1Þ.
In 2016, Sahu et al. [6] and Thakur et al. [7] proposed a

new scheme which converges faster than all the existing
schemes. The iterative sequence fkng of this scheme is
defined as

k1 = k ∈ S,
kn+1 = 1 − θnð ÞVmn + θnV ln,
ln = 1 − ϑnð Þmn + ϑnVmn,
mn = 1 − σnð Þkn + σnV kn,

8>>>>><
>>>>>:

n ∈ I+, ð6Þ

where fθng, fϑng, and fσng ∈ ð0, 1Þ.
Thakur et al. [7] proposed another iterative scheme which

converges faster than all the above schemes and the iterative
sequence fjng of Thakur et al. is defined as

j1 = j ∈ S,
jn+1 =V kn,
kn =V 1 − θnð Þjn + θnV lnð Þ,
ln = 1 − ϑnð Þjn + ϑnV jnÞ,

8>>>>><
>>>>>:

n ∈ I+, ð7Þ

where fθng, fϑng ∈ ð0, 1Þ.
Recently, Lamba and Panwar [8] introduced a new

three-step iteration process for Susuzki’s nonexpansive map-
ping and called it the Ap iterative scheme whose rate of con-

vergence is faster than those of the leading schemes. The
sequence of the Ap iterative scheme is defined as

j1 = j ∈ S,
jn+1 =V kn,
kn =V 1 − θnð ÞV jn + θnV lnð Þ,
ln =V 1 − ϑnð Þjn + ϑnV jnð Þ,

8>>>>><
>>>>>:

n ∈ I+, ð8Þ

where fθng, fϑng ∈ ð0, 1Þ.
Many physical problems of engineering and applied sci-

ences are mostly constructed in the form of fixed point equa-
tions. In the existence of a fixed point equation involving an
operator, V is guaranteed but the exact solution is not pos-
sible. We can only approximate the solution which becomes
very relevant and this necessitated various iterative schemes
[9–14]. Also, the iterative schemes are used for solving dif-
ferent problems like minimization, equilibrium, viscosity
approximation, and many more problems in different spaces
[15–18].

The Picard iterative scheme is the simplest iteration to
estimate the solution of a fixed point equation. Chidume
[19] introduced some basic results on this iterative scheme.
Chidume generalized and improved the existing results of
the fixed point equation in [20]. Okeke and Abbas [21]
proved the convergence and almost V -stability of Mann-
type and Ishikawa-type random iterative schemes.

In 2013, Khan [22] proposed the Picard-Mann hybrid
iterative scheme. The sequence frng of this scheme is
defined as

r1 = r ∈ S,
rn+1 =V sn,
sn = 1 − θnð Þrn + θnV rn,

8>><
>>: n ∈ I+, ð9Þ

where fθng ∈ ð0, 1Þ.
In 2017, Okeke and Abbas [23] proposed the Picard-

Krasnoselskii hybrid iterative scheme and the sequence frn
g of this iterative scheme is defined as

r1 = r ∈ S,
rn+1 =V sn,
sn = 1 − νð Þrn + νV rn,

8>><
>>: n ∈ I+, ð10Þ

where ν ∈ ð0, 1Þ.
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In 2019, Okeke [24] proposed the Picard-Ishikawa
hybrid iterative scheme and the sequence f f ng of this itera-
tion defined as

f1 = f ∈ S,
f n+1 =V gn,
gn = 1 − θnð Þf n + θnV hn,
hn = 1 − ϑnð Þf n + ϑnV f n,

8>>>>><
>>>>>:

n ∈ I+, ð11Þ

where fθng and fϑng ∈ ð0, 1Þ.
Recently, Srivastava [25] introduced a new type of

hybrid iterative scheme from Picard and S-iteration
(Picars-S hybrid iterative scheme). The sequence fang of
the scheme is defined as

a1 = a ∈ S,
an+1 =V bn,
bn = 1 − θnð ÞV an + θnV cn,
cn = 1 − ϑnð Þan + ϑnV an,

8>>>>><
>>>>>:

n ∈ I+, ð12Þ

where fθng and fϑng ∈ ð0, 1Þ.
Also Lamba and Panwar [26] introduced another hybrid

scheme from Picard and S∗-iteration (Picard-S∗ hybrid iter-
ative scheme) and the sequence fang of the scheme is
defined as

a1 = a ∈ S,
an+1 =V bn,
bn = 1 − θnð ÞV an + θnV cn,
cn = 1 − ϑnð ÞV an + ϑnV dn,
dn = 1 − σnð Þan + σnV an,

8>>>>>>>><
>>>>>>>>:

n ∈ I+, ð13Þ

where fθng, fϑng, and fσng ∈ ð0, 1Þ.
With the motivation towards the usage of hybridization

of iterative schemes, we proposed another type of hybrid
scheme which is the Picard-Thakur hybrid iterative scheme,
defined by the sequence fjng as

j1 = j ∈ S,
jn+1 =V kn,
kn = 1 − θnð ÞVmn + θnV ln,
ln = 1 − ϑnð Þmn + ϑnVmn,
mn = 1 − σnð Þjn + σnV jn,

8>>>>>>>><
>>>>>>>>:

n ∈ I+, ð14Þ

where fθng, fϑng and fσng ∈ ð0, 1Þ.
Rhoades [27] commented on the convergence of two

iterative schemes that converges to a certain fixed point is
as follows:

Let fang and fbng be the two fixed point iterative
schemes that converge to a certain fixed point j∗ of a given

operator V . The sequence fang is better than fbng if

an − j∗k k ≤ bn − j∗k k ∀n ∈ I+: ð15Þ

2. Preliminaries

Berinde and Takens [10] gave the following definitions.

