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The approximate solutions of the time fractional advection-dispersion equation are presented in this article. The nonlocal nature
of solute movement and the nonuniformity of fluid flow velocity in the advection-dispersion process lead to the formation of a
heterogeneous system, which can be modeled using a fractional advection-dispersion equation, which generalizes the classical
advection-dispersion equation and replaces the time derivative with the fractional Caputo derivative. Researchers use a variety
of numerical techniques to study such fractional models, but the nonlocality of the derivative having fractional order leads to
high computation complexity and complex calculations, so the task is to find an efficient technique that requires less
computation and provides greater accuracy when numerically solving such models. A innovative techniques, homotopy
perturbation method and new iteration method, are used in connection with the Elzaki transform to solve the “fractional
advection-dispersion equation” which provides the solution in the convergent series form. When the homotopy perturbation
method is used with the Elzaki transform, fast convergent series solutions can be obtained with less computation. By solving
some cases of time-fractional advection-dispersion equation with varied initial conditions with the help of new iterative
transform method and homotopy perturbation transform method demonstrates the usefulness of the proposed methods.

1. Introduction

For the past 300 years, fractional calculus has been used to
generalize the integration and differentiation of integer order
to arbitrary order. Due to its nonlocal nature, fractional
differential equations are well adapted to explain diverse
phenomena in engineering and science, and the researchers’
growing interest in this field has led to solving real-world
problems in type of fractional differential equations. In addi-
tion, fractional derivatives can be used for description in a
variety of phenomena that have memory and hereditary
properties by mathematical way [1–5]. Fractional order dif-
ferential equations have been shown to be a valuable tool for
revealing hidden characteristics in a variety of real-world

processes, including physical sciences, signal processing,
electromagnetics, earthquakes, traffic flow, and the study of
viscoelastic material properties and many more processes
[6–11]. The historical and nonlocal distributed effects are
considered via fractional differential coefficients; an out-
standing literature on this topic may be found in numerous
monographs [12–15]. For this reason, many authors are
attracted to knowing the properties of fractional differential
equations and vast applications in modeling and engineering
fields [16–19].

The ADE is used in the study of solute transport or
Brownian motion of particles in a fluid that occurs when
advection and particle dispersion occur at the same time
[20, 21]. The fractional advection-dispersion equation better
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represents the phenomenon of anomalous particle diffusion
in the transport process; in anomalous diffusion, solute trans-
port is faster or faster than the time’s inferred square root
given by Baeumer et al. [22]. The equation is used to investi-
gate groundwater pollution, smoke or dust pollution of the
atmosphere, and the spread of chemical solutes and pollutant
discharges [23]. As a result, FADE has caught the interest of
numerous researchers. As a result, the researchers are inter-
ested in solving the FADE to determine the solute concentra-
tion at a specific time and location [24, 25]. Jaiswal et al. [26]
discovered an analytical solution for one-dimensional ADE.
Huang et al. [27] developed finite element solutions to the
one-dimensional fractional flux ADE. El-Sayed et al. [28]
investigated the intermediate fractional ADE. Momani and
Odibat [23] used the ADM and variational iteration
approach to solve the space-time fractional ADE. In this
aspect, Yildirim and Kocak [29] use the homotopy perturba-
tion methodology in Caputo sense to solve the space-time
fractional ADE, whereas Hikal and Abu Ibrahim [30] use
the Adomian decomposition method. Using the generalized
finite rate chemistry model, Alliche and Chikh [31] investi-
gated the nonpremixed chaotic fire of the hydrogen-air
downward injector system. Liu et al. [32] investigated various
advection-dispersion models using numerical methods. For
solar cosmic-ray transport, Rocca et al. [33] established the
fractional diffusion-advection equation general solution.
Ramani et al. [34] proposed the fractional reduced differential
transform method for revisiting the time-fractional Rosenau-
Hyman problem’s analytical-approximate formulation.

We apply both the novel iterative method presented by
Gejji and Jafari [35] and the homotopy perturbation trans-
form method proposed by Madani et al. [36] and Khan
and Wu in the current paper [37]. The first technique has
been shown to be effective in solving a wide range of nonlin-
ear equations, including algebraic equations, integral equa-
tions, ordinary and partial differential equations of integer
and fractional order, and systems of equations. The new iter-
ative method is straightforward to explain and use with
computer packages, and it produces superior results than
the previous Adomain decomposition [38], homotopy per-
turbation [39], and variational iteration methods [40]. The
second technique combines the Elzaki transformation, the
homotopy perturbation method, and He’s polynomials in a
simple manner. The suggested algorithm generates a solu-
tion in a rapid convergent series, which could lead to a
closed solution. This method has the advantage of being able
to combine two powerful methods for finding exact solu-
tions to linear and nonlinear partial differential equations.

2. Basic Definitions

2.1. Definition. The fractional operator Dσ having order σ in
Abel-Riemann manner is calculated as [41–43]

Dσν φð Þ =

dj

dφȷ
ν φð Þ, σ = ȷ,

1
Γ ȷ − σð Þ

d
dφȷ

ðφ
0

ν φð Þ
φ − μð Þσ−ȷ+1 dμ, ȷ − 1 < σ < ȷ,

8>>><
>>>:

ð1Þ

where j ∈ Z+, σ ∈ R+, and

D−σν φð Þ = 1
Γ σð Þ

ðφ
0
φ − μð Þσ−1ν μð Þdμ, 0 < σ ≤ 1: ð2Þ

2.2. Definition. The Abel-Riemann integration operator ȷμ

having fractional order is given as [35–37]

ȷσν φð Þ = 1
Γ σð Þ

ðφ
0
φ − μð Þσ−1ν φð Þdφ, φ > 0, σ > 0:

ð3Þ

With basic properties:

ȷσφȷ = Γ ȷ + 1ð Þ
Γ ȷ + σ + 1ð Þφ

ȷ+μ,

Dσφȷ = Γ ȷ + 1ð Þ
Γ ȷ − σ + 1ð Þφ

ȷ−μ:

ð4Þ

2.3. Definition. The fractional Caputo operator Dσ having
order σ is calculated as [41–43]

CDσν φð Þ =

1
Γ ȷ − σð Þ

ðφ
0

νȷ μð Þ
φ − μð Þσ−ȷ+1 dμ, ȷ − 1 < σ < ȷ,

dȷ

dφȷ
ν φð Þ, ȷ = σ:

8>>><
>>>:

ð5Þ

with the following properties:

ȷσφD
σ
φg φð Þ = g φð Þ − 〠

m

k=0
gk 0+ð Þφ

k

k!
, forφ > 0, and ȷ − 1 < σ ≤ ȷ, ȷ ∈N ,

Dσ
φȷ

σ
φg φð Þ = g φð Þ:    

ð6Þ

2.4. Definition. The Elzaki transform of Caputo operator is
calculated as [41, 42]

E Dσ
φg φð Þ

h i
= s−σE g φð Þ½ � − 〠

ȷ−1

k=0
s2−σ+kg kð Þ 0ð Þ, where ȷ − 1 < σ < ȷ:

ð7Þ

3. Idea of New Iterative Transform
Method (NITM)

Let us consider the partial differential equation having frac-
tional order in the form of

Dσ
ρζ μ, ρð Þ +Nζ μ, ρð Þ +Mζ μ, ρð Þ = h μ, ρð Þ, n ∈N , n − 1 < σ ≤ n,

ð8Þ
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having initial condition

ζk μ, 0ð Þ = gk μð Þ, k = 0, 1, 2,⋯, n − 1, ð9Þ

where N and M are linear and nonlinear components.
By taking the Elzaki transform of Equation (8), we have

