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The Lorenz-Stenflo mathematical model describes a complex dynamical behavior related to atmospheric acoustic-gravity waves.
In this study, qualitative analysis of the four-dimensional hyperchaotic Lorenz-Stenflo system via the Caputo fractional derivative
is implemented. By using the Matignon stability criterion, the local stability analysis of the system showed that all the equilibrium
points of the system are locally unstable. Calculation of the Lyapunov exponents along with the relevant bifurcation diagrams with
respect to different fractional orders exposed the hyperchaotic dynamical behavior for the system. Bifurcation diagrams for all the
four parameters in the system also showed the hyperchaotic nature of the Lorenz-Stenflo system. Different phase attractors of the
system corresponding to different fractional derivatives and parameters are presented to specify the dynamical nature of the
system. The Lorenz-Stenflo system showed sensitivity to initial conditions. The master and slave systems showed a strong
correlation among themselves, as verified by graphs of time series solutions of the two systems.

1. Introduction

In recent years, fractional operators have been applied to
develop mathematical models for which we can investigate
different dynamical systems in some areas such as mathe-
matical biology, epidemiology, and engineering [1].

Different researchers introduced several concepts of frac-
tional derivatives. Some of them are the Caputo fractional-
order derivative [2–4], the Riemann Liouville fractional-order
derivative [4], the Caputo-Fabrizio fractional-order derivative
[5], and the Atangana-Baleanu fractional derivatives [6].

In the mathematical models with integer derivatives, the
derivative orders give the instantaneous rate of change of the
function. On the other hand, in the case of mathematical
models with fractional derivatives, the parameters of dynam-

ical systems represent the memory index of variation of the
function [7].

Thus, the advantage of using the memory index of a
dynamical system with fractional derivative made fractional
derivatives advantageously applied in the fields of chaotic
dynamics, epidemiological modeling, and several other fields.
In particular, one can see these applications in the modeling
of COVID-19 based on real information from Pakistan [8],
designing the SEIR model of COVID-19 [9], the modeling of
the memristor-based hyperchaotic circuit via nonsingular
operator [10, 11], the thermostat model via Bernstein polyno-
mials [12], the modeling of coronavirus by the Caputo opera-
tor [13], the optimal control of nonsingular tumor-immune
surveillance [14], the SEIRAmodel [15], designing a bank data
with fractal-fractional operators [16], the nonlinear modeling
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of the Navier system [17], analyzing an Atangana–Baleanu
SEAIR model [18], compartmental disease modeling [19],
and the references therein.

Lorenz developed the famous three-dimensional mathe-
matical model to study the dynamics and behaviors of the
atmosphere in 1963 [20–22]. Later on, in 1996, Lennart Stenflo
modified the Lorenz system, adding a fourth parameter to con-
sider the evolution of finite-amplitude acoustic-gravity waves in
a rotating atmosphere, and developed a new four-dimensional
Lorenz-Stenflo mathematical model. Since then, many studies
have been conducted on the complex dynamical behaviors of
the system by applying both integer and fractional derivatives.
For further information, see [21] and the references therein.

Some of the studies conducted on the complex dynam-
ics of Lorenz-Stenflo systems are reviewed as follows:
Zhang et al. [22] investigated the qualitative properties of
the higher integer-order Lorenz-Stenflo Chaotic system
which appeared in mathematical physics. The authors proved
that the higher-order Lorenz-Stenflo system is globally stable.
A globally attractive set of Lorenz-Stenflo systems indicating
the evolution of a finite amplitude of acoustic gravity waves
contained in the rotating atmosphere is investigated by Zhang
et al. [20]. Adaptive control synchronization and circuit imple-
mentation of the ordinary Lorenz-Stenflo system with an inte-
ger order was established by Yang andWu [23]. An analysis on
the dynamics of the Lorenz-Stenflo system via fractional oper-

ators along with sets of parameters is done through the spectra
of the Lyapunov exponent type, bifurcation graphs, and 0-1
test.

The complex dynamics of Lorenz-Stenflo dynamical
systems are analyzed with Lyapunov exponents, bifurcation
diagrams, and the 0-1 test by using the Adomian decomposi-
tion numerical scheme and fractional-order representation of
the model in the sense of the Riemann-Liouville integral [24].
A robust chaos suppression control is designed and applied
via sliding mode control to the integer-order Lorenz-Stenflo
system constrained to uncertainties and nonlinearities [25].