Definition 1 (see [10]). Let ftng and fwng be the two
sequences of the real number converging to t and w, respec-
tively. Suppose that

lim
n⟶∞

tn − tj j
wn −wj j = k: ð16Þ

(i) If k = 0, then, ftng⟶ t faster than fwng⟶w

(ii) If 0 < k <∞, then, the rate of convergence of both
sequences are the same

Definition 2 (see [10]). Let ftng and fwng be the two
sequences of a fixed point iterative scheme, both converges
to a fixed point ξ for a given operator V and fpng,fqng
are two sequences of positive numbers. Suppose that the
error estimates,

tn − ξk k ≤ pn ∀n ∈ I+,
wn − ξk k ≤ qn ∀n ∈ I+,

ð17Þ

are available and fpng,fqng converge to zero. If fpng con-
verges faster than fqng, then, ftng converges faster than f
wng⟶ ξ: Most of the literature on the iterative schemes
deals with the convergence rate and some analyzes its stabil-
ity [28–34]. For proving the results, we need the following
lemma.

Lemma 3 (see [35]). Let frng ∈ℝ+ be a sequence with rn+1
≤ ð1 − τnÞrn: If fτng ⊂ ð0, 1Þ and ∑∞

n=1 =∞, then, limn⟶∞
rn = 0:

Definition 4 (see [36]). Let S be a subset of Banach space B
which is nonempty closed and convex. A mapping V : S
⟶ S is demiclosed w.r.t. b ∈ B, if for each sequence fjng
in S and a ∈ S, fjng converges weakly at a and fV jng con-
verges strongly at b⇒V a = b.

Definition 5 (see [37]). A Banach space B is said to satisfy
Opial’s condition if for any sequence fjng ∈ B,fjng⇀ a,
implies that

liminf
n⟶∞

jn − ak k ≤ liminf
n⟶∞

jn − bk k, ð18Þ

for all b ∈ B with a ≠ b.
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Lemma 6 (see [38]). Let B be a uniformly convex Banach
space and 0 < x ≤ ρn ≤ y < 1∀n ∈ I+. Let fjng, fkng be the
two sequences such that lim supn⟶∞kjnk ≤ l, lim supn⟶∞
kknk ≤ l, and lim supn⟶∞kð1 − σnÞjn + σnknk = l hold for
some l ≥ 0, then limn⟶∞kjn − knk = 0:

Lemma 7 (see [36]). Let V : S⟶ S be a nonexpansive map-
ping with Opial’s property. If fjng⇀ a and limn⟶∞kjn −
V jnk = 0, then, V a = a, i.e., I −V is demiclosed at zero,
where I is the identity mapping on B.

Proposition 8 (see [39]). Let S be a subset of Banach space B
and V : S⟶ S a nonexpansive mapping. Then, for all p, q
∈ S

p −V qk k ≤ 3 p −V pk k + p − qk k: ð19Þ

Senter and Dotson [40] introduced the concept of condi-
tion (I) which is defined as

Definition 9. Let V be a self-mapping on S which is said to
satisfy condition (I), if there is an increasing function Z : ½
0,∞Þ⟶ ½0,∞Þ with Zð0Þ = 0 and ZðtÞ > 0, for all t > 0 such
that

d j,V jð Þð Þ ≥ Z d j, F Vð Þð Þð Þ, ∀j ∈ S, ð20Þ

where dðj, FðV ÞÞ = inf fdðj, j∗Þ: j∗ ∈ FðV Þg.

In this article, we proposed a new hybrid iterative scheme
which converges faster than Mann [3], Ishikawa [4], S-itera-
tion [5], Abbas et al. [9], Thakur et al. [7], Picard-Mann hybrid
[22], Picard-Krasnoselskii [23], Picard-Ishikawa [24], and
Picard-S hybrid iterative schemes [25]. Recently, Srivastava
[25] already proved that the Picard-S hybrid iterative scheme
converges faster than all of the above iterative schemes. There-
fore, we show that our hybrid iterative scheme converges faster
than all the leading schemes. We find the solution of delay dif-
ferential equations using our proposed hybrid iterative scheme
while in last section, we prove some results of this scheme for
nonexpansivemapping in the uniformly convex Banach space.

3. Convergence Analysis

This section deals with the rate of convergence of the Picard-
Thakur hybrid iterative scheme (14) with Picard-S (12),
Picard-Ishikawa (11), Picard-Mann (9), and Thakur et al.
(6).

Proposition 10. Assume that S be a nonempty closed convex
subset of a normed space N and let V : S⟶ S be a contrac-
tion mapping. Suppose that the iterative schemes (12), (11),
(10), (9), and (6) converge to the same fixed point j∗ of V
where fθng, fϑng, and fσng are sequences in ð0, 1Þ such that
0 < μ ≤ fθng, fϑng, fσng < 1, ∀n ∈ I+, and for some μ and δ
∈ ð0, 1Þ: Then, the Picard-Thakur hybrid iterative scheme
(14) converges faster than all the other schemes.