E Dσ
ρζ μ, ρð Þ

h i
+ E Nζ μ, ρð Þ +Mζ μ, ρð Þ½ � = E h μ, ρð Þ½ �: ð10Þ

By using Elzaki differentiation property

E ζ μ, ρð Þ½ � = 〠
m

k=0
s2−σ+ku kð Þ μ, 0ð Þ + sσE h μ, ρð Þ½ �

− sσE Nζ μ, ρð Þ +Mζ μ, ρð Þ½ �:
ð11Þ

On taking Elzaki inverse transform of Equation (11),

ζ μ, ρð Þ = E−1 〠
m

k=0
s2−σ+kuk μ, 0ð Þ + sσE h μ, ρð Þ½ �

( )" #

− E−1 sσE Nζ μ, ρð Þ +Mζ μ, ρð Þ½ �½ �:
ð12Þ

Now by using iterative technique, we get

ζ μ, ρð Þ = 〠
∞

m=0
ζm μ, ρð Þ, ð13Þ

N 〠
∞

m=0
ζm μ, ρð Þ

 !
= 〠

∞

m=0
N ζm μ, ρð Þ½ �: ð14Þ

The nonlinear term N is recognized as

N 〠
∞

m=0
ζm μ, ρð Þ

 !
= ζ0 μ, ρð Þ +N 〠

m

k=0
ζk μ, ρð Þ

 !

−M 〠
m

k=0
ζk μ, ρð Þ

 !
:

ð15Þ

By substituting Equations (13), (14), and (15) in
Equation (12), we get

〠
∞

m=0
ζm μ, ρð Þ = E−1 sσ 〠

m

k=0
s2−μ+kuk μ, 0ð Þ + E h μ, ρð Þ½ �

 !" #

− E−1 sσE N 〠
m

k=0
ζk μ, ρð Þ

 !
−M 〠

m

k=0
ζk μ, ρð Þ

 !" #" #
:

ð16Þ

Thus, the iterative formula is given as

ζ0 μ, ρð Þ = E−1 sσ 〠
m

k=0
s2−μ+kuk μ, 0ð Þ + sσE g μ, ρð Þð Þ

 !" #
,

ζ1 μ, ρð Þ = −E−1 sσE N½ ζ0 μ, ρð Þ½ � +M ζ0 μ, ρð Þ½ �½ �,

ζm+1 μ, ρð Þ = −E−1 sσE −N 〠
m

k=0
ζk μ, ρð Þ

 !
−M 〠

m

k=0
ζk μ, ρð Þ

 !" #" #
,

ð17Þ

Lastly, Equations (8) and (9) give series form result for
m-term as

ζ μ, ρð Þ ≅ ζ0 μ, ρð Þ + ζ1 μ, ρð Þ + ζ2 μ, ρð Þ+⋯,+ζm μ, ρð Þ, m = 1, 2,⋯:

ð18Þ

4. Idea of Homotopy Perturbation Transform
Method (HPTM)

Let us consider the fractional partial differential equation
having general form.

Dσ
ρζ μ, ρð Þ +Mζ μ, ρð Þ +Nζ μ, ρð Þ = h μ, ρð Þ, ρ > 0, 0 < σ ≤ 1,

ζ μ, 0ð Þ = g μð Þ, ν ∈R:  

ð19Þ

By taking the Elzaki transform of Equation (19)

E Dσ
ρζ μ, ρð Þ +Mζ μ, ρð Þ +Nζ μ, ρð Þ

h i
= E h μ, ρð Þ½ �, ρ > 0, 0 < σ ≤ 1,

ζ μ, ρð Þ = s2g μð Þ + sσE h μ, ρð Þ½ � − sσE Mζ μ, ρð Þ +Nζ μ, ρð Þ½ �:
ð20Þ

On taking Elzaki inverse transform, we have

ζ μ, ρð Þ = F x, ρð Þ − E−1 sσE Mζ μ, ρð Þ +Nζ μ, ρð Þf g½ �, ð21Þ

where

μ, ρð Þ = E−1 s2g μð Þ + sσE h μ, ρð Þ½ �� �
= g νð Þ + E−1 sσE h μ, ρð Þ½ �½ �:

ð22Þ

The perturbation technique of parameter p is given as

ζ μ, ρð Þ = 〠
∞

k=0
pkζk μ, ρð Þ, ð23Þ

where perturbation parameter is denoted by p and p ∈ ½0, 1�.
The nonlinear terms can be calculated as

Nζ μ, ρð Þ = 〠
∞

k=0
pkHk ζkð Þ, ð24Þ
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where Hn represents He’s polynomials in terms of ζ0, ζ1,
ζ2,⋯, ζn, and can be expressed as

Hn ζ0, ζ1,⋯,ζnð Þ = 1
σ n + 1ð ÞD

k
p N 〠

∞

k=0
pkζk

 !" #
p=0

, ð25Þ

where Dk
p = ∂k/∂pk:

Substituting Equations (24) and (25) in Equation (21),
we have

〠
∞

k=0
pkζk μ, ρð Þ

= F μ, ρð Þ − p

× E−1 sσE M〠
∞

k=0
pkζk μ, ρð Þ + 〠

∞

k=0
pkHk ζkð Þ

( )( )" #
:

ð26Þ

On comparison of both sides coefficient of p, we get

p0 : ζ0 μ, ρð Þ = F μ, ρð Þ,
p1 : ζ1 μ, ρð Þ = E−1 sσE Mζ0 μ, ρð Þ +H0 ζð Þð Þ½ �,
p2 : ζ2 μ, ρð Þ = E−1 sσE Mζ1 μ, ρð Þ +H1 ζð Þð Þ½ �,

⋮

pk : ζk μ, ρð Þ = E−1 sσE Mζk−1 μ, ρð Þ +Hk−1 ζð Þð Þ½ �, k > 0, k ∈N:

ð27Þ

The ζkðμ, ρÞ term can be calculated easily resulting
convergent series. By taking p⟶ 1,

ζ μ, ρð Þ = lim
M⟶∞

〠
M

k=1
ζk μ, ρð Þ: ð28Þ

4.1. Example. Consider the time-fractional ADE

Dσ
ρζ μ, ρð Þ = ℓD2

μζ μ, ρð Þ −Dμζ μ, ρð Þ, ð29Þ

with initial condition

ζ μ, 0ð Þ = e−μ, ð30Þ

where ℓ is the ratio of constant diffusivity and the drift veloc-
ity. The exact solution is

ζ μ, ϕ, ρð Þ = e 1+ℓð Þρ−μ: ð31Þ

By taking the Elzaki transform of Eq. (29), we get

E ν μ, ϕ, ρð Þ½ � = s2 e−μð Þ + sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i
: ð32Þ

On taking Elzaki inverse transform, we have

ν μ, ϕ, ρð Þ = e−μ + E−1 sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i� �
: ð33Þ

Thus by using NITM, we have

ζ0 μ, ρð Þ = e−μ,

ζ1 μ, ρð Þ = E−1 sσE ℓD2
μζ0 μ, ρð Þ −Dμζ0 μ, ρð Þ

n oh i
= e−μ

ℓ + 1ð Þρσ
Γ σ + 1ð Þ ,

ζ2 μ, ρð Þ = E−1 sσE ℓD2
μζ1 μ, ρð Þ −Dμζ1 μ, ρð Þ

n oh i
= e−μ

ℓ + 1ð Þ2 ρσð Þ2
Γ 2σ + 1ð Þ ,

ζ3 μ, ρð Þ = E−1 sσE ℓD2
μζ2 μ, ρð Þ −Dμζ2 μ, ρð Þ

n oh i
= e−μ

ℓ + 1ð Þ3 ρσð Þ3
Γ 3σ + 1ð Þ ,

⋮

ζn μ, ρð Þ = E−1 sσE ℓD2
μζn μ, ρð Þ −Dμζn μ, ρð Þ

n oh i
= e−μ

ℓ + 1ð Þn ρσð Þn
Γ nσ + 1ð Þ , n ≥ 0:

ð34Þ

The series form solution is given as

ζ μ, ρð Þ = ζ0 μ, ρð Þ + ζ1 μ, ρð Þ + ζ2 μ, ρð Þ + ζ3 μ, ρð Þ+⋯ζn μ, ρð Þ:
ð35Þ

Thus, we have

ζ μ, ρð Þ = e−μ 1 + ℓ + 1ð Þρσ
Γ σ + 1ð Þ + ℓ + 1ð Þ2ρ2σ

Γ 2σ + 1ð Þ

(

+ ℓ + 1ð Þ3ρ3σ
Γ 3σ + 1ð Þ +⋯+ ℓ + 1ð Þn ρσð Þn

Γ nσ + 1ð Þ

)
:

ð36Þ

Now by using the HPTM, we have

〠
∞

n=0
pnwn μ, ρð Þ = e−μð Þ + p E−1 sσE 〠

∞

n=0
pnHn wð Þ

" # !( )
:

ð37Þ
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By Comparing coefficient of p on both sides, we get:

p0 : w0 μ, ρð Þ = e−μ,

p1 : w1 μ, ρð Þ = E−1 sσE H0 wð Þð Þf g� �
= e−μ

ℓ + 1ð Þρσ
Γ σ + 1ð Þ ,

p2 : w2 μ, ρð Þ = E−1 sσE H1 wð Þð Þf g� �
= e−μ

ℓ + 1ð Þ2 ρσð Þ2
Γ 2σ + 1ð Þ ,

p3 : w3 μ, ρð Þ = E−1 sσE H2 wð Þð Þf g� �
= e−μ

ℓ + 1ð Þ3 ρσð Þ3
Γ 3σ + 1ð Þ ,

⋮

pn : wn μ, ρð Þ = E−1 sσE Hn−1 wð Þð Þf g� �
= e−μ

ℓ + 1ð Þn ρσð Þn
Γ nσ + 1ð Þ :

ð38Þ

The solution in series form by means of HPM is
given as

ζ μ, ρð Þ = 〠
∞

n=0
pnwn μ, ρð Þ: ð39Þ

Thus, we have

ζ μ, ρð Þ = e−μ 1 + ℓ + 1ð Þρσ
Γ σ + 1ð Þ + ℓ + 1ð Þ2ρ2σ

Γ 2σ + 1ð Þ

(

+ ℓ + 1ð Þ3ρ3σ
Γ 3σ + 1ð Þ +⋯+ ℓ + 1ð Þn ρσð Þn

Γ nσ + 1ð Þ

)
:

ð40Þ

4.2. Example. Consider the time-fractional ADE

Dσ
ρζ μ, ρð Þ = ℓD2

μζ μ, ρð Þ −Dμζ μ, ρð Þ, ð41Þ

with initial conditions

ζ μ, 0ð Þ = μ3 − μ2: ð42Þ

By taking the Elzaki transform of Equation (29), we
get

E ν μ, ϕ, ρð Þ½ � = s2 μ3 − μ2
� �

+ sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i
:

ð43Þ

On taking Elzaki inverse transform, we have

ν μ, ϕ, ρð Þ = μ3 − μ2
� �

+ E−1 sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i� �
:

ð44Þ

Thus by using NITM, we have

ζ0 μ, ρð Þ = μ3 − μ2,

ζ1 μ, ρð Þ = E−1 sσE ℓD2
μζ0 μ, ρð Þ −Dμζ0 μ, ρð Þ

n oh i
= −3μ2 + 2μ 1 + 3ℓð Þ − 2ℓ
� 	 ρσ

Γ σ + 1ð Þ ,

ζ2 μ, ρð Þ = E−1 sσE ℓD2
μζ1 μ, ρð Þ −Dμζ1 μ, ρð Þ

n oh i
= 6μ − 2 − 12ℓf g ρσð Þ2

Γ 2σ + 1ð Þ ,

ζ3 μ, ρð Þ = E−1 sσE ℓD2
μζ2 μ, ρð Þ −Dμζ2 μ, ρð Þ

n oh i
= −6 ρσð Þ3

Γ 3σ + 1ð Þ :

⋮

ð45Þ

The series form solution is given as

ζ μ, ρð Þ = ζ0 μ, ρð Þ + ζ1 μ, ρð Þ + ζ2 μ, ρð Þ + ζ3 μ, ρð Þ+⋯ζn μ, ρð Þ:
ð46Þ

Thus, we have

ζ μ, ρð Þ = μ3 − μ2
� �

+ −3μ2 + 2μ 1 + 3ℓð Þ − 2ℓ
� 	 ρσ

Γ σ + 1ð Þ

+ 6μ − 2 − 12ℓf g ρσð Þ2
Γ 2σ + 1ð Þ − 6 ρσð Þ3

Γ 3σ + 1ð Þ+⋯:

ð47Þ

Now by applying the HPTM, we have

〠
∞

n=0
pnwn μ, ρð Þ = e−μð Þ + p E−1 sσE 〠

∞

n=0
pnHn wð Þ

" # !( )
:

ð48Þ

5Journal of Function Spaces



By comparing coefficient of p on both sides, we get

p0 : w0 μ, ρð Þ = μ3 − μ2,

p1 : w1 μ, ρð Þ = E−1 sσE H0 wð Þð Þf g� �
= −3μ2 + 2μ 1 + 3ℓð Þ − 2ℓ
� 	 ρσ

Γ σ + 1ð Þ ,

p2 : w2 μ, ρð Þ = E−1 sσE H1 wð Þð Þf g� �
= 6μ − 2 − 12ℓf g ρσð Þ2

Γ 2σ + 1ð Þ ,

p3 : w3 μ, ρð Þ = E−1 sσE H2 wð Þð Þf g� �
= −6 ρσð Þ3

Γ 3σ + 1ð Þ :

⋮

ð49Þ

The solution in series form by means of HPM is
given as

ζ μ, ρð Þ = 〠
∞

n=0
pnwn μ, ρð Þ: ð50Þ

Thus, we have

ζ μ, ρð Þ = μ3 − μ2
� �

+ −3μ2 + 2μ 1 + 3ℓð Þ − 2ℓ
� 	 ρσ

Γ σ + 1ð Þ

+ 6μ − 2 − 12ℓf g ρσð Þ2
Γ 2σ + 1ð Þ − 6 ρσð Þ3

Γ 3σ + 1ð Þ+⋯:

ð51Þ

4.3. Example. Consider the time-fractional ADE

Dσ
ρζ μ, ρð Þ = ℓD2

μζ μ, ρð Þ −Dμζ μ, ρð Þ, ð52Þ

with initial conditions

ζ μ, 0ð Þ = cos μð Þ: ð53Þ

By taking the Elzaki transform of Equation (29), we
get

E ν μ, ϕ, ρð Þ½ � = s2 cos μð Þð Þ + sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i
:

ð54Þ

On taking Elzaki inverse transform, we have

ν μ, ϕ, ρð Þ = cos μð Þ + E−1 sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i� �
:

ð55Þ

Thus by using NITM, we have

ζ0 μ, ρð Þ = cos μð Þ,

ζ1 μ, ρð Þ = E−1 sσE ℓD2
μζ0 μ, ρð Þ −Dμζ0 μ, ρð Þ

n oh i
= sin μð Þ − ℓ cos μð Þð Þ ρσ

Γ σ + 1ð Þ ,

ζ2 μ, ρð Þ = E−1 sσE ℓD2
μζ1 μ, ρð Þ −Dμζ1 μ, ρð Þ

n oh i
= −cos μð Þ − 2ℓ sin μð Þ + ℓ2 cos μð Þ� � ρσð Þ2

Γ 2σ + 1ð Þ ,

ζ3 μ, ρð Þ = E−1 sσE ℓD2
μζ2 μ, ρð Þ −Dμζ2 μ, ρð Þ

n oh i
= −sin μð Þ + 3ℓ cos μð Þ + 3ℓ2 sin μð Þ − ℓ3 cos μð Þ� �
� ρσð Þ3
Γ 3σ + 1ð Þ :

⋮
ð56Þ

The series form solution is given as

ζ μ, ρð Þ = ζ0 μ, ρð Þ + ζ1 μ, ρð Þ + ζ2 μ, ρð Þ + ζ3 μ, ρð Þ+⋯ζn μ, ρð Þ:
ð57Þ

Thus, we have

ζ μ, ρð Þ = cos μð Þ + sin μð Þ − ℓ cos μð Þð Þ ρσ

Γ σ + 1ð Þ

+ −cos μð Þ − 2ℓ sin μð Þ + ℓ2 cos μð Þ� � ρσð Þ2
Γ 2σ + 1ð Þ

+ −sin μð Þ + 3ℓ cos μð Þ + 3ℓ2 sin μð Þ − ℓ3 cos μð Þ� �
� ρσð Þ3
Γ 3σ + 1ð Þ :

ð58Þ

Now by applying the HPTM, we have

〠
∞

n=0
pnwn μ, ρð Þ = e−μð Þ + p E−1 sσE 〠

∞

n=0
pnHn wð Þ

" # !( )
:

ð59Þ
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By Comparing coefficient of p on both sides, we get:

p0 : w0 μ, ρð Þ = cos μð Þ,
p1 : w1 μ, ρð Þ = E−1 sσE H0 wð Þð Þf g� �

= sin μð Þ − ℓ cos μð Þð Þ ρσ

Γ σ + 1ð Þ ,

p2 : w2 μ, ρð Þ = E−1 sσE H1 wð Þð Þf g� �
= −cos μð Þ − 2ℓ sin μð Þ + ℓ2 cos μð Þ� �
� ρσð Þ2
Γ 2σ + 1ð Þ ,

p3 : w3 μ, ρð Þ = E−1 sσE H2 wð Þð Þf g� �
= −sin μð Þ + 3ℓ cos μð Þ + 3ℓ2 sin μð Þ�

− ℓ3 cos μð Þ� ρσð Þ3
Γ 3σ + 1ð Þ :

⋮

ð60Þ

The solution in series form by means of HPM is given as

ζ μ, ρð Þ = 〠
∞

n=0
pnwn μ, ρð Þ: ð61Þ

Thus, we have

ζ μ, ρð Þ = cos μð Þ + sin μð Þ − ℓ cos μð Þð Þ ρσ

Γ σ + 1ð Þ

+ −cos μð Þ − 2ℓ sin μð Þ + ℓ2 cos μð Þ� � ρσð Þ2
Γ 2σ + 1ð Þ

+ −sin μð Þ + 3ℓ cos μð Þ + 3ℓ2 sin μð Þ − ℓ3 cos μð Þ� �
� ρσð Þ3
Γ 3σ + 1ð Þ :

ð62Þ

5. Results and Discussion

We implemented NITM and HPTM for finding the approx-
imate solutions of time-fractional ADE. The analytical solu-
tion and exact solution are shown in Figures 1(a) and 1(b) at
σ = 1, whereas Figures 1(c) and 1(d) show the absolute error
and the solution at various fractional order. Figures 2 and 3
show the behavior of the proposed method solution at vari-
ous fractional orders. Table 1 shows the comparison of the
exact and suggested methods solution in addition with the
absolute error at various fractional order. Finally, the figures
and table show that the suggested techniques have higher
degree of accuracy and rapid convergence towards the exact
results.
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Figure 1: Nature of the exact and proposed technique results of example 1.
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Figure 2: Nature of the proposed method solutions at different fractional orders for problem 2.
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Figure 3: Nature of the proposed method solutions at different fractional orders for problem 3.
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6. Conclusion

The solutions for time-fractional ADE are successfully
obtained using NITM and HPTM in this paper. The study
reveals that the derivative having fractional order, as well
as the location and time factors, has an impact on solute
concentration. For varying values of the fractional parameter
σ, solutions are plotted with spatial and time coordinates for
three cases. We compare actual and analytical results with
the use of graphs and tables, which are in strong agreement
with one another, to demonstrate the effectiveness of the
proposed methods. Also, the results achieved by imple-
menting the suggested approaches are compared at various

fractional orders, confirming that the result comes closer to
the exact solution as the value moves from fractional to inte-
ger order. The methods should be extended to solve space-
time fractional ADE in two or three dimensions. As a result,
the NITM and HPTM are effective methods in finding exact
and approximate solutions for nonlinear differential equa-
tions arising in science and engineering.

Data Availability

The numerical data used to support the findings of this
study are included within the article.

Table 1: Analysis of the approximate solution by NITM and HPTM for problem 1.