There is only limited literature devoted to studying the
complex dynamics of the Lorenz-Stenflo systems by using
integer-order derivatives and fractional-order derivatives.
Moreover, to the best of the authors’ knowledge, no study
is conducted on the qualitative analysis of the Lorenz-
Stenflo mathematical model in the sense of the Caputo frac-
tional derivative and by using a numerical scheme developed
by Garrappa [26], which is the main focus of this study.

Among the several notions of fractional derivatives pre-
sented above, the Caputo fractional derivative gives the oppor-
tunity of including the classical initial conditions in a
mathematical model and the Caputo fractional derivative of
a constant is zero, which is not the case for instance in the
Riemann-Liouville fractional derivative. Moreover, it has a
MATLAB code that can obtain phase portraits and time series

Table 1: LEs for different fractional orders η.

η 0.856 0.857 0.866 0.868 0.888 0.9 0.956 0.98 0.988 0.999 1

LE1 14.1773 14.1214 13.6282 13.5211 12.4969 11.9217 9.5811 8.7302 8.4644 8.1127 8.0815

LE2 1.0824 1.0788 1.0461 1.039 0.9704 0.9313 0.7682 0.707 0.6877 0.662 0.6597

LE3 −5.5673 −5.553 −5.4255 −5.3973 −5.1187 −4.9549 −4.2295 −3.9409 −3.8478 −3.7225 −3.7113
LE4 −9.6713 −9.6712 −9.6592 −9.654 −9.5574 −9.4648 −8.7868 −8.4139 −8.2829 −8.0987 −8.0818
Sum 0.0211 −0.024 −0.4104 −0.4912 −1.2088 −1.5667 −2.667 −2.9176 −2.9786 −3.0465 −3.0519
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Figure 1: Bifurcation diagram of (5) due to orders from 0.93 to 1.
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solutions of chaotic or hyperchaotic systems using a numerical
scheme named the predictor-corrector method reported by
Garrappa and applied in several studies on chaotic systems
[27–29].

The manuscript is organized as follows: Section 2
involves the statement of the problem. In this section, the
fractional representation of the Lorenz-Stenflo system (LS)
is designed via the Caputo derivatives after recalling some
critical preliminary definitions of fractional operators. Sec-
tion 3 is devoted to analyzing the local stability of the men-

tioned LS system. In Section 4, the numerical scheme for the
fractional-order LS system is developed based on a research
reported by Garrappa [26]. The broader part of the manu-
script is devoted to Lyapunov exponents, bifurcation, and
chaos of the LS system in Section 5, followed by sensitivity
analysis to initial conditions in Section 6. In Section 7, the
development of the master and slave system to create a
strong relationship between the systems using a coupling
function is considered. Finally, a conclusion and a reference
list are provided.
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Figure 2: Phase portraits of (5) for η = 0:950 projected on three planes: (a) x-y, (b) y-w, and (c) y-z.
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2. Statement of the Problem

The Lorenz-Stenflo (LS) system of differential equations is
given by [30, 31].

_x = a y − xð Þ + cw,
_y = rx − y − xz,
_z = −kz + xy,
_w = −x − aw:

ð1Þ

The variable x is the intensity of motion of the fluid; y
and z denote the horizontal and vertical direction tempera-
ture variations of the atmosphere. Parameters a, r, and k
are all positive real numbers and are the Prandtl number, c
is the rotation number, r is the Rayleigh number, and k is
a geometric parameter. Parameters a and k depend on the
material and geometrical properties of the layer of the fluid.
Parameter r is proportional to the difference in temperature.

We used fractional operators to find the hidden proper-
ties of the nature of solution of the LS system that are not
observable via integer-order derivatives.

2.1. The Formulation of the LS System via the Caputo
Fractional Derivative. Here, we shortly give several defini-
tions of fractional operators pertinent to our study.