Proof. Let j∗ be a fixed point of an operator V . Using the
definition of contractive mapping and the Thakur et al. iter-
ative scheme (6), we have

kn+1 − j∗k k = 1 − θnð ÞVmn + θnV ln − j∗k k
≤ 1 − θnð Þ Vmn − j∗k k + θn V ln − j∗k k
≤ 1 − θnð Þδ mn − j∗k k + θnδ ln − j∗k k
≤ 1 − θnð Þδ 1 − 1 − δð Þσnð Þ kn − j∗k k

+ δθn 1 − 1 − δð Þϑnð Þ 1 − 1 − δð Þσnð Þ kn − j∗k k
≤ δ 1 − 1 − δð Þσnð Þ 1 − θn + ϑn 1 − 1 − δð Þσnð Þf g½ � kn − j∗k k
≤ δ 1 − 1 − δð Þσnð Þ 1 − 1 − 1 − δð Þθnσnð Þð½ � kn − j∗k k
≤ δ 1 − 1 − δð Þσn − 1 − δð Þθnϑnð Þ½

+ 1 − δð Þ2θnϑnσn
�
kn − j∗k k ≤ δ 1 − 1 − δð Þσnð½

− 1 − δð ÞθnϑnÞ + 1 − δð Þθnϑnσn� kn − j∗k k
≤ δ 1 − 1 − δð Þσnð Þ kn − j∗k k:

ð21Þ

Let

an = δn 1 − 1 − δð Þσð Þn k1 − j∗k k: ð22Þ

Now, for (14),

mn − j∗k k = 1 − σn jn +V jn − j∗ðk k ≤ 1 − σnð Þ jn − j∗k k
+ σnδ jn − j∗k k ≤ 1 − 1 − δð Þσnð Þ jn − j∗k k,

ln − j∗k k = 1 − ϑnð Þmn + ϑnVmn − j∗k k ≤ 1 − ϑnð Þ mn − j∗k k
+ ϑnδ mn − j∗k k ≤ 1 − 1 − δð Þϑnð Þ mn − j∗k k

≤ 1 − 1 − δð Þϑn 1 − 1 − δð Þσnð Þð jn − j∗k k,

kn − j∗k k = 1 − θnð ÞVmn + θnV ln − j∗k k
≤ δ 1 − θnð Þ mn − j∗k k + δθn ln − j∗k k
= δ 1 − θnð Þ 1 − 1 − δð Þσnðð Þ jn − j∗k k

+ θn 1 − 1 − δð Þϑnð Þ 1 − 1 − δð Þσnð Þ jn − j∗k kÞ
= δ 1 − 1 − δð Þσnð Þ 1 − θn + θn − 1 − δð Þθnϑn½ �
� jn − j∗k k = δ 1 − 1 − δð Þσn − 1 − 1 − δð Þσnð Þð
� 1 − δð Þθnϑnð ÞÞ jn − j∗k k = δ 1 − 1 − δð Þσnð
− 1 − δð Þθnϑn + 1 − δð Þ2θnϑnσn

�
jn − j∗k k

≤ δ 1 − 1 − δð Þσn − 1 − δð Þθnϑn + 1 − δð Þθnϑnσnð Þ
� jn − j∗k k ≤ δ 1 − 1 − δð Þ σn + θnϑnðð
− θnϑnσnÞÞ jn − j∗k k:

ð23Þ

Also,

jn+1 − j∗k k = V kn − j∗k k ≤ δ kn − j∗k k
≤ δ δ 1 − 1 − δð Þ σn + θnϑn − θnϑnσnð Þð Þð jn − j∗k k
≤ δ2 1 − 1 − δð Þ σn + θnϑn − θnϑnσnð Þð Þ jn − j∗k k:

ð24Þ
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Let

bn = δ2n 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k: ð25Þ

Then,

bn
an

= δ2n 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k
δn 1 − 1 − δð Þσð Þn k1 − j∗k k

= δn 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k
1 − 1 − δð Þσð Þn k1 − j∗k k ⟶ 0, as n⟶∞:

ð26Þ

Thus, fjng converges faster than fkng, i.e., the Picard-
Thakur iterative scheme converges faster than the Thakur
iterative scheme. Similarly, the inequality proved in Proposi-
tion 3.1 of the Picard-S hybrid iterative scheme [25] is as fol-
lows:

cn = δ2n 1 − 1 − δð Þθϑð Þn a1 − j∗k k: ð27Þ

Then,

bn
an

= δ2n 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k
δ2n 1 − 1 − δð Þθϑð Þn a1 − j∗k k

= 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k
1 − 1 − δð Þθϑð Þn a1 − j∗k k ⟶ 0, as n⟶∞:

ð28Þ

Thus, fjng converges faster than fang., i.e., the Picard-
Thakur iterative scheme converges faster than the Picard-S
iterative scheme. Similarly, we can show that Picard-
Thakur hybrid iterative scheme (14) converges faster than
(11), (10), and (9).

Next, we gave an example to show that the Picard-
Thakur hybrid iterative scheme (14) converges faster than
the Picard-S hybrid, Picard-Ishikawa hybrid, Picard-Mann
hybrid, and Thakur iterative schemes.

Example 11. Let V : S⟶ S where S = ½0, 2� ⊂N =ℝ be an
operator defined by

V jð Þ =
1, if j ∈ 0, 1½ �,ffiffiffiffiffiffiffiffiffiffiffi
4 − j2

3

r
, if j ∈ 1, 2½ �:

8><
>: ð29Þ

Choose θn = ðn + 2Þ/ðn + 6Þ, ϑn = ðn2 + 1Þ/ðn2 + n + 1Þ,
σn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn + 1Þ/ð2n + 7Þp
, for each n ∈ I+ with an initial value

j1 = 0:6:V is nonexpansive mapping. All the iterative
schemes converge to the fixed point j∗ = 1. Clearly, in the
Table 1 and Figure 1, we can see that the Picard-Thakur
hybrid iterative scheme (14) converges faster than the
schemes discussed above.

4. Application: Delay Differential Equations

In this section, we can find the solution of the delay differen-
tial equation by using our proposed iterative scheme.

Let the space of all continuous real-valued functions be
denoted by Cð½u, v�Þ on closed interval ½u, v� endowed with
the Chebyshev norm kj −mk∞ and defined as kj −mk∞ =
supr∈½u,v�jjðrÞ −mðrÞj, and it is clear that in [41] that
(Cð½u, v�, k:k∞Þ) is a Banach space. Now, consider the follow-
ing delay differential equation

j′ rð Þ = ψ r, j rð Þ, j r − γð Þð Þ, r ∈ r0, v½ �, ð30Þ

with initial condition

j rð Þ = ζ rð Þ,  r ∈ r0 − γ, r0½ �: ð31Þ

By the solution of the above delay differential equation,
we mean a function j ∈ Cð½r0 − γ, v�,ℝÞ ∩ C1ð½r0, v�,ℝÞÞ sat-
isfying (30) and (31).

Assume that the following conditions are satisfied.

(1) r0, v ∈ℝÞ, γ > 0
(2) ψ ∈ Cð½r0, v� ×ℝ2,ℝÞ
(3) ζ ∈ Cð½r0 − γ, v�,ℝÞ
(4) There exists Lψ > 0 such that

ψ r, s1, s2ð Þ − ψ r, t1, t2ð Þj j ≤ LψΣ
2
i=1 si − tij j, ∀si, ti ∈ℝ, r ∈ r0, v½ �

ð32Þ

(5) 2Lψðv − r0Þ < 1

Now, we construct (30) and (31) by the integral equation
as

j rð Þ =
ζ rð Þ, r ∈ r0 − γ, v½ �,

ζ r0ð Þ +
ðr
r0

ψ t, j tð Þ, j t − γð Þð Þdt, r ∈ r0, v½ �:

8><
>:

ð33Þ

The following result is the generalization of the result of
Coman et al. [42].

Theorem 12. Let the conditions ∗1Þ to ∗5Þ be satisfied. Then,
(30) and (31) have unique solution j∗ ∈ Cð½r0 − γ�,ℝÞ ∩ C1ð½
r0v�,ℝÞ and

j∗ = lim
n⟶∞

V n jð Þ, for any j ∈ C r0 − γ, v½ �,ℝð Þ: ð34Þ

Now, by using the Picard-Thakur hybrid iterative
scheme (14), we prove the following result.
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Theorem 13. Let the conditions ∗1Þ − ∗5Þ be satisfied. Then,
(30) and (31) have a unique solution j∗ ∈ Cð½r0 − γ�,ℝÞ ∩
C1ð½r0, v�,ℝÞ and the Picard-Thakurb hybrid iterative
scheme (14) converges to j∗.

Proof. Let fjng be a sequence generated by the Picard-
Thakur hybrid iterative scheme (14) for an operator V

defined by

V j rð Þ =
ζ rð Þ, r ∈ r0 − γ, v½ �,

ζ r0ð Þ +
ðr
r0

ψ p, j pð Þ, j p − γð Þð Þdp, r ∈ r0, v½ �:

8><
>:

ð35Þ

Let j∗ be a fixed point of V . Now, we prove that jn ⟶ j∗

as n⟶∞. It is easy to see that jn ⟶ j∗ as n⟶∞ for
each r ∈ ½r0 − γ, r0�.

Now, for each r ∈ ½r0, v�, we have

jn+1 − j∗k k∞ ≤ V kn − j∗k k∞ ≤ sup
r0∈ r0,v½ �

V kn −V j∗j j ≤ sup
r0∈ r0,v½ �

ζ r0ð Þj

+
ðr
r0

ψ p, kn pð Þ, kn p − γð Þð Þdp

− ζ r0ð Þ +
ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
 !�����

≤ sup
r0∈ r0,v½ �

ðr
r0

ψ p, kn pð Þ, kn p − γð Þð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r0∈ r0,v½ �

ðr
r0

Lψ kn pð Þ − j∗ pð Þj j + kn p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ sup
r0∈ r0,v½ �

kn pð Þ − j∗ pð Þj j + kn p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ kn − j∗k k∞ + kn − j∗k k∞
� �

dp ≤ 2Lψ v − r0ð Þ kn − j∗k k∞:

ð36Þ

Now,

kn − j∗k k∞ = 1 − θnð ÞVmn + θnV ln − j∗k k∞
≤ 1 − θnð Þ Vmn − j∗k k∞ + θn V ln − j∗k k∞,

ð37Þ

As

V ln − j∗k k∞ = V ln −V j∗k k∞ ≤ sup
r∈ r0−γ,v½ �

� ζ r0ð Þ +
ð
rr0

ψ p, ln pð Þ, ln p − γð Þð Þdp
�����
− ζ r0ð Þ +

ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
 !����� ≤ sup

r∈ r0−γ,v½ �

�
ðr
r0

ψ p, ln pð Þ, ln p − γð Þð Þdp
�����
−
ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
�����

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ pð , ln pð Þ, ln p − γð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ pð , ln pð Þ, ln p − γð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

Lψ ln pð Þ − j∗ pð Þj j + ln p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ sup
r∈ r0−γ,v½ �

ln pð Þ − j∗ pð Þj j + sup
r∈ r0−γ,v½ �

ln p − γð Þ − j∗ p − γð Þj j
 !

dp

≤
ðr
r0

Lψ ln − j∗k k∞ + ln − j∗k k∞
� �

dp

≤ 2Lψ r − r0ð Þ ln − j∗k k∞ ≤ 2Lψ v − r0ð Þ ln − j∗k k∞,

ð38Þ

ln − j∗k k∞ = 1 − ϑnð Þmn + ϑnVmn − j∗k k∞
≤ 1 − ϑnð Þ mn − j∗k k∞ + ϑn Vmn − j∗k k∞:

ð39Þ
For

Vmn − j∗k k∞ = Vmn −V j∗k k∞ ≤ sup
r∈ r0−γ,v½ �

� ζ r0ð Þ +
ð
rr0

ψ p,mn pð Þ,mn p − γð Þð Þdp
�����
− ζ r0ð Þ +

ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
 !�����

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ p,mn pð Þ,mn p − γð Þð Þdp
�����

−
ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
�����

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ pð ,mn pð Þ,mn p − γð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ pð ,mn pð Þ,mn p − γð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

Lψ mn pð Þ − j∗ pð Þj j + mn p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ sup
r∈ r0−γ,v½ �

mn pð Þ − j∗ pð Þj j + sup
r∈ r0−γ,v½ �

mn p − γð Þ − j∗ p − γð Þj j
 !

dp

≤
ðr
r0

Lψ ∥mn − j∗ mn − j∗k k∥∞+∣mn − j∗ mn − j∗k k∥∞ð Þ dp

≤ 2Lψ r − r0ð Þ mn − j∗k k∞ ≤ 2Lψ v − r0ð Þ mn − j∗k k∞,

ð40Þ

mn − j∗k k∞ = 1 − σnð Þjn + σnV jn − j∗k k∞
≤ 1 − σnð Þ jn − j∗k k∞ + σn V jn − j∗k k∞,

ð41Þ

as

V jn − j∗k k = V jn −V j∗k k∞ ≤ sup
r∈ r0−γ,v½ �

� ζ r0ð Þ +
ð
rr0

ψ p, jn pð Þ, jn p − γð Þð Þdp
�����
− ζ r0ð Þ +

ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
 !����� ≤ sup

r∈ r0−γ,v½ �

�
ðr
r0

ψ p, jn pð Þ, jn p − γð Þð Þdp
�����
−
ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
�����
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≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ p, jn pð Þ, jn p − γð Þð − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ p, jn pð Þ, jn p − γð Þð − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

Lψ jn pð Þ − j∗ pð Þj j + jn p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ sup
r∈ r0−γ,v½ �

jn pð Þ − j∗ pð Þj j + sup
r∈ r0−γ,v½ �

jn p − γð Þ − j∗ p − γð Þj j
 !

dp

≤
ðr
r0

Lψ jn − j∗k k∞ + jn − j∗k k∞
� �

dp ≤ 2Lψ r − r0ð Þ jn − j∗k k∞
≤ 2Lψ v − r0ð Þ jn − j∗k k∞:

ð42Þ

Putting (42) in (41), we get

mn − j∗k k∞ ≤ 1 − σnð Þ jn − j∗k k∞ + σn2Lψ v − r0ð Þ jn − j∗k k∞
≤ 1 − 1ð − 2Lψ v − r0ð Þσn
� �

jn − j∗k k∞:

ð43Þ

Putting (43) in (40), we get

Vmn − j∗k k∞ ≤ 2Lψ v − r0ð Þ 1 − 1ð 1 − 2Lψ v − r0ð Þσn
�� �

jn − j∗k k∞:

ð44Þ

Putting (44) and (43) in (39), we get

ln − j∗k k∞ ≤ 1 − ϑnð Þ 1 − 11 − 2Lψ v − r0ð Þσn

��� �
jn − j∗k k∞

+ ϑn2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þσn

�� �
jn − j∗k k∞

≤ 1 − 1 − 2Lψ v − r0ð Þσn

� ��
1 − 1 −ðð 1 − 2Lψ v − r0ð Þϑn

� �
jn − j∗k k∞

≤ 1 − 1 − 2Lψ v − r0ð Þσn

� �
− 1 −ð 1 − 2Lψ v − r0ð Þσn

� �
1 − 2Lψ v − r0ð Þϑn
� �� �

� jn − j∗k k∞ ≤ 1 − 1 − 2Lψ v − r0ð Þ� �
σn − 1 − 2Lψ v − r0ð Þ� �

ϑn
�

+ 1 − 2Lψ v − r0ð Þ�� �2ϑnσnÞ
�
jn − j∗k k∞ ≤ 1 − 1 − 2Lψ v − r0ð Þ� �

σn

�
− 1 − 2Lψ v − r0ð Þ� �

ϑn + 1 − 2Lψ v − r0ð Þ� �
ϑnσn

�
jn − j∗k k∞

≤ 1 − 1 − 2Lψ v − r0ð Þ� �
σn − ϑn + ϑnσnð Þ� �

jn − j∗k k∞:

ð45Þ

Putting (45) in (38), we get

∥V ln − j∗∥∞ ≤ 2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þ� �
σn − ϑn + ϑnσnð Þ� �

∥jn − j∗∥∞:

ð46Þ

Putting (46) and (40) in (37), we get

kn − j∗k k∞ ≤ 1 − θnð Þ2Lψ v − r0ð Þ mn − j∗k k∞ + θn2Lψ v − r0ð Þ
� ln − j∗k k∞ ≤ 2Lψ v − r0ð Þ 1 − θnð Þ mn − j∗k k∞ + θn ln − j∗k k∞

� �
≤ 2Lψ v − r0ð Þ 1 − θnð Þ 1 − 1 − 2Lψ v − r0ð Þσn

�� �
jn − j∗k k∞

�
+ θn 1 − 1 − 2Lψ v − r0ð Þ� �

σn − ϑn + ϑnσnð Þ� �
∥jn − j∗∥∞

�
≤ 2Lψ v − r0ð Þ 1 − θnÞ½ 1 − 1 − 2Lψ v − r0ð Þσn

� ��
+ θn 1 − 1 − 2Lψ v − r0ð Þ� �

σn − ϑn + ϑnσnð Þ� �
∥jn − j∗∥∞

≤ 2Lψ v − r0ð Þ 1 − θn − 1 − 2Lψ v − r0ð Þσn

�
+ 1 − 2Lψ v − r0ð Þθnσn

��
+ θn − 1 − 2Lψ v − r0ð Þθn σn − ϑn + ϑnσnð Þ� �

∥jn − j∗∥∞
≤ 2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þ�

σn − θnσnð�
+ θn σn + ϑn − ϑnσnð Þ�∥jn − j∗∥∞ ≤ 2Lψ v − r0ð Þ
� 1 − 1 − 2Lψ v − r0ð Þ σn − θnσn + θnσn + θnϑn − θnϑnσnð Þ�� �

∥jn
− j∗∥∞ ≤ 2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þ σn + θnϑn − θnϑnσnð Þ�� �
� ∥jn − j∗∥∞:

ð47Þ

Let σn + θnϑn − θnϑnσn = ρn, and by using condition ∗5Þ,
we have

kn − j∗k k∞ ≤ 1 − 1 − 2Lψ v − r0ð Þρn
�� �

jn − j∗k k∞: ð48Þ

Putting (48) in (36), we have

jn+1 − j∗k k∞ ≤ 2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þρn
�� �

jn − j∗k k∞:

ð49Þ

Again, using condition ∗5Þ, we get

jn+1 − j∗k k∞ ≤ 1 − 1 − 2Lψ v − r0ð Þρn
�� �

jn − j∗k k∞: ð50Þ

Let ð1 − 2Lψðv − r0Þρn = τn < 1 and ∥jn − j∗∥∞ = rn. So,
the conditions of Lemma 3 are satisfied. Hence, limn⟶∞∥
jn − j∗∥ = 0:

Table 1: Convergence behavior of Thakur et al. (7), Ap (8), Picard-S (12), Picard-S∗ (13), and Picard-Thakur hybrid Iterative schemes (14).

Steps Picard-Ishikawa hybrid Thakur et al. Ap iterative scheme Picard-S hybrid Picard-S∗ hybrid Picard-Thakur hybrid

1 0.6000000000 0.6000000000 0.6000000000 0.6000000000 0.6000000000 0.6000000000

2 1.0172938494 1.0023262974 1.0033992688 1.0028485141 0.9942090597 0.9992233640

3 0.9991010616 0.9999896158 0.9999617294 0.9999670218 0.9998760856 0.9999988412

4 1.0000463544 1.0000000464 1.0000004299 1.0000003808 0.9999973348 0.9999999983

5 0.9999976087 0.9999999997 0.9999999952 0.9999999956 0.9999999427 0.9999999999

6 1.0000001234 1.0000000000 1.0000000001 1.0000000001 0.9999999988 0.9999999999

7 0.9999999936 0.9999999999 0.9999999999 0.9999999999 0.9999999999 1.0000000000

8 1.0000000003 1.0000000000 1.0000000000 1.0000000000 0.9999999999 1.0000000000

9 0.9999999999 1.0000000000 1.0000000000 1.0000000000 0.9999999999 1.0000000000

10 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
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5. Convergence Results for
Nonexpansive Mapping

Lemma 14. Let S be a nonempty closed and convex subset of
uniformly convex Banach space B and V : S⟶ S be a non-
expansive mapping. If fjng be a sequence generated by
Picard-Thakur hybrid iterative scheme (14) and FðV Þ ≠∅,
then, limn⟶∞∥jn − j∗∥ exists.

Proof. Let j∗ ∈ FðV Þ, and V is nonexpansive then

∥mn − j∗∥ = ∥ 1 − σnð Þjn + σnV jn − j∗∥ ≤ 1 − σnð Þ∥jn
− j∗∥+σn∥V jn − j∗∥ ≤ 1 − σnð Þ∥jn − j∗∥+σn∥jn
− j∗∥ ≤ ∥jn − j∗:

ð51Þ

Also,

∥ln − j∗∥ = ∥ 1 − ϑnð Þmn + ϑnVmn − j∗∥ ≤ 1 − ϑnð Þ∥mn

− j∗∥+ϑn∥Vmn − j∗∥ ≤ 1 − ϑnð Þ∥mn − j∗∥+ϑn∥mn

− j∗∥ ≤ ∥mn − j∗:

ð52Þ

Similarly,

∥kn − j∗∥ = ∥ 1 − θnð ÞVmn + θnV ln − j∗∥ ≤ 1 − θnð Þ∥Vmn

− j∗∥+θn∥V ln − j∗∥ ≤ 1 − θnð Þ∥mn − j∗∥+θn∥ln − j∗∥
≤ 1 − θnð Þ∥mn − j∗∥+θn∥mn − j∗∥ ≤ ∥mn − j∗∥ ≤ ∥jn − j∗∥:

ð53Þ

Now,

∥jn+1 − j∗∥ = ∥V kn − j∗∥ ≤ ∥kn − j∗∥ ≤ ∥jn − j∗∥: ð54Þ

This shows that f∥jn − j∗∥g is a decreasing sequence and
bounded below ∀j∗ ∈ FðV Þ: Hence, limn⟶∞∥jn − j∗∥ exists.

Lemma 15. Let S and V : S⟶ S be as in Lemma 14. Let
fjng be a sequence defined by Picard-Thakur hybrid iterative
scheme (14) with FðV Þ ≠∅: Then, limn⟶∞∥jn −V jn∥ = 0.

Proof. As from the above Lemma 14, limn⟶∞∥jn − j∗∥ exists
for each j∗ ∈ FðV Þ: Suppose that for some l ≥ 0, we have

lim
n⟶∞

∥jn − j∗∥ = l: ð55Þ

As from (53), (52), and (51), we have

∥mn − j∗∥ ≤ ∥jn − j∗∥, ð56Þ

∥ln − j∗∥ ≤ ∥jn − j∗∥, ð57Þ
∥kn − j∗∥ ≤ ∥jn − j∗∥: ð58Þ

Taking lim sup as n⟶∞ of (58), (57), and (56), we get

lim sup
n⟶∞

mn − j∗k k ≤ l, ð59Þ

lim sup
n⟶∞

ln − j∗k k ≤ l, ð60Þ
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Figure 1: Convergence behavior of Thakur et al. (7), Ap (8), Picard-S (12), Picard-S∗ (13), and Picard-Thakur hybrid iterative schemes (14).
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lim sup
n⟶∞

kn − j∗k k ≤ l: ð61Þ

Since V is nonexpansive, we have

lim sup
n⟶∞

V jn − j∗k k ≤ l, ð62Þ

l = liminf
n⟶∞

∥jn+1 − j∗∥ = liminf
n⟶∞

∥V kn − j∗∥ ≤ liminf
n⟶∞

∥kn − j∗∥,

ð63Þ

From (63) and (61), we get

lim
n⟶∞

∥kn − j∗∥ = l: ð64Þ

Now, from (53), we have

∥kn − j∗∥ ≤ ∥mn − j∗∥: ð65Þ

Taking liminf as n⟶∞, we have

liminf
n⟶∞

∥kn − j∗∥ ≤ liminf
n⟶∞

∥mn − j∗∥, ð66Þ

l ≤ liminf
n⟶∞

∥mn − j∗∥: ð67Þ

So, from (67) and (59), we have

l = lim
n⟶∞

∥mn − j∗∥ = lim
n⟶∞

∥ 1 − σnð Þjn + σnV jn

− j∗∥ = lim
n⟶∞

∥ 1 − σnð Þ jn − j∗ð Þ + σn V jn −V j∗ð Þ∥:
ð68Þ

From (68), (62), and (55) and applying Lemma 6, we get

lim
n⟶∞

∥jn −V jn∥ = 0: ð69Þ

Theorem 16. Let S, V , fjng be as in Lemma 14. Let B be the
uniformly convex Banach space which satisfies Opial’s condi-
tion; then, fjng converges weakly to a fixed point of V :

Proof. Let j∗ ∈ FðV Þ; then, by Lemma 14, limn⟶∞∥jn − j∗∥
exists. Now, we show that fjng has a unique weak subse-
quential limit in FðV Þ.

Let fang and fbng be two subsequences of fjng and a, b
be the weak limits of the subsequences of fjng, respectively.
From Lemma 15, limn⟶∞∥jn −V ðjnÞ∥ = 0 and I −V is
demiclosed at zero. By Lemma 7.

Therefore, we get V a = a: For b ∈ FðV Þ, we follow the
same manner.