η ξ
Exact −NITMj j Exact −NITMj j Exact −HPTMj j Exact −HPTMj j

σ = 0:5 σ = 1 σ = 0:7 σ = 1

0.1

0.5 7.65212627 × 10−02 3.0000000 × 10−10 2.34826106 × 10−02 3.0000000 × 10−10

1 4.64124920 × 10−02 2.0000000 × 10−10 1.42429233 × 10−02 2.0000000 × 10−10

1.5 2.81505993 × 10−02 1.0000000 × 10−10 8.63876960 × 10−03 1.0000000 × 10−10

2 1.70742016 × 10−02 1.0000000 × 10−10 5.23967870 × 10−03 1.0000000 × 10−10

2.5 1.03560267 × 10−02 4.0000000 × 10−11 3.17802575 × 10−03 4.0000000 × 10−11

3 6.28124775 × 10−03 2.0000000 × 10−11 1.92757006 × 10−03 2.0000000 × 10−11

3.5 3.80976934 × 10−03 2.0000000 × 10−11 1.16913033 × 10−03 2.0000000 × 10−11

4 2.31074191 × 10−03 1.0000000 × 10−11 7.09113390 × 10−04 1.0000000 × 10−11

4.5 1.40153581 × 10−03 1.0000000 × 10−11 4.30099010 × 10−04 1.0000000 × 10−11

5 8.50074443 × 10−04 3.0000000 × 10−12 2.60868239 × 10−04 3.0000000 × 10−12

0.2

0.5 1.09371292 × 10−01 5.8000000 × 10−09 3.65660312 × 10−02 5.8000000 × 10−09

1 6.63370423 × 10−02 3.5000000 × 10−09 2.21784191 × 10−02 3.5000000 × 10−09

1.5 4.02354500 × 10−02 2.1000000 × 10−09 1.34518911 × 10−02 2.1000000 × 10−09

2 2.44040340 × 10−02 1.3000000 × 10−09 8.15898440 × 10−03 1.3000000 × 10−09

2.5 1.48017948 × 10−02 7.8000000 × 10−10 4.94867420 × 10−03 7.8000000 × 10−10

3 8.97774240 × 10−03 4.7000000 × 10−10 3.00152262 × 10−03 4.7000000 × 10−10

3.5 5.44527602 × 10−03 2.9000000 × 10−10 1.82051550 × 10−03 2.9000000 × 10−10

4 3.30272686 × 10−03 1.7000000 × 10−10 1.10419847 × 10−03 1.7000000 × 10−10

4.5 2.00320511 × 10−03 1.0000000 × 10−10 6.69730230 × 10−04 1.0000000 × 10−10

5 1.21500531 × 10−03 6.4000000 × 10−11 4.06211915 × 10−04 6.4000000 × 10−11

0.3

0.5 1.35218250 × 10−01 2.9900000 × 10−08 4.73151582 × 10−02 2.9900000 × 10−08

1 8.20140147 × 10−02 1.8100000 × 10−08 2.86980942 × 10−02 1.8100000 × 10−08

1.5 4.97440144 × 10−02 1.1000000 × 10−08 1.74062739 × 10−02 1.1000000 × 10−08

2 3.01712698 × 10−02 6.7000000 × 10−09 1.05574388 × 10−02 6.7000000 × 10−09

2.5 1.82998002 × 10−02 4.0400000 × 10−09 6.40341033 × 10−03 4.0400000 × 10−09

3 1.10993899 × 10−02 2.4500000 × 10−09 3.88386470 × 10−03 2.4500000 × 10−09

3.5 6.73212028 × 10−03 1.4900000 × 10−09 2.35568301 × 10−03 1.4900000 × 10−09

4 4.08323736 × 10−03 9.0000000 × 10−10 1.42879398 × 10−03 9.0000000 × 10−10

4.5 2.47660865 × 10−03 5.4000000 × 10−10 8.66607360 × 10−04 5.4000000 × 10−10

5 1.50213907 × 10−03 3.3200000 × 10−10 5.25623929 × 10−04 3.32000000 × 10−10
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