Definition 1 (see [2, 3]). The Riemann-Liouville fractional
integral for a continuous function f : ½0,+∞Þ⟶ℝ is
defined by

RL
0 I

η
t f tð Þ = 1

Γ ηð Þ
ðt
0
t − τð Þη−1 f τð Þdτ, η ∈ 0, 1ð Þ, t > 0: ð2Þ

Definition 2 (see [2, 3]). The Riemann-Liouville fractional
derivative for a continuous function f : ½0,+∞Þ⟶ℝ is
defined by

RL
0 D

η
t f tð Þ = 1

Γ 1 − ηð Þ
d
dt

ðt
0
t − τð Þ−η f τð Þdτ, η ∈ 0, 1ð Þ, t > 0:

ð3Þ

Definition 3 (see [2, 3]). The Caputo fractional derivative for
a continuous function f : ½0,+∞Þ⟶ℝ is defined by

C
0D

η

t f =
1

Γ 1 − ηð Þ
ðt
0
t − τð Þ−η d

dτ
f τð Þdτ, η ∈ 0, 1ð Þ, t > 0:

ð4Þ

This section develops the fractional order representation
of the LS system (1). The Caputo fractional derivative is used
because it can incorporate customary initial conditions in
the model, unlike the Riemann-Liouville fractional deriva-
tive. Furthermore, the Caputo fractional derivative of a con-
stant is zero, which is not the case in the Riemann-Liouville
fractional derivative. Accordingly, the Caputo fractional rep-
resentation of the LS system (1) is given by

C
0D

η
t x = L1 x, y, z,wð Þ,

C
0D

η
t y = L2 x, y, z,wð Þ,

C
0D

η

t z = L3 x, y, z,wð Þ,
C
0D

η

t w = L4 x, y, z,wð Þ,

ð5Þ

where

L1 t, x, y, z,wð Þ = a y − xð Þ + cw,
L2 t, x, y, z,wð Þ = rx − y − xz,
L3 t, x, y, z,wð Þ = −kz + xy,
L4 t, x, y, z,wð Þ = −x − aw,

ð6Þ
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Figure 3: Time series trajectories of the LS system (5) for the fractional order η = 0:950:
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Figure 4: Continued.
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with the initial value conditions xð0Þ = 0:5, yð0Þ = 0:5, zð0Þ
= 5, and wð0Þ = 0:5:

The fractional-order derivative η ∈ ð0, 1� and the param-
eter values are a = 10, r = 30, k = 0:7, and c = 4:

The specific objectives of this study are to analyze the local
stability of system (5), to investigate the chaotic behavior of
system (5) via Lyapunov exponents, and to plot the bifurcation
diagrams, attractors, and time series trajectories of the system
by variation of fractional orders and four parameters of system
(5). In addition, sensitivity to initial conditions and synchroni-
zation of the LS fractional system are considered.

3. Stability Analysis of the LS System (5)

In this section of the manuscript, analysis of the local stability
of the mentioned system (5) is conducted. There are several
methods for performing local stability analysis of systems.

Some of these methods are the Laplace transform techniques
and the Matignon criterion. For the local stability analysis of
the LS system (5), we used the Matignon method, because it
is most commonly used in literature [30, 31]. The Matignon
condition for fractional stability is given by

∣ arg λ Jð Þ∣ > ηπ

2 , ð7Þ

where J is the Jacobian matrix of the system, λðJÞ denotes the
class of all eigenvalues of J, and η ∈ ð0, 1� is the order of the LS
system (5). The LS system (5) is said to be locally asymptoti-
cally stable whenever all the eigenvalues of J satisfy the
Matignon criterion. Firstly, we considered the equilibrium
points of (5), given by E0 = ð0, 0, 0, 0Þ, and constant values
of the parameters given by k = 0:7, r = 30, c = 4, and a = 10.
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Figure 4: Attractors of the hyperchaotic LS system (5) projected on the planes: (a) x-y, (b) x-z, (c) x-w, (d) y-z, and (e) y-w.
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The matrix J at E0 = ð0, 0, 0, 0Þ is given by

J0 =

−a a 0 c

r −1 0 0
0 0 −k 0
−1 0 0 −a

2
666664

3
777775: ð8Þ

The eigenvalues of the matrix J0 are λ1 = 12:3287, λ2 = −
23:2066,λ3 = −10:1221, and λ4 = −0:7000, and the corre-
sponding arguments of the eigenvalues are 0 for λ1 and π for
the remaining eigenvalues. It is easy to conclude that E0 is
locally unstable, because the absolute value of the arguments
does not satisfy the Matignon criteria (7). The presence of an

eigenvalue with a positive real part, λ1 = 12:3287, is necessary
for the SL system to exhibit a double-scroll attractor [31].

