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Let (X,d, u) be a metric measure space endowed with a metric d and a non-negative Borel doubling measure p. Let L be a non-
negative self-adjoint operator on L? (X). Assume that the (heat) kernel associated to the semigroup e~ satisfies a Gaussian upper
bound. In this paper, we prove that the Musielak-Orlicz-Hardy space H,,; (X) associated with L in terms of the Lusin-area
function and the Musielak-Orlicz-Hardy space H  , (X) associated with L in terms of the Littlewood-Paley function coincide
and their norms are equivalent. To do this, we first establish the discrete characterization of these two spaces. It improves the

known results in the literature.

1. Introduction

The metric measure space (X, d, u) is a set X equipped with a
metric d and a non-negative Borel doubling measure y on X.
Let f € L?(X) and L be a densely defined operator on L? (X)
which satisfies the following two conditions:

(i) (H1) L is a non-negative self-adjoint operator on
L2 (X).

(ii) (H2) The kernel of e~*f, denoted by p, (x, y), is a
measurable function on X x X satisfying the
Gaussian estimates, i.e., there exist C;,C, >0 such
that

Ci  (derric
IpiGe Pl e T, (1)

holds for all ¢t>0 and
V(x,Vt ) = u(B(x,Vt)).

The Littlewood-Paley function G (f) and Lusin-area
function S; (f) associated with the heat semigroup gener-
ated by L are given by

x,y€X, where

117, 0

L<f)<x>:<j:°| Le " f (x) 2‘”) ,
L(f)<x>:<j:° Lw JPre >|

In this paper, we focus on the characterization of the
Musielak-Orlicz-Hardy spaces H,,; and H, ¢ ,, where the
operator L satisfies (H1) and (H2) and ¢ is a growth function
(cf. Definition 6 below).

(2)
d/,t(y FANE
(x,1)) t

Definition 1. Suppose that the operator L satisfies (H1) and
(H2) and ¢ is a growth function. A function f € H?(X) is
said to be in Hy; (X) if Sy (f) € L?(X) (cf. Definition 7
below). Moreover, we define

=[S: (Hlls

- inf{x\ € (0, 00): qu)(x,w)dy(x) < 1}.

(3)
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The Musielak-Orlicz-Hardy space H,,; (X) is defined to
be the complement space of H,,; (X).

Definition 2. Suppose that the operator L satisfies (H1) and
(H2) and ¢ is a growth function. A function f € H?(X) is
said to be in I?IL’G,(/, (X) if G, (f) € L?(X). Moreover, we
define

170G, o =1GL (Dl

X

_ inf{)t € (0, 00): J (p(x,%)dy(x)sl}.

(4)

The Musielak-Orlicz-Hardy space H; i, (X) is defined
to be the complement space of H; ¢, (X).

Recently, the study of Hardy spaces associated with
operators has been attracting great interest. It was initiated
by Auscher et al. who studied the Hardy space H} (R") with
operators L in [1], where the heat kernel of L satisfies the
pointwise Poisson upper bounded condition. Later on,
Duong and Yan [2, 3] presented the adapted BMO theory on
condition that the heat kernel of L satisfies the pointwise
Gaussian estimate. In [4], Yan established the theory of
Hardy space HY (R") for 0< p<1 associated with the op-
erator L satisfying Davies—Gaflney estimates.

It is a natural question to ask the behavior of weighted
Hardy space HY , (R") associated with an operator L and an
appropriate weight w. A pioneering investigation work of the
weighted Hardy space Hj ,(R") associated with the
Schrodinger operator L was the paper by Song and Yan [5].
In 2016, Duong et al. [6] considered the weighted Hardy
spaces H f,s,w (R")and H f’G,w (R™) on homogeneous space X
for 0 < p <1 and obtained the equivalence of these two kinds
by adding Moser-type conditions, where the operator L has
the kernel satisfying Gaussian upper bound. Shortly after
that, the equivalence of these two kinds spaces was char-
acterized by Hu [7] without assuming the Moser-type
boundedness condition.

In 2014, Ky [8] introduced the Musielak-Orlicz-Hardy
space H,(R") by using growth function ¢. Naturally, the
Musielak-Orlicz-Hardy space H,; which is defined by
means of the Lusin-area function associated with an oper-
ator L was introduced and studied in [9], where L satisfies
Davies—-Gaftney estimates. Unfortunately, the characteriza-
tion of H,; required an extra assumption that ¢ satisfies the
uniformly reverse Holder condition (cf. [9]).

Motivated by the above, we are concerned with the
Musielak-Orlicz spaces H o (X) and H LG (X) which we
define by means of the Lusin-area function and the Lit-
tlewood-Paley function on homogeneous space X. Our aim
in the present paper is to prove that the two kinds of
Musielak-Orlicz spaces are equivalent. Our main result is
stated as follows.

Theorem 1. Suppose that the operator L satisfies (H1) and
(H2) and ¢ is a growth function of uniformly lower type p,.
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Then, the spaces Hy,, (X) and Hig, (X) coincide and their
norms are equivalent.

Theorem 1 obtains the behavior of Littlewood-Paley
g-function G; on H,,; and partly improves the result in [9].
To make it clear, we first establish the discrete character-
ization of the Musielak-Orlicz spaces H,;(X) and
Hige (X) and state these results as follows.

Theorem 2. Suppose that the operator L satisfies (H1) and
(H2) and ¢ is a growth function of uniformly lower type p,.
Let feH, (X)NL*(X). Then, for all M eN with
M > (ng(@)/2p,), f has an AT g \-expansion such that

1M1, 00 = W sl o ey (5)

Theorem 3. Suppose that the operator L satisfies (H1) and
(H2) and ¢ is a growth function of uniformly lower type p.
Let feHpg,(X)NL*(X). Then, for all M eN with
M > (ng(@)/2p,), f has an AT g \-expansion such that

1, 00 = W5

(6)

Lo (X)

Theorems 2 and 3 extend the results in [6, 7], respec-
tively. Also, we extend the results in [9] by removing the
assumption of uniformly reverse Holder condition. As a
consequence of Theorems 2 and 3, we immediately get
Theorem 1.

The paper is organized as follows. Section 2 contains
some basic definitions and lemmas concerning metric
measure spaces, growth functions, Musielak-Orlicz space,
and AT ;,-family. The aim of Section 3 is to prove Theorem
2 and establish the characterization of Musie-
lak-Orlicz-Hardy space H,, ;. We develop a method to unify
the different control terms of inner integral. The aim of
Section 4 is to prove Theorem 3 and set up the character-
ization of Musielak-Orlicz-Hardy space H; ;; ,. We borrow
the ideas from [6,10]. Consequently, we get that the char-
acterization of Musielak-Orlicz-Hardy space by means of
H,; and H; g, is equivalent.

Most of the notations we use are standard. C denotes a
positive constant that may change from line to line and we
use the subscript for the sake of eliminating confusion. We
write A = B if there exist constants C; and C, which are
independent of A and B such that C;B<A<C,B. For a
measurable set A, |A| denotes the Lebesgue measure of A
and y, is the characteristic function.

2. Basic Concepts and Lemmas

2.1. Metric Measure Spaces. A metric measure space (X, d, y)
is a set X equipped with a metric d and a non-negative Borel
doubling measure 4 on X. Fix x € X and letr € (0, 00), and
we denote the open ball centered at x with radius r by

B(x,r)={y e X: d(x,y)<r}, (7)

and set V (x,r) = u(B(x,1)).
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Definition 3. A space of homogeneous type (X, d, y) is a set
X with a metric d and a non-negative measure y on X, so
that there exists a constant C, € [1,00) such that for all
x € Xand r>0,

V (x,2r)<CpV (x,1) < 00. (8)

Definition 3 was introduced by Coifman and Weiss [11].
The property of p in (8) is the doubling condition and it
implies the strong n homogeneity property, i.e., for some
constant C >0 and homogeneity #,

V (x,A\r) <CA'V (x, 1) (9)

holds uniformly for all A € [1,00), x € X, and r>0.
Let Cp be asin (8) and set m = log,Cp,, and Grigor'yan
et al. have shown that (see [12])

V(x,R)scD[W] V(1) (10)

holds forall x, y € X and 0 < r < R < 00. It is easy to verify, by
doubling condition (8), that for any N >n, there exists a
constant Cy such that for all x € X and £ >0,

jX(1 ) Ve =CVinn. (D

The dyadic cube decomposition on spaces of homoge-
neous type comes from Christ [13] as follows:

Lemma 1. Let (X,d,yu) be a space of homogeneous type.
Then, there exists a collection of open subsets
[QcX: keZael} and constants §e (0,1) and
0<C;,C, <00 such that

(i) u(X~U,QK) =0, Vk; for each fixed k, if a # p, then

QAnQs=2.
(ii) For any o, Bk, 1, if k<, then either Qﬁ C Qk or
QﬁﬁQ =@.

(iii) For each (k, &) and each | < k, there is a unique 5 € I
such that Q’; C Q%.

(iv) Diameter (Qk)<C ok

(v) Each Qk contains some ball B(z C28) where
ZeX.

A, (e) =

te (0,00) BcX

< 00,

when g € (1,00) and (1/q) + (1/q') = 1, or

, (a/q)
sup sup{ (B)J o (x, t)dy(x)}{%JB[(P(%t)] (_q/q)dﬂ(x)}

The sets QF are analogues of the Euclidean dyadic cubes;
it may help to think of Qk as being essentially a cube of ball of
diameter roughly & with center zX. We then set
Q5 =c &% It is worthy pointing out that the precise value
of C, is non-essential (cf. Christ [13]). Here and in what
follows, we assume C, = 8" .

2.2. Growth Functions. We first recall the Orlicz function. A
non-decreasing function ®: [0,00) — [0, 00) is called an
Orlicz function if ® (0) =0, ® (¢) >0 for all ¢t € (0, 00) and
lim,_,  ®(t) = co (cf. Yang [9]).

The function ® is said to be of upper type p (resp., lower
type p) for some p € [0,00), if for all ¢ € [1,00) (resp.,
t € [0,1]) and s € [0, 00), there is a constant C > 0 such that
D (st) <CtPD(s). d is said to be of type (p;, p,) if it is of
both upper type p, and lower type p,.

Given a function ¢: X x [0,00) — [0,00), for any
x € X, ¢(x,-) is an Orlicz function. If there exists a constant
C >0 such that for all x € X, t € [1,00) (resp., t € [0, 1]))
and s € [0, 00),

¢ (x,st) <CtPo(x,s), (12)

then ¢ is said to be of uniformly upper type p (resp.,
uniformly lower type p). Moreover, ¢ is said to be of positive
uniformly upper type (resp., uniformly lower type) if it is of
uniformly upper type (resp., uniformly lower type) p for
some p € (0, 00).

Let ¢: X x [0,00) — [0,00). If for all t € [0,00),
x—@ (x,t) is measurable and for all bounded subsets K of X,

j sup {go(x,t)UKq)(y,t)dy(y)]_l]»d,u(x)<oo. (13)

te (0,
X (0,00)

Then, ¢ (-, t) is said to be uniformly locally integrable (cf.
(8]).

We next recall the uniformly Muckenhoupt condition in
[9, 14].

Definition 4. Let ¢: X x [0,00) — [0,00) be uniformly
locally integrable. The function ¢ (-,¢) is said to satisfy the
uniformly Muckenhoupt condition for some g € [1,00),
denoted by ¢ € A (X), if

B) (14)



A, (¢) = sup sup

te (0,00) BcX

Here the first supremum is taken over all t € (0, co) and
the second one is taken over all balls B ¢ X.

We define A, (X) = U gej1,00)A4 (X) and let
q(p) =infl{g € [LLoo): ¢eA, (X))} (16)

be the critical indices of ¢. Moreover, we denote
o(E.0) = | p(x.)dux) (17)

for any measurable subset E of X and ¢ € [0, co0). Let ./ be
the Hardy-Littlewood maximal function on X, namely, for
all x € X,

/%(f)(x)—zgf (B

where the supremum is taken over all balls B containing x.
The following lemma on the properties of A, (X) is Lemma
2.8 in [9].

j I D)ldu(y), (18)

Lemma 2

(i) A (X) ¢ AP(X) C Aq(X)for I1<p<g<oo.
(ii) If p € AP(X) with p € (1, 00), then there exist some
q € (1, p) such that ¢ € A, (X).

(iii) If ¢ € A, (X) with p € (1,00), then there exists a
constant C >0 such that for all measurable functions
fon X andt € [0,00),

jx L2 (F) ()1 (x, 1) () sch|f(x)|Pgo(x, £)du (x).
(19)

(iv) If ¢ € A, (X) with p € (1,00), then there exists a
constant C>0 such that for all balls Bc X and
measurable set E C B and t € [0, 00),

¢(B,t)<c|:@ p

20
o (B0 | uE) (20)

We now introduce the notion of growth functions (cf.
(8, 9]).

Definition 5. Let ¢: X x [0,00) —
a Musielak-Orlicz function, if

[0, c0). Then, ¢ (x,t) is
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(B)j go(x,t)d.u(x)(esss;p [(p(y,t)]1><oo. (15)
ye

(i) ¢(x,-): [0,00) — [0, 00) is an Orlicz function for
all x € X.

(ii) ¢ (-, t) is a measurable function for all ¢ € [0, 00).

Definition 6. Let ¢: X x [0,00) — [0, 00). Then, ¢ is called
a growth function, if the following hold.
(i) ¢ is a Musielak-Orlicz function.
(ii) ¢ € Ay, (X).
(iii) ¢ is of positive uniformly upper type p, for some
Py € (0,1] and of uniformly lower type p, for some
p, € (0,1].

Lemma 3. Let ¢ be a growth function and set ¢(x,t) =
fo (¢(x,s)/s)ds for all (x,t) € X x [0,00). Then, § is a
growth function, which is equivalent to ¢, and §(x,-) is
continuous and strictly increasing.

2.3. Musielak-Orlicz Spaces. In this section, we study the
Musielak-Orlicz spaces associated with the growth function

.

Definition 7. The Musielak-Orlicz space L? (X) denotes the
set of all measurable function f on X with
IX(p(x, | f (x)])dp (x) < 0o and the Luxembourg norm

||f||L¢(X)=inf{)te (0,00): JX ( lf (> )I)d <1} (21)

The space L? (£F, X) is defined to be the set of all {fj}
satisfying [Y |f]|p]1/P € L?(X) and let

b |[2000]

We have the following Fefferman-Stein vector-valued
inequality of Musielak-Orlicz type (cf. [15]).

jeZ

22
JLe (£2,x) (22)

Le (X)

Lemma 4. Let p € (1,00], ¢ be a Musielak-Orlicz function
with uniformly lower type p, and upper type p,, q € (1,00),
and ¢ € A (X). If q(¢) < p; < p, <00, then there exists a
constant C >0 such that, for all {Z € LY (¢P, X),

1/p 1/p
JX¢<x, [Z a(f)) (x)P] >dy(x) scj <p<x, [Z iz (x)|P:| >d;4(x). (23)
j X i
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Corollary 1. Let p,¢ be as in Lemma 4. Then, for all
r € (0, (p,/q(¢9))) and {fj}AGZ € L? (¢P, X), there exists a
constant C >0 such that g

(1/rp) (1/rp)
qu)(x, [Z M(f) (x)P] >dy(x) SCJX<p<x, [Z £ } >dy(x). (24)
i j

J

Proof. Fix r € (0, (p,/q(¢))) and let & (x,t) = ¢ (x,t'/").
We claim that § is of uniformly lower type p,/r and upper
type p,/r. In fact, there exist constants C;, C, >0 such that

¢(x, St) — gD(x,Sl/rtl/r) Scltpl/r(/)(x, Sl/?‘) — Cltpl/r(—p (x) S),

@ (x,st) = go(x, sllrt”r) < Cztpz/rgo(x, sm) = CytP" G (x, s),
(25)

X

1p
SCJX¢<x, {Z 'fj (x)|P] >dy(x) =
j

It finishes the proof of Corollary 1. O

2.4. ATy \-Family and Decomposition Theorem. In this
section, we assume that the space X satisfies the strong
homogeneity property (9) with homogeneous dimension #.
In view of Lemma 1, the space X possesses a dyadic de-
composition analogous to the Euclidean dyadic cubes, i.e.,

there exists a  collection of open  subsets
{Qf ¢ X: k€ Z,a € I} such that for every k € Z,
k
X=U Q,, (28)

ael;

where I, is some index set and Q has the properties as in
Lemma 1. Such open subsets {Qf ¢ X: k € Z,a € I;} are
said to be a family of dyadic cubes of X (cf. [6]).

Definition 8. Suppose that the operator L satisfies (H1) and
(H2) and M € N. Then, a collection of functions {aQ} Q: Dyadic
in L*(X) is said to be an ATy ,,-family associated with an
operator L, if for every dyadic Q, there exists a function
D (L*M) such that

(i) aq = LM (by) (x).
(i) supp (L* (by)) € 3Q, k=0,1,...,2M.

(i) 1(£(QL) (by) (0| <(Q™MV(Q~"?, k=0,1,
.., 2M.

forallt € [1,00),x € X and s € [0, 00). Meanwhile, one has

S P P
q(9) < <<, (26)

since q(¢) = q(9). Therefore, Lemma 4 yields

J <P<x, [; M(f5) (x)"}l/rp>du(x) = Lﬁ(x, [; M(f;) (x)p:|1/P>dy(x)
CJXso(x, [; 17, (x)FTrP)du ()

(27)

Here, & (T) denotes the domain of an unbounded op-
erator Tand T, which is the k-fold composition of T with
itself, in the sense of unbounded operators.

For a function f in L?(X), if there exists sequence
,0<sp<co, and an ATy ) -family
L?(X) such that

f= Y sqao (29)

Q:dyadic

‘{g: = SQ}Q: dyadic

aq Q: dyadic n

we say that f has an ATy ,,-expansion. Then, we denote the
function related to the sequence s = {SQ} by W ¥ (x)

Q:dyadic
and

(1/2)
Wf<x>=< > [V<Q>‘<””ISQIXQ<x>12> B
Q:dyadic

With the notation above, we have the following char-
acterization of L2 (X).

Proposition 1. Suppose that the operator L satisfies (HI)
and (H2). Let f € L*(X). Then, for M €N, f has an
ATy \r-expansion

f= Z SQ 4 (31)

Q:dyadic

Moreover, let Qf; and 6 be as in Lemma 1. Then,



k

s , 2
s ~([ J e rofwmd).

Proof. 'The proof of Proposition 1 can be found in [6,
Theorem 3.2]. O

3. The Proof of Theorem 2

In this section, we establish a characterization of the
Musielak-Orlicz-Hardy space H,,;, where the operator L
satisfies (H1) and (H2) and ¢ is a growth function.

For every v € (0,00) and x € X, let
T, (x) ={(y,t) € X x (0,00): d(x,y)<vt} be the cone of
aperture vand vertex x € X. For any closed subset F of X, we
denote the union of all cones with vertices in F by

R, (F) = erp T, (x). (33)

When v = 1, T (x) and £ (F) stand for T; (x) and %, (x),
respectively. Given an open subset O of X, we establish
Lemma 5 of % (OC) on the geometric properties. We also
remark that Aguilera and Segovia [16] obtained the same
result in the case of Euclidean space.

Lemma 5. Suppose that (X,d, u) is a space of homogeneous
type and there exists a constant Cp, > 1 such that (8) holds. Let
O be an open subset of X and F = OC. For v > 1, we denote O*

by

0" ={x € X: sl (o) (x) > (4v)" 2 80}, (34)
and write F* = (0*)'. Then,
(i) R,(F*) c R (F).
(ii) There exists a constant C, such that
V(z,t)<C,u(B(z,t)NF) (35)

hods for (z,t) € R, (F*).

Proof. It suffices to show that the lemma holds when
R, (F*) + O since it is trivial if #, (F*) = &. We first prove
(i) on the condition that &, (F*) # &, which implies O # X.

Let (z,t) € R,(F*). We thus have z € For z € O. It is
easy to see that (z,t) € & (F) since d(z,z) = 0 <t in the case
z € F and then &, (F*) ¢ % (F) holds. The proof of (i) is
reduced to the verification in the case z € O.

Suppose z € O and let § = dist(z, F). Then, 0<§ <00
and B(z, §) ¢ O since F is closed and non-empty. For every
(z,t) € R, (F*),wehave y € F* such thatd (z, y) < vt. Thus,
writing r = § + d (z, ), we get B(z,6) ¢ B(y,r) and

B(z,8) ¢ B(z,6)nO c B(y,r)NO. (36)
Hence,
V(z,8) <u(B(y,r)N0O) < (4v) 28y (3,7). (37)

By using (10) twice, we have

Journal of Function Spaces

V(31 <Cp(rd )0V (5,0)
< CZD(r(S* ! )10g2cD (1 +0'd(y, z))lOgZCDV (z,6)
= (2r87 1) B0V (2,0),
(38)

and then

L_8+d(z,y)<6+vt
v 2v 2v

o<

(39)

It follows that § < t since v > 1. Recalling the definition of
0, we get x € F such that d(x,z)<t, which implies
(z,t) € R (F). It completes the proof of (i).

Next, we prove (ii). Given (z,t) € #,(F*),weget y € F*
such that d(z, y) <vt. Thus, B(z,t) ¢ B(y, (1 + v)t) and

p(B(z,t)NO) <u(B(y, (1 +v)t)nO)

(40)
< (4v) 2SOV (5, (1 +w)).
Therefore,
u(B(z,t)N0) < (4v) 2 &C v (y,1)
<Ch (4v) 298D (1 4 y)lo8Co
. (41)
(1+1d(1,2) "V (z,1)
2 log,Cp,
<<1+V> Vizt).
2v
We obtain
2 log,Cp
[1—(1;) ]V(z,t)<y(B(z,t)ﬂF), (42)

since V(z,t) = u(B(z,t)NO) + u(B(z,t)NF), and com-
plete the proof of (ii). It finishes the proof of Lemma 5. [

For all v € (0,00), f € L*(X) and x € X, the variant
Lusin-area function associated with L is given by

_ 0 Zd‘bl(y) g 1/2
sL,v(f>(x)-(j0 jd(x’w s t) .
(43)

£Le”™ () ()]

Lemmas 6 and 7 extend the results in [14, 16] for the
operator Sy .

Lemma 6. Suppose that the operator L satisfies (HI) and
(H2). Let ¢ € AP(X)for 1< p<ooandO,0% F,F* be as in
Lemma 5. Then, there exists a finite constant C, which is
independent of O, such that for all A € (0,00) and f € L*(X),

[ Is.n@Feenau<c| [s. () Fe e 0du,
(44)

where S| is the short hand of S .



Journal of Function Spaces

Proof. Given x € F* and (y,t) € I, (x), we observe that
d(x, y) <vt and hence by (10),

longDV (y’ t)— 1

<Cp(1+2)°8 PV (5,07,

Vi(x, )" SCD(I +t'd(x, y)) (45)

[ 150, (N GPo e
:

<Cp(1 +v)1°ngDJF*(Jr (x)' —tL(f)( )| 2du(y)

|t2Left y)|

= CV,DJ‘
R, (F*)

Then, applying Lemma 2 to the sets B(y,t) and B(y, vt),
B(y,t)NF and B(y,t), respectively, we get

@(B(y,vt),1) <C(2v)*& o (B(y,1), 1), (47)
vipt) )
(P(B (y, t)) A) < C(m) (p(B()/, t) NF, /1)
(48)
Therefore, (47), (48), and Lemma 5 yield
¢(B(y,vt),A)<Co(B(y,t)NF,A). (49)
Thus, [ ,.IS, (f) ()29 (x,2)du (x) is bounded by
2, -£L 2 -1 du(y)dt
cj e AV (0ht) (B F L L,
R, (F*) t
(50)

Finally, in view of &, (F*) ¢ #(F) (see Lemma 5), it
follows immediately that (50) is bounded by

t du(y)d
J |f’Le” L(f)(y)| V(y,0) ' (B(y,0)NF, 1) ——— ”(y) d

R (F)

~¢| (j L (N () d“(y)dt)so( Ndu(x)
F\JT,(x)

<C| [N G o e (),
(51)
where we use the fact that
V(D) <Cp(1+£71d(x, ) 0V (6,0 <V (x,8)
(52)

It follows that

t)t><p(x,)t)d‘u(x) (46)

'o(B(y,vt)NF* A)d‘u(;‘v)dt.

for (y,t) € T,(x) in the last line. It finishes the proof of
Lemma 6. O

Lemma 7. Suppose that the operator L satisfies (HI) and
(H2). Let ¢ be a growth function and ¢ € A, (X) for
1 <g<o00. Then, there exists a constant C, >0 such that

[ o(es (D@ <, [ o5 @M
(53)

holds for all v € (0,00) and all measurable functions f.
Proof. It suffices to show that Lemma 7 holds in the case

v € (1, 00) since the conclusion is trivial if v € (0, 1]. Given
A € (0,00), we introduce the notations

O, ={x € X: S, () (x)>A},
* - log,C (54)
O; ={x € X: M(xo,) (x) > (4v)” 8P},
where / is the Hardy-Littlewood maximal function.
Noting that ¢ € A, (X), Lemma 2 yields
9(05,1) = p({x € X: .t (x5,) (x) > (4v)” 801 2)
< Jx (4v)7108Cp (ﬂ(XoA) (x))q(p (x,A)du(x) (55)
< C(p (O)L, )L)

Writing F, = OE, Fy = (O3 )t and applying Lemma 6, we
obtain

| s n@Feebiues | 1505 Fe0du

(56)
Thus, by using (55) and (56), we have



o({x € X: 8, (/) (x)>A}A)

<9(0},1) + o({x € Fy: S, () (x) >}, 1)

<Cp(01 1)+ 55 [ 181, () 9 (e N (v

<clpu) ¢ [, 5D p i |

SC|:§D(OA,)L) +A_12 .[0 to({x € X: S, (f)(x) >t},)t)dt].

(57)

1

[o(xs. (D)t <c |

0

Journal of Function Spaces

Therefore, we employ (57) together with the assumption
v € (1,00), Lemma 3, and the uniformly upper type 1 of ¢ to
get

X"’({x € X: S, (f)(x)>A},1)dA

X
<C J:O%q)(opncu iC j:% J;tgo({x € X: 8, (f)(x) > 1}, 1)dedA
SCJ?%(p({x € X: S, (f)(x) > AL A)dA
+C JZOA% I; to({x € X: 8, (f)(x) > t}, A)dtdA (58)
<C| o8N G)du(x)
e Jzo(p({x € X: S, (f)(x) > 1ht) Jjo%dt
<c| 908, (NG
It finishes the proof of Lemma 7. O Proof of Theorem 2. Fix f € H,,, (X)I>(X), and we let

Lemma 8 says that the sequence {SQ;;}“E] can be
majorized by the Hardy-Littlewood maximal operator . on

(X,d,u) (ct. [17], pp.147, where we take r = 1).

Lemma 8. Suppose 0<gq<1 and N > (n/q). Fix k € Z and
let {sQﬁ}ad be as in Proposition 1. Then, for any subsequence
I} C I and for every x € X,

1/q
|5Qk q
— <C|\4u Sor| X ,
o;,’c[l + E(Q];) 1d(x, yl;)] l <a§1;‘ Qﬁ| % )l

(59)

where y is the center of Q% and C depends only on n and
N - (n/q).

Ay = ||f||H<p.L(X) and A, = W £lle (x)- It suffices to show that
for all A € (0,00), we have

ngo(x’ 5. ];)(X)) wio=| g <x, \wa (x>|> )

(60)

In fact, since (60) holds for all A € (0, 00), there exists a
constant C,, such that

w
[ (=22 auc2,f o 5N auco<c,
X /\1 X Al

(61)
Using (12) and (61), we have
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G, (f)(x) We now turn to prove (60). Given (x,k) € X x Z, by
J < ’m>d.“ (%) <1, (62) Lemma 1, there exists a unique « € I such that x € Q%. We
S denote such Q’; by Q’; and write
for some constant C;, which implies A, < C;A,. Analogously,
there exists a constant C, such that A, < C,A, and we get the
desired result.

5 (1/2)
Wy(x) = { () sexfer 0] }
keZacl,

(1/2)
2 } (63)

| 2 @) ke
keZ
5 ~ , (1/2)
gl potut]”
keZ x

k m
where constants § € (0, 1) satisfy Lemma 1 and the last line ﬂ(QE) : < V(Zi, C15k) ' < C(l + d(xi,zkx)> V(x, Clék) !
is obtained by using Proposition 1. 9
Moreover, for any fixed (x,k) € X x Z, Lemma 1 also -1 -1 .
tells us that there are z¥ € QF and constants C, € (0,1),C, = £ CV(x, C,6 ) < CV(x, 9 ) <CV(x,t)
0! such that (65)

B(zi,Cl(Sk) C Qi c B(x, Cz‘Sk) c B(x, C26_1t), (64)  where we use (10) and the fact that

. V (x,85) <CpCy™V (x,C,6%) with C, € (0,1). Hence, (63)
for all t € (6%, 8%). Consequently, and (65) yielDd 1 1 1

* 1/2
Z ij Vixt) ! JB (x,cza-‘t)’tZLe_tZLf (y)|2dy (y) % }

[e3)
-<{l, |
0 d(x,y)<8’2t

= CSp 52 () ().

du(y) dt}”z (66)

_f2 2
t’Le "t f ()’)| VoD

Thus, by using Lemma 7, we deduce that It remains to establish the reverse inequality of (67). Let §

be as in Lemma 1. In view of Proposition 1, we write
j NLACRICO) P >c| o x W g _
Xgo > 1 U = X(P > 1 U . f = Z Z SQI;(IQI;, (68)

keZ acl;,

67
(67) and get
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S () (x)
172
0 2, —fL 2du(y) dt
(Jo Jd(x,y)<t ¢ f(y)i Vix,t) t
2 1/2
_p du(y) dt
2L py
Le sqedgr | (¥) -
< d(x,y)<t <kezZa;k & Q§> 4 V(.X,t) t)
61 L 2 1/2
_er du(y) dt
i Soka () —
<] o Jacpa| (keza;k afer NV en 1 (69)
" 2\ 172
5 1 du(y) d
2, -2 p(y) dt
t'Le Soka (y) —
(1 > o d(xy)<t (kgja;k oe QZ) 4 ) Vix,t) t
2 1/2
5“ . du(y) dt
t*Le "t sqeage | (y) #0) —
je Z af d(xy) kojael, " Vix,t) t
=1, +1,.
27 L
t"L
We firstly estimate the inner integral of I,. For any k > j | ¢ (aQﬁ) & )|
and « € I}, noting acy = LMbQﬁ, we have C - . o
2, —£L 2, M+l —£L S—St_ZMe(Q’;) H(Qlo(c) J ¢ (draricet )dy(z)
|t Le (aQ;;)(y)| :|t L" e (sz;)(y)| V(y.t) 3Qk

_ t_2M|(t2L)M+le_t2L(bQ’;) (y)|.

Since M > (nq(¢)/2p,) with n given as in (9), we can
choose some q satisfying Corollary 1 such that 2M > (n/q).
Thus, there is some N >0 such that 2M > N > (n/q). Then,
applying Definition 8, the upper bound of the kernel
(PL)YM* e 'L (cf. [18], Proposition 3.1), and (11), we get

2du(y)
(Jd(xy«'t Le Qﬁ)(y)| V(x,t)

oM o fd\ZM gy =(172) t+d(x,y) 2
<Ct B(Qa) #(sz) <Jd(x,y)<t(t+d(x,z’;))

N
—2Mp( kM (R VP '
<ctMe(Qf) ™ u(Q) (W)
(71)

where z is the center of Q. Since d(x, y) <t, we further
have

)1/2

N () 12
V(x,t)

<o (@) M (@) P (14 d(x,28))

Hence, Lemma 8 yields the inner integral of I, which is
bounded by
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2
I du(»)
d(xy)<t V(x,t)

<C t’2M€ QI; 2M QI; —(1/2) sQ;;
kzjz (@) ) [1+67d(x,25)]"

1/2

tzLet2L<Z Z sQéa%)(y)

k>jacl

(73)

(2M-N) (k- j) K\~ (1/2) |SQ§|
sckzja NICY RCRE ]N
> acly a x,za)

1/q
e oo 3 ey o]

k>j a€ly

Secondly, we estimate the inner integral of I,. For any Then, using Definition 8, Gaussian estimate (1), and
k<jand a € I}, we write inequality (11), we obtain

|t2Le*t2L(aQ§) (y)| = t2|esz(L(aQﬁ)) )| (74)

e (ae)) )

C -2 -(1/2) —(d(p2ICst?
SWS,t)tzf(Q];) y(Q’;) LQge (d(y2)*ICet )dy(z) (75)

< Ctzﬁ(Q];)iz#(Q];)f(l/z)@ +e(Q) d(y, z’;))

-N

Since d(x, y) <t < E(Q’;), we further have

— 2du(y) \"”
<Jd(x,y)<t‘t Le (an)(y)| V(x, t))

. - (@) +d(x,y) \Nd . 76
ord@) W) "], (i) 4 "

(@) +d(x28)) V(o

< Ctze(Qi)fzy(Q’;)i(m)(l ro(@)d(x25))

Hence, Lemma 8 yields the inner integral of I, which is
bounded by
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2 1/2 petie i /J’(Sﬁ §7k=i)-1 s
_p du(y) oPrk-i “lds (80)
T Sk (y) _ 8B ) srd ’
(Jd(w)q <kz}a;k Qk Qﬁ) NV ) h 1-68° Jori
we have
2 K\~ 2 K\~ (1/2) 'SQ’; 7 (k—j)- 2
<C Z Z t e(Qa) H(Qa) -1 P N J= Cﬁ J F (x)(l/q)sﬂflds
k<jael, [1 + K(Qa) d(x, za)] ok
) 2
/q /5 1
2(j (1/2) |SQ§' =C <J Xg ()Fy (x)" ds>
<CY PNy u(al) el \Jo s
k<j aely [1 +€(Q“) d(X,Za)] 2
1
ol o))
ik ( /2)
<C z 52Uk [ < z Ist| ulQ 9 §>(x):| . . 2
k<j acl; 1/ p-1
<Gy | (9F ()" | s
(77) B 0< XE, k
Fix j € Z, and we let >0 and e Z J,y Fo (s by
1, k>j; 4 k ok
= (78)
{—1, k<. =Cy Y "I (07,
- k
Writing Fi (x) = (3 qer, s |70 Q)™ Py ) (), we (1)
now turn to estimate
where E, = [6"* 7, 6"® 1] In view of inequalities
J= Z(gﬂr(k—j)Fk (x) V)2 (79)  (73)-(81), taking f=2M -~ N,7=1, and f=2,7= -1 re-
k spectively, we get

Since

-

ZJ&J‘

jez

SL(f)(x)SC<

&

(3],
-zl
<z
o(Zn

Therefore, (82) and Corollary 1 yield

2
CN) (k- dt
Z SM-N)(k I, (x)"a| &

k>j
2
dt
t

Z 5CM=N) (k- J)F (x )Z/th

k>j
>1/2

Z 5(2M N) (k= j) + Z 62(] k)
k>j k<j

1

1/2

Z 52(j_k)Fk (x)l/q

k<j

(82)

Z 52U~ k)F (x )2/‘1
k<j

x)Z/q (
/2
2/q>

)
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S 1/2
J?(x:m)dy(x)gcj gD(x,)t_l( Fk(x)Z/q> >dy(x)
x A X keZ
2/q 1/2
SCJXQD(x,)H( <Z |5Qg qﬂ(Ql‘;)_(q/Z)XQ’;(x)> > )dy(x)
keZ \a€l;

(83)

which gives the reverse inequality of (67). It finishes the
proof of Theorem 2. O

4. The Proof of Theorem 3

In this section, we establish a characterization of the
Musielak-Orlicz-Hardy space H| ¢ ,, where the operator L
satisfies (H1) and (H2) and ¢ is a growth function. Our
proof will borrow some ideals from Duong et al. [6].

We first recall some basic definitions and facts about
Fefferman-Stein type maximal function, referring to [7] for
a complete account.

2, (F(m 2 ) <C Y 200 |

j=l

holds for all f € L*(X),l € Z,x € X, and t € [1,2).

We also need Lemma 10, and its proof is standard, which
we omit here.

Lemma 10. Letnand m be asin (9) and (10), and N >n + m.
Then, there exists a constant C >0 such that

J If ()]
XV (x,0)[1+¢'d (x, y)]

< du(x) <CAL (f) (y) (86)

holds for all measurable functions f on (X,d,u), t>0, and
each y € X.

Proof. of Theorem 3. Fix f € HL)G,(IJ (X)NL?(X), and we let
Ay = "f”HLG xyand A; = IW £lle x)- It suffices to show that
for all X € (0, 00), we have

xV(z,27)[1+2'd(x,2)]"

12
|SQ§ 'ZH(QI«;)_ IXQI; (x)) >d,u (x)

Given f € L*(X), a>0, and (x,t) € X x (0,00), the
Fefferman-Stein type maximal function is defined as

2L —12L
ﬂ;,L(f)(X,t)=CSSSUp 't ¢ f(y)|

—_— 84
yex [1+t_1d(x,y)]a (89

Lemma 9 is useful (cf. [7]).

Lemma 9. Suppose the operator L satisfies (H1) and (H2).
Let m be as in (10). Then, for any 3,7 >0 and a > (m/2), there
exists a constant C >0 such that

r

ey ¢

du(z) (85)

fop(x,W)dy(x) - jxgo(x,'Wﬁ—(x)')du(x).

(87)

In fact, since (87) holds for all A € (0, 00), there exists a
constant C,, such that

w
| so(x,m)dy(x)scoj ‘P(x’m)dﬂ(x)ﬁco'
X M X A

(88)
Using (12) and (88), we have
G (f)(x)
JXgo(x, 7@){1 )dy(x) <1, (89)

for some constant C;, which implies A, < C;A;. Analogously,
there exists a constant C, such that A, <C,A, and we get the
desired result.
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We now fix arbitrary A € (0, 00) and turn to prove (88).
Given (x,k) € X x Z, by Lemma 1, there exists a unique
a € I such that x € Q";. We denote such Qf; by Qﬁ and write

{ 5 3 ue >‘“2’|SQ§\xQﬁ<x>]2}

keZacl
}(1/2)

& - ) (172)
:{ > Ja**‘ #(Qi) IJQJtZLe_th(yﬂ d,u(y)g} ,

{2 @) b

kezZ
(90)

where constants § € (0, 1) satisfy Lemma 1 and the last line
is obtained by using Proposition 1.

Moreover, for any fixed (x,k) € X x Z, Lemma 1 also
tells wus that there are zfc € Q’; and constants
C, € (0,1),C, >0 such that

B(z,,C30") ¢ @, c B(x,C,8") < B(x,C,0"'t) = B, (91)

for all t € (81, 6%). Consequently, by inequalities (9) and
(10), we have

esssup |t Le " Ly (y)| = esssup
YyEB, y€B,

|Le ‘“f(y)|
[1 +t ' d(x, y)] (93)

Journal of Function Spaces

5}(

J H(Qi)il’[Qk'tzLe_tZLf()’)rd,u(y)%

é\k+ 1

o 1
< B(Z~,C,o j
J#ﬂ “( (zx ’ ) B(x.C,6%)

2 2 dt
|Le” " f ()] du(y)

BxC4 )) esssup |tLeth( )| dt

o B Z Gy k)) yeB (x,C,0)

§k

IN

C

oyt
J- esssup|t Le” th( )|
J

[, (P (. t)] <

6k +1

(92)

for some appropriate constant C, where ./, ; (f) (x,1) is the
Fefferman-Stