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In this paper, we establish the boundedness of the modified fractional integral operator frommixedMorrey spaces to the bounded
mean oscillation space and Lipschitz spaces, respectively.

1. Introduction

Let 0< α< n, and the fractional integral operator Iα and the
modified fractional integral operator Iα are defined by

Iαf(x) � 
Rn

f(y)

|x − y|
n− α dy,

Iαf(x) � 
Rn

1
|x − y|

n− α −
χ |y|≥1{ }(y)

|y|
n− α f(y)dy,

(1)

where f is a locally integrable function on Rn.
)e well-known Hardy–Littlewood–Sobolev inequality

yields the boundedness of Iα from Lp(Rn) to Lq(Rn), where
1<p< q<∞ and 1/p − 1/q � α/n. For the endpoint situa-
tion, we know Iα is bounded from H1(Rn) to Ln/(n− α)(Rn)

(see [1]). Moreover, Peetre [2] proved that Iα is bounded
from Ln/α(Rn) to BMO(Rn). Here, BMO(Rn) is the
bounded mean oscillation space, which consists of all locally
integrable functions f on Rn such that

‖f‖BMO � sup
x∈Rn,r> 0

1
|B(x, r)|


B(x,r)

f(y) − fB(x,r)


dy<∞,

(2)

where B(x, r) is the ball centered at x with radius r, |B(x, r)|

denotes its Lebesgue measure, and
fB(x,r) � 1/|B(x, r)|

B(x,r)
f(y)dy. If one regards two

functions whose difference is a constant as one, the space
BMO(Rn) is a Banach space with respect to the norm
‖ · ‖BMO.

Other than Lebesgue spaces, Morrey spaces are also
important function spaces to study the boundedness of
integral operators in harmonic analysis.)e classical Morrey
space was introduced byMorrey [3] to study the regularity of
elliptic partial differential equations. Now, we recall the
definition of the Morrey space M

p
q (Rn).

For 1≤ q≤p<∞, the classical Morrey space M
p
q (Rn)

consists of all functions f ∈ L
q

loc(R
n) with

‖f‖M
p
q

� sup
x∈Rn,r> 0

|B(x, r)|
(1/p)− (1/q)

‖f‖Lq(B(x,r)) <∞. (3)

One can see that Morrey spaces are natural general-
izations of Lebesgue spaces.)emapping properties of Iα on
Morrey spaces were first studied by Peetre [2] and further
generalized by Adams [4]. We refer readers to [5–19] and the
references therein for more studies about boundedness of
the fractional integral operator on Morrey-type and an-
isotropic spaces. Recently, the mapping properties of Iα from
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Morrey spaces to BMO(Rn) and Lipschitz spaces were also
obtained in [20–22]. Here, we review the definition of
Lipschitz spaces briefly. Let 0< β< 1; we say a locally inte-
grable function f belongs to the Lipschitz space Lipβ(Rn) if

‖f‖Lipβ � sup
x∈Rn,r> 0

1
|B(x, r)|

1+β/n 
B(x,r)

f(y) − fB(x,r)


dy<∞.

(4)

If one regards two functions whose difference is a
constant as one, the space Lipβ(Rn) is a Banach space with
respect to the norm ‖ · ‖Lipβ. As we know, a locally integrable
function f which belongs to Lipβ(Rn) also means that there
exists a constant C such that |f(x) − f(y)|≤C|x − y|β for
all x, y ∈ Rn. If C0 is the smallest constant satisfying the
inequality, then ‖f‖Lipβ ∼ C0.

With the development of the theory of function spaces,
Morrey spaces have been extended to different settings. One
of the extensions is the mixed Morrey space, which was
recently defined by Nogayama et al. [23–25] to uniform
mixed Lebesgue spaces and Morrey spaces. Note that there
exists another mixed Morrey space by using the iteration of
Morrey norm introduced by Ragusa and Scapellato [26]. We
refer the readers to [21, 27, 28] for the boundedness of
various operators on these mixed Morrey spaces of iteration
type.

To give the definition of mixed Morrey spaces M
p

q
→(Rn),

we first recall the definition of mixed Lebesgue spaces in-
troduced in [29]. Let p

→
� (p1, . . . , pn] ∈ (0,∞]n. )en, the

mixed Lebesgue norm ‖ · ‖
p

→ is defined by

‖f‖
p

→ � 
R

· · · 
R


R

f x1, x2, . . . , xn( 



p1dx1 

p2/p1

dx2 

p3/p2

· · · dxn
⎛⎝ ⎞⎠

1/pn

, (5)

where f is a measurable function. If pj �∞ for some
j � 1, . . . , n, then we have to make appropriate modifica-
tions.We define themixed Lebesgue space L p

→
(Rn) to be the

set of all measurable functions f with ‖f‖
p

→<∞.
Now, we can give the definition of mixed Morrey spaces

introduced by Nogayama [24].