The general equilibrium points of the system in terms of
the parameters are given by

∓aθ,∓ a2 + c
a

� �
θ, a

2r − a2 + c
� �
a2

,±θ
� �

, θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k a2r − a2 + cð Þð Þ

a2 a2 + cð Þ

s
:

ð9Þ

Substituting the parameter values k = 0:7, r = 30, c = 4, and
a = 10, the equilibrium points are given by E1 = ð−4:4150,−
4:5916,28:9600,+0:4415Þ and E2 = ð+4:4150,+4:5916,28:9600
,−0:4415Þ.
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Figure 5: Time series trajectories of system (5) for the fractional order η = 0:974:
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Figure 6: Bifurcation diagram for r ∈ ½29:5,30:5� and η = 0:974.
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Figure 7: Attractors of the LS system (5) for r = 29:6 projected on the planes: (a) z-y, (b) y-w, and (c) z-w.
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Figure 8: Attractors of the LS system (5) for r = 30:4 projected on the planes: (a) x-y, (b) x-z, and (c) x-w.
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Figure 9: Bifurcation diagram for c ∈ ½3:5,4:5� and η = 0:974.
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The Jacobian matrix corresponding to the equilibrium
point E1 = ð−4:4150,−4:5916,28:9600,+0:4415Þ is given by

J1 =

−10 10 0 4
1:04 −1 4:415 0

−4:5916 −4:415 −0:7 0
−1 0 0 −10

2
666664

3
777775: ð10Þ

The eigenvalues of J1 are λ1,2 = 0:2026 ± 5:7129i and
λ3,4 = −11:0526 ± 1:3824i: The arguments of the eigenvalues
are ±1:5353 for λ1,2 and ±3:0172 for λ3,4. It can then be
inferred that the Matignon criterion of local stability is satis-
fied for λ3,4, since ∣±3:0172 ∣ >ηπ/2, ∀η ∈ ð0, 1�: On the other
hand, the Matignon criterion is not satisfied for λ1,2 since ∣
±1:5353 ∣ >ηπ/2 only for η < 0:9774: That is, the equilibrium
point E1is unstable for η ≥ 0:9774:

The Jacobian matrix corresponding to the equilibrium
point E2 = ð+4:4150,+4:5916,28:9600,−0:4415Þ is given by

J2 =

−10 10 0 4
1:04 −1 −4:415 0
4:5916 4:415 −0:7 0
−1 0 0 −10

2
666664

3
777775: ð11Þ

The eigenvalues and their corresponding arguments of
Jacobian matrix J2 are identical to those of Jacobian matrix
J1. Hence, the conclusion in relation to the local stability
of equilibrium point E2 is the same as that in equilibrium
point E1.

In summary, the equilibria of the fractional-order system
(5) are unstable for the fractional order of η ∈ ½0:9774,1�,
k = 0:7, r = 30, c = 4, and a = 10:
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Figure 11: Bifurcation diagram of the LS system (5) for parameter k in the interval [0.5, 1].
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4. Numerical Solution

This section presents the numerical method used to obtain the
phase portraits and time series solutions of the fractional-
order LS system (5). To solve fractional-order systems, there
are several numerical and analytical methods such as the
predictor-corrector method, Homotopy method, and Ado-
mian decomposition method. In this study, we use the
predicator-corrector method, because it has a MATLAB code
that can be used to obtain phase portraits and time series solu-
tions of chaotic or hyperchaotic systems.

The numerical method in [26] is applied to our system as
follows: by starting from the first equation of (5) and apply-

ing the Reimann-Liouville fractional integral given by (2),
we obtain the following system

x tð Þ = x 0ð Þ + RL
0 I

η
t L1 t, x, y, z,wð Þ,

y tð Þ = y 0ð Þ + RL
0 I

η
t L2 t, x, y, z,wð Þ,

z tð Þ = z 0ð Þ + RL
0 I

η
t L3 t, x, y, z,wð Þ,

w tð Þ =w 0ð Þ + RL
0 I

η
t L4 t, x, y, z,wð Þ:

ð12Þ

Applying the predictor-corrector method to (12), the
integral terms are approximated and it becomes
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Figure 13: Attractors of the LS system (5) for different values of a in [0.5, 1] projected on: (a) x-y-z space, (b) x-w-z space, (c) z-w plane,
and (d) y-w plane.

x tð Þ = x 0ð Þ + hη κηmL1 0ð Þ + 〠
m−1

j=1
ψ
η
m−jL1 t j, xj, yj, zj,wj

� �
+ ψ

η
0L1 t j, xpm, ypm, zpm,wp

m

� �" #
,

y tð Þ = y 0ð Þ + hη κηmL2 0ð Þ + 〠
m−1

j=1
ψ
η
m−jL2 t j, xj, yj, zj,wj

� �
+ ψ

η
0L2 t j, xpm, ypm, zpm,wp

m

� �" #
,

z tð Þ = z 0ð Þ + hη κηmL3 0ð Þ + 〠
m−1

j=1
ψ
η
n−jL3 t j, xj, yj, zj,wj

� �
+ ψ

η
0L3 t j, xpm, ypm, zpm,wp

m

� �" #
,

w tð Þ =w 0ð Þ + hη κηmL4 0ð Þ + 〠
m−1

j=1
ψ
η
m−jL4 t j, xj, yj, zj,wj

� �
+ ψ

η
0L4 t j, xpm, ypm, zpm,wp

m

� �" #
,

ð13Þ
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Figure 14: The time series solution of LS (5) corresponding to different initial conditions due to different values of x0.
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where L1, L2, L3, and L4 are defined by (5)

Li 0ð Þ = Li x 0ð Þ, y 0ð Þ, z 0ð Þ,w 0ð Þð Þ, i = 1, 2, 3, ð14Þ

and

κηm = m − 1ð Þη −mη m − η − 1ð Þ
Γ 2 + ηð Þ ,

ψη
m = m − 1ð Þη+1 − 2mη+1 +mη m + 1ð Þ

Γ 2 + ηð Þ , m = 1, 2, 3,⋯,

ψη
0 =

1
Γ 2 + ηð Þ :

ð15Þ

Moreover, the predictors are given as follows:

xp tmð Þ = x 0ð Þ + hη 〠
m−1

j=1
ψ
η
m−j−1L1 t j, xj, yj, zj,wj

� �
,

yp tmð Þ = y 0ð Þ + hη 〠
m−1

j=1
ψ
η
m−j−1L2 t j, xj, yj, zj,wj

� �
,

zp tmð Þ = z 0ð Þ + hη 〠
m−1

j=1
ψ
η
m−j−1L3 t j, xj, yj, zj,wj

� �
,

wp tmð Þ =w 0ð Þ + hη 〠
m−1

j=1
ψ
η
m−j−1L4 t j, xj, yj, zj,wj

� �
:

ð16Þ

By Garrappa [26], the discretization method applied in
this study is stable and convergent. Thus, the advantages of
this discretization method are that it is both stable and con-
vergent, and of course, it has a MATLAB code that can be

used for plotting the attractors of the LS system (5). Several
other advantages of the method are described in [27].

As mentioned above, in this research, the predictor-
corrector technique is utilized to obtain the attractors and
time series trajectories of the LS system (5). Moreover, the
Lyapunov exponents are obtained using an algorithm by
Danca et al. [32]. The code is developed to determine all
Lyapunov exponents of a class fractional-order system mod-
eled by the Caputo derivative. The predictor-corrector
Adams-Bashforth-Moulton numerical method is the under-
lying numerical method used in this code.

5. Lyapunov Exponents, Bifurcation Diagrams,
and Hyperchaotic Behavior of the LS System

This section is devoted to investigating the chaotic or hyperch-
aotic nature of the LS system (5). The magnitude of the chaos
is quantified via the Lyapunov exponents (LE). Furthermore,
bifurcation diagrams caused by the variation of the parameters
of (5) are portrayed using the values of the parameters and the
initial value condition presented in (5).

5.1. Lyapunov Exponents for the Fractional Order η. Based
on the Danca algorithm mentioned above, some of the Lya-
punov exponents corresponding to different fractional
orders of the LS system (5) are shown in Table 1. The simu-
lation is made to run for 300 s.

Based on the LE values in Table 1, it is followed that the
dynamical system (5) possibly exhibits hyperchaotic behav-
ior for η ∈ ½0:857,1�, because in each column of Table 1, there
are two positive LEs. The positive Lyapunov exponent
ensures the sensitive dependence on the choice of initial
conditions (local instability of the system in the state space),
which is only one property of a chaotic system. Crudely, for
a given dynamical system to be chaotic, it must have the fol-
lowing properties: sensitivity to initial values, topological
transitivity, and also dense periodic orbits.
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Figure 19: Time series orbits of wðtÞ and wsðtÞ.
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System (5) is dissipative for η ∈ ½0:857,1� as the sum of
the LEs in every column of Table 1 is negative. The dissipa-
tivity of the system ensures the existence of an attractor.
From the experimental result in Table 1, it is observed that
for values of η ∈ ð0,0:857Þ, the system is not dissipative.
For instance, the sum of LEs for the fractional order η =
0:856 is 0.0211. Therefore, to get a dissipative hyperchaotic
system in this study, we considered the fractional order η
∈ ½0:857,1�.

The Kaplan-Yorke dimension denoted by dim ðLEÞ of sys-
tem (5) for η ∈ ½0:857,1� can be calculated. For instance, for the
fractional order η = 0:856, the Kaplan-Yorke dimension is

dim LEð Þ = 3 + 14:1214 + 1:0788 − 5:5530
−9:6712j j = 3:9975: ð17Þ

The Kaplan-Yorke dimension corresponding to η = 0:888
is

dim LEð Þ = 3 + 12:4969 + 0:9704 − 5:1187
−9:5574j j = 3:8735: ð18Þ

The Kaplan-Yorke dimension corresponding to η = 0:988
is

dim LEð Þ = 3 + 8:4644 + 0:6620 − 3:7225
−8:2829j j = 3:6524: ð19Þ

The Kaplan-Yorke dimension corresponding to η = 1 is

dim LEð Þ = 3 + 8:0815 + 0:6597 − 3:7113
−8:0818j j = 3:6224: ð20Þ

From the above dim ðLEÞs, it can be said that the Kaplan-
Yorke dimension is decreased from 3.9975 to 3.6224, as the
fractional order is increased from 0.857 to 1. Note that the
Kaplan-York dimension determines the upper bound of the
Hausdorff dimensions. In this study, the Hausdorff dimen-
sions of the attractors corresponding to different fractional
orders are nonintegers and system (5) has strange attractors
with fractal structures. Moreover, in Table 1 and the Kaplan-
Yorke dimensions calculated above, one can find that the sig-
nificance of the hyperchaotic attractors decreases as the frac-
tional order increases from 0.857 to 1. The loss of
significance is described by decreasing the sum of the positive
LEs in Table 1 and also by decreasing the dimensions as the
fractional order increases from 0.857 to 1. The loss of signifi-
cance is also observable from the bifurcation diagram of the
fractional orders shown in Figure 1 in the next section.

5.2. Bifurcation for the Fractional Order η. The bifurcation
diagram of the fractional order η is obtained by varying its
value in the interval ð0:857,1:00Þ with a time step of h =
0:001. The bifurcation diagram due to the variations of the
order is illustrated in Figure 1. According to this figure, for
values of η ∈ ð0:933,0:953Þ, the given system exhibits oscilla-
tion with stability and the system excites a chaotic behavior
for fractional values η ≥ 0:953.

The simulation results corresponding to different frac-
tional orders are portrayed in Figures 2–4 to verify the con-
clusion made in Figure 1.

It can be seen in Figures 2(a)–2(c) that the system
exhibits oscillation with stability for the fractional order η
= 0:95 ∈ ð0:933,0:953Þ, which is in agreement with the con-
clusion in Figure 1. The time series solution of system (5) is
shown for η = 0:95 in Figure 3, where the solution trajecto-
ries have the property of oscillation and stability as claimed
from the bifurcation diagram shown in Figure 1. Moreover,
Figures 4 and 5 characterize that system (5) exhibits a
hyperchaotic behavior at η = 0:974 confirming what is pre-
dicted by the bifurcation diagram in Figure 1.

5.3. Bifurcation for Parameter r. To get the bifurcation dia-
gram of parameter r of the hyperchaotic system (5), the frac-
tional order used is η = 0:97 and k = 0:7, c = 4, a = 10, and
r ∈ ½29:5,30:5� with a time step of h = 0:001 and the initial
value condition is y0 = ½0:5, 0:5, 5, 0:5�. The simulation is
made to run for 100 s. The bifurcation graph due to the var-
iation of r is illustrated in Figure 6.

It can be inferred in Figure 6 that system (5) exhibits a
hyperchaotic behavior for the parameters considered in the
simulation for r ∈ ½29:5,30:5�. The phase portraits of system
(5) shown in Figures 7 and 8 for r = 29:6 and r = 30:4 verify
the conclusion from the bifurcation diagram of Figure 6.

5.4. Bifurcation for Parameter c. For the bifurcation diagram
of parameter c of the hyperchaotic system (5), the fractional
order used is η = 0:974, k = 0:7, and a = 10 and the bifurca-
tion parameter is made to vary in the interval [3.5, 4.5] with
a time step of h = 0:001, with initial value condition y0 = ½
0:5 ; 0:5 ; 5 ; 0:5�, and the simulation is made to run for
100 s. The bifurcation diagram due to the variation of
parameter c is illustrated in Figure 9.

It is observable in Figure 5 that system (5) shows
hyperchaotic dynamics for parameter c in [3.5, 4.5]. More-
over, the phase portraits of system (5) for c = 3:6 and 4:4
shown in Figure 10 verify the conclusion drawn in Figure 9.

5.5. Bifurcation for Parameter k. To obtain the bifurcation
diagram due to parameter k of the hyperchaotic system
(5), the fractional order used is η = 0:974. The values of the
remaining parameters are k = 0:7 and a = 10, and the bifur-
cation parameter k is made to vary in the interval [0.5, 1]
with a time step of h = 0:001. The initial value condition is
y0 = ½0:5 ; 0:5 ; 5 ; 0:5� and the simulation is made to run for
100 s. The bifurcation graph due to the variation of k is illus-
trated in Figure 11.

It is clear in Figure 11 that system (5) shows hyperchaotic
dynamics for parameter k of the interval [0.5, 1], the given
values of the parameters, and fractional orders. Moreover, the
attractors of system (5) for values of parameter k in [0.5, 1]
are approximately similar to the figures shown in Figure 10.

5.6. Bifurcation for Parameter a. To obtain the bifurcation
diagram due to parameter a of the hyperchaotic system
(5), the fractional derivative, the initial condition, the time,
and the values of the remaining parameters are the same as
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those used in Section 5.5. The bifurcation diagram due to the
variation of parameter a is illustrated in Figure 12.

It is clear in Figure 12 that system (5) shows the hyperch-
aotic dynamics for parameter a in [9.5,10.5], the given param-
eters, and the fractional orders. Moreover, the attractors of
system (5) for different values of a are shown in Figure 13,
verifying the hyperchaotic nature of system (5).

6. Sensitivity to Initial Conditions

This section examines the effect of different initial values on
the dynamics of the hyperchaotic system (5). Since sensitiv-
ity to initial conditions is one of the important properties of
chaotic or hyperchaotic systems, it is necessary to examine
this property for the LS system (5) using different initial con-
ditions. In this study, to examine sensitivity to initial condi-
tions, we used the parameter values indicated in (5) and
η = 0:974. The initial condition considered is ðx0, 0:5,5, 0:5Þ
. The different values of x0 are shown in Figure 14.

It can be observed in Figure 14 that all the trajectories
coincided for about the first 5.1 seconds and they were
divided into two for about 10.1 seconds. At about 15.1 sec-
onds, they divided into three, diverging from each other.
The values of x0 of two trajectories that overlapped for the
first 15.1 seconds are closer to each other than the value of
x0 of the third trajectory.

7. Synchronization of the Lorenz-
Stenflo System

In this part of the study, we developed amaster-slave system of
the dynamic system (5). Firstly, two identical copies of system
(5) are associated via a coupling function. Then, we performed
a simulation of the coupled systems using different initial con-
ditions. Finally, the error dynamics showed asymptotic stabil-
ity and the phase portraits of the master and slave system
showed a strong correlation.