From Lemma 14, we know that limn⟶∞∥jn − j∗∥ exists.

For uniqueness, supposing that a ≠ b, then, by using
Opial’s condition,

lim
n⟶∞

∥jn − a∥ = lim
n⟶∞

∥an − a∥ < lim
n⟶∞

∥an − b∥ = lim
n⟶∞

∥jn

− b∥ = lim
n⟶∞

∥bn − b∥ < lim
n⟶∞

∥bn − a∥ = lim
n⟶∞

∥jn − a∥:

ð70Þ

This is a contradiction, so a = b. Hence, fjng converges
weakly to FðV Þ:

Theorem 17. Let S, V , fjng be as in Lemma 14. Then, fjng
converges to a point of FðV Þ if and only if liminfn⟶∞dðjn
, FðV ÞÞ = 0 or lim supn⟶∞ðjn, FðV ÞÞ = 0, where dðan, Fð
V ÞÞ = inf f∥jn − j∗∥ : j∗ ∈ FðV Þg:

Proof. If the sequence fjng⟶ j∗ ∈ FðV Þ, then, it is oblivi-
ous that liminfn⟶∞dðjn, FðV ÞÞ = 0 or lim supn⟶∞ðjn, Fð
V ÞÞ = 0.

Conversely, assume that liminfn⟶∞dðjn, FðV ÞÞ = 0.
From Lemma 14,

limn⟶∞∥jn − j∗∥ exists, ∀j∗ ∈ FðV Þ. Therefore, by
assumption,

limn⟶∞d jn, F Vð Þð Þ = 0: ð71Þ

Now, to show, the sequence fjng is cauchy in S. As
limn⟶∞dðjn, FðV ÞÞ = 0, for given λ > 0, there exists m0 ∈
I+ such that ∀n ≥m0,

d jn, F Vð Þð Þ < λ

2 ⇒ inf ∥jn − j∗∥ : j∗ ∈ F Vð Þf g < λ

2 : ð72Þ

Particularly, inf f∥jn − j∗∥ : j∗ ∈ FðV Þg < λ/2. Therefore,
there is j∗ ∈ FðV Þ such that

∥jm0
− j∗∥ < λ

2 : ð73Þ

Now, for m, n ≥m0,

∥jn+m − jn∥ ≤ ∥jm+n − j∗∥+∥jn − j∗∥ ≤ ∥jm0
− j∗∥+∥jm0

− j∗∥

= 2∥jm0
− j∗∥ < λ:

ð74Þ

This shows that the sequence fjng is cauchy in S. As S
⊂ B, so, p is a point in S such that limn⟶∞ jn = p. Now,
limn⟶∞dðjn, FðV ÞÞ = 0 gives that limn⟶∞dðjn, FðV ÞÞ = 0
⇒ p ∈ FðV Þ:

Theorem 18. Let S, V , fjng be as in Lemma 14. Then, fjng
converges strongly to FðV Þ ≠∅:

Proof. By Lemma 15, we have

limn⟶∞∥jn −V jn∥ = 0: ð75Þ
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Since, S is compact, then, let fjnkg be a subsequence of
fjng which converges strongly to j∗, for some j∗ ∈ S. By
Proposition 8, we have

∥jnk −V j∗∥ ≤ 3∥jnk −V jnk∥+∥jnk − j∗∥ ∀k ≥ 1: ð76Þ

Letting k⟶∞, we get

jnk ⟶V j∗ ⇒V j∗ = j∗, i:e:,j∗ ∈ F Vð Þ: ð77Þ

Also, by Lemma 14, limn⟶∞∥jn − j∗∥ exists. Thus, fjng
converges strongly to j∗.

Now, by using condition (I), we prove the strong conver-
gence result.

Theorem 19. Let S, V be as in Lemma 14. Let B be a uni-
formly convex Banach space which is satisfying condition
(I). Then, the sequence fjng defined by the Picard-Thakur
hybrid iterative scheme (14) converges strongly to FðV Þ ≠∅
:

Proof. As by Lemma 15, we have

lim
n⟶∞

∥jn −V jn∥ = 0: ð78Þ

By condition (I) and (78), we get

0 ≤ lim
n⟶∞

Z d jn, F Vð Þð Þð Þ
≤ lim

n⟶∞
∥jn −V jn∥⇒ lim

n⟶∞
Z d jn, F Vð Þð Þð Þ = 0:

ð79Þ

Since Z : ½0,∞Þ⟶ ½0,∞Þ is an increasing function sat-
isfying Zð0Þ = 0,ZðtÞ > 0∀t > 0:

Hence, we have

lim
n⟶∞

d jn, F Vð Þð Þ = 0: ð80Þ

Since all the conditions of Theorem 17 are satisfied,
therefore, we can say that fjng converges strongly to FðV Þ
:

6. Conclusion

In this paper, we present a new hybrid scheme of Picard and
Thakur et al. We discuss the convergence of this scheme to
the iterative scheme of Mann, Ishikawa, Picard-Mann,
Picard-Ishikawa, Picard-S, and Thakur et al. We showed
the convergence of Picard-Thakur hybrid iterative with
other iterative schemes on graphs and gave application to
delay differential equations. We also generalize and extend
various results for nonexpansive mapping in a uniformly
convex Banach space including [7, 24, 25, 43].
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