Definition 1. Let 1≤ q
→<∞, 1≤p<∞, and n/p≤ 

n
i�1 1/qi.

A measurable function f belongs to the mixed Morrey space
M

p

q
→(Rn) if and only if

‖f‖M
p

q
→

� sup
x∈Rn,r> 0

|B(x, r)|
(1/p)− (1/n) 

n

i�1 1/qi( )( 
fχB(x,r)

����
����

q
→<∞. (6)

In [24], the author proved the boundedness of Iα from
one mixed Morrey space to another, which inspires us to
consider the mapping of Iα at or beyond the endpoint sit-
uation, i.e., the boundedness of Iα from M

p

q
→(Rn) to

BMO(Rn) or Lipβ(Rn).
)roughout the paper, we use the following notations.
Let Lloc(R

n) be the collection of all locally integrable
functions onRn. We use χE and |E| to denote the characteristic
function and the Lebesgue measure of a measurable set E.

)e letter p
→ denotes n-tuples of the numbers in [0,∞],

i.e., p
→

� (p1, . . . , pn), where n ∈ N and n≥ 2. By definition,
the inequality, for example, 0< p

→<∞, means 0<pi <∞ for
all i. For 1≤ p

→≤∞, we denote p
→′ � (p1′, . . . , pn

′), where pi
′

satisfies (1/pi) + (1/pi
′) � 1.

By A≲B, we mean that A≤CB for some constant C> 0,
and A ∼ B means that A≲B and B≲A.

2. Main Results

We first recall the boundedness of Iα on mixed Lebesgue
spaces, which will be used to prove our main results. Here
and in the following, we denote q1

→
� (q11, q12, . . . , q1n) and

q2
→

� (q21, q22, . . . , q2n).

Lemma 1. Let 0< α< n and 1< q1
→< q2

→<∞. &en,

Iαf
����

����
L q2
→≲‖f‖

L q1
→ (7)

if and only if

α � 

n

i�1

1
q1i

− 

n

i�1

1
q2i

. (8)

)e proof of Lemma 1 can be found in Lemma 3.1 of
[30].

In [24], Nogayama established the following result on the
boundedness of Iα from one mixedMorrey space to another.

Lemma 2. Let 0< α< n, 1<p1, p2 <∞, and 1< q1
→

, q2
→<∞.

Assume that n/p1 ≤ 
n
i�1 1/q1i and n/p2 ≤ 

n
i�1 1/q2i. Also,

assume that 1/p2 � 1/p1 − α/n and q1
→/p1 � q2

→/p2. &en, for
f ∈M

p1

q1
→(Rn),

Iαf
����

����M
p2

q2
→
≲‖f‖M

p1

q1
→

. (9)
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For more studies on the boundedness of operators on
mixed Morrey spaces, we refer the readers to [31, 32]. One
can see that p1 in Lemma 2 satisfies 1<p1 < n/α. It is natural
to ask what happens if p1 � n/α or p1 > n/α. In this section,
we give an affirmative answer. More precisely, we will es-
tablish the boundedness of modified fractional integral
operator Iα from M

p1

q1
→(Rn) to BMO(Rn) or Lipβ(Rn).

When p1 � n/α in Lemma 2, we have the following
theorem.

Theorem 1. Let 0< α< n, 1< q1
→<∞, and α< 

n
i�1 1/q1i.

&en, for all f ∈Mn/α
q1
→(Rn), we have
Iαf

����
����BMO≲‖f‖Mn/α

q1
→

. (10)

Proof. By the definition of BMO(Rn), we only need to show
for any B � B(x0, r) and f ∈Mn/α

q1
→(Rn), there holds

1
|B|


B

Iαf(x) − Iαf 
B



dx≲‖f‖Mn/α

q1
→

. (11)

Write 2jB � B(x0, 2jr), and let

c1 � 

Rn\2B

f(y)

x0 − y



n− α dy. (12)

)en, we have
1

|B|


B

Iαf(x) − Iαf 
B



dx

≤
2

|B|


B

2B

f(y)

|x − y|
n− αdy




dx

+
2

|B|


B

Rn\2B

f(y)

|x − y|
n− α dy − c1




dx

≔ I + II.

(13)

Define q2
→ such that 1< q1

→< q2
→<∞ and α � 

n
i�1 1/

q1i − 
n
i�1 1/q2i. For the term I, by using Lemma 1 and

Hölder’s inequality on mixed Lebesgue spaces, we obtain

I≲
1

|B|


B
Iα fχ2B( (x)


dx≲

1
|B|

Iα fχ2B( 
����

����
q2
→ χB

����
����
q2
→′

≲
1

|B|
fχ2B

����
����

q1
→ χB

����
����
q2
→′≲

r


n
i�1 1/q1i(  − α

|B|
‖f‖Mn/α

q1
→

χB

����
����
q2
→′

≲r


n

i�1
1/q1i(  − 

n

i�1
1/q2i(  − α

‖f‖Mn/α

q1
→
≲‖f‖Mn/α

q1
→

.

(14)

Now, we turn to estimate II. By a direct computation, we
have

II �
1

|B|


B

Rn\2B

(y)dy




dx

≲
r

|B|


B

Rn\2B

1
x0 − y



n− α+1 f(y)dy




dx

≲
∞

j�1

r

2j
r 

n− α+12j+1B\2jB
|f(y)|dy

≲
∞

j�1

r

2j
r 

n− α+1 fχ2j+1B

����
����

q1
→ χ2j+1B

����
����
q1
→′

≲
∞

j�1

r

2j
r 


n
i�1 1/q1i(  − α + 1

fχ2j+1B

����
����

q1
→

� 
∞

j�1

r

2j
r

1

2j
r 


n
i�1 1/q1i(  − α

fχ2j+1B

����
����

q1
→

≲

∞

j�1

1
2j

‖f‖Mn/α

q1
→

� ‖f‖Mn/α

q1
→

.

(15)

From the estimates of I and II, we get (11), which finishes
the proof.

When p1 > n/α in Lemma 2, we have the following
mapping property of Iα from M

p1

q1
→(Rn) to

Lipα− n/p1
(Rn). □

Theorem 2. Let 0< α< n, 0< α − n/p1 < 1, 1< q1
→<∞, and

α< 
n
i�1 1/q1i. &en, for f ∈M

p1

q1
→(Rn), we have

Iαf
����

����Lipα− n/p1
≲‖f‖M

p1

q1
→

. (16)

Proof. )e proof is similar to that of )eorem 1.
By the definition of Lipschitz spaces, we only need to

show for any B � B(x0, r) and f ∈M
p1

q1
→(Rn), there holds

1
|B|

1+α/n− 1/p1


B

Iαf(x) − Iαf 
B



dx≲‖f‖M
p1

q1
→

. (17)

We also write 2jB � B(x0, 2jr) and let

c1 � 
Rn\2B

f(y)

x0 − y



n− α dy. (18)

Similar to (13), we have
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1
|B|

1+α/n− 1/p1


B

Iαf(x) − Iαf 
B



dx

≤
2

|B|
1+α/n− 1/p1


B


2B

f(y)

|x − y|
n− αdy




dx

+
2

|B|
1+α/n− 1/p1


B


Rn\2B

f(y)

|x − y|
n− α dy − c1




dx

� I1 + I2.

(19)

Choose q2
→ such that 1< q1

→< q2
→<∞ and

α � 
n
i�1 1/q1i − 

n
i�1 1/q2i. For the term I1, by using Lemma

1 and Hölder’s inequality on mixed Lebesgue spaces, we get

I1 �
1

|B|
1+α/n− 1/p1


B

Iα fχ2B( (x)


dx≲
1

|B|
1+α/n− 1/p1

Iα fχ2B( 
����

����
q2
→ χB

����
����
q2
→′

≲
1

|B|
1+α/n− 1/p1

fχ2B

����
����

q1
→ χB

����
����
q2
→′≲

r


n
i�1 1/q1i(  − n/p1( 

r


n
i�1 1/q2i(  + α − n/p1( 

‖f‖M
p1

q1
→

� ‖f‖M
p1

q1
→

(20)

since α � 
n
i�1 1/q1i − 

n
i�1 1/q2i.

For I2, by a similar method as in the proof of )eorem 1,
we have

I2 �
1

|B|
1+α/n− 1/p1


B


Rn\2B

f(y)dy




dx

≲
r

|B|
1+α/n− 1/p1


B


Rn\2B

1
x0 − y



n− α+1 f(y)dy




dx

≲
∞

j�1

r
1− α+n/p1

2j
r 

n− α+12j+1B\2jB
|f(y)|dy

≲
∞

j�1

r
1− α+n/p1

2j
r 

n− α+1 fχ2j+1B

����
����

q1
→ χ2j+1B

����
����
q1
→′

≲
∞

j�1

r
1− α+n/p1 2j

r 


n
i�1 1/q1i(  − n/p1( 

2j
r 


n
i�1 1/q1i(  − α + 1

fχ2j+1B

����
����

q1
→

� 
∞

j�1

r
1− α+n/p1

2j
r 

1− α+n/p1( )

1

2j
r 


n
i�1 1/q1i(  − n/p1( 

fχ2j+1B

����
����

q1
→

≲
∞

j�1

1

2j 1− α+n/p1( )
‖f‖M

p1

q1
→
≲‖f‖M

p1

q1
→

(21)

since 1 − α + n/p1 > 0.

From the estimates of I1 and I2, we get (17). )e proof is
complete.

It is worth mentioning that our results in )eorems 1
and 2 extend the corresponding results of classical Morrey
spaces to mixed Morrey spaces. □
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