Let the master hyperchaotic model be given by

C
0D

q
t x tð Þ = a y − xð Þ + cw,

C
0D

q
t y tð Þ = rx − y − xz,

C
0D

q
t z tð Þ = −kz + xy,

C
0D

q
t w tð Þ = −x − aw,

ð21Þ

and the slave system be given by

C
0D

q
t xs tð Þ = a ys − xsð Þ + cws,

C
0D

q
t ys tð Þ = rxs − ys − xszs,

C
0D

q
t zs tð Þ = −kzs + xsys,

C
0D

q
t ws tð Þ = −xs − aws,

8>>>>>><
>>>>>>:

+ H −
∂F
∂X

� �
Xs − Xð Þ,

ð22Þ

where the coupling function is ðH − ð∂F/∂XÞÞðXs − XÞ,
∂F/∂X is the Jacobian matrix of the system, H is a Hermitian

matrix of appropriate size, X = ðx, y, z,wÞ, and Xs = ðxs, ys,
zs,wsÞ. Moreover, the coupling function is given by

H −
∂F
∂X

� �
Xs − Xð Þ =

0 0 0 −5:5
z − 32 −2 x 0
−y −x −2:6 0
−0:5 0 0 7

2
666664

3
777775

xs − x

ys − y

zs − z

ws −w

2
666664

3
777775,

ð23Þ

where a Hermitian matrix H is chosen to be

H =

−10 10 0 −1:5
−2 −3 0 0
0 0 −3:3 0

−1:5 0 0 −3

2
666664

3
777775: ð24Þ

It can be shown that all the real parts of the eigenvalues
of H are negative. Thus, the Matignon criterion is satisfied;
H is a Hermitian matrix.

Now, considering the coupling function (23), the slave
system becomes

C
0D

q
t xs tð Þ = a ys − xsð Þ + cws − 5:5 ws −wð Þ,

C
0D

q
t ys tð Þ = rxs − ys − xszs + −32 + zð Þ xs − xð Þ − 2 ys − yð Þ + x zs − zð Þ,
C
0D

q
t zs tð Þ = −kzs + xsys − y xs − xð Þ − x ys − yð Þ − 2:6 zs − zð Þ,

C
0D

q
t ws tð Þ = −xs − aws − 0:5 xs − xð Þ + 7 ws −wð Þ:

ð25Þ

Defining the error as

e1 = xs − x,
e2 = ys − y,
e3 = zs − z,
e4 =ws −w,

ð26Þ

the error dynamics is shown in

C
0D

q
t e1

C
0D

q
t e2

C
0D

q
t e3

C
0D

q
t e4

0
BBBBBB@

1
CCCCCCA

=He =

−10 10 0 −1:5
−2 −3 0 0
0 0 −3:3 0

−1:5 0 0 −3

0
BBBBB@

1
CCCCCA

e1

e2

e3

e4

0
BBBBB@

1
CCCCCA:

ð27Þ

To verify if the master and slave systems in equations
(21) and (25) are correlated, the time series trajectories of
the two systems, including the graphs of the dynamics of
the error, are illustrated in Figures 15–19. The values of
the parameters used are k = 0:7, r = 30, c = 4, and a = 10
together with the fractional order η = 0:978: Moreover, the
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initial value conditions used for the master and the slave sys-
tem are y0m = ½0:5,0:5,5, 0:5� and y0s = ½5, 5, 5, 5�, respectively.

It can be observed in Figure 15 that there is a robust
correlation between the master and slave systems because
the error graphs converge to zero approximately in the first
2.5 seconds, as shown in Figure 15.

8. Conclusion

This research study implemented a qualitative analysis on
the four-dimensional Lorenz-Stenflo mathematical model
in the sense of the Caputo operator. The Matignon local sta-
bility criterion showed that the equilibrium points of the LS
system are locally unstable, implying that the LS system led
to hyperchaotic dynamical behavior. The scheme developed
by Garrappa approximated the numerical solution, and the
corresponding MATLAB code was used to obtain all the fig-
ures in the study. The authors believe that the qualitative
analysis made in this manuscript, the displayed figures,
and the synchronization systems developed have revealed
complex dynamical behaviors of the Lorenz-Stenflo system
that are not obtained earlier by other studies on the system.
It is also worth mentioning that this study have been done
by including other concepts of fractional derivatives and
comparing the results to the results obtained due to the
Caputo fractional derivative, to be treated in the future by
the authors or interested researchers in the area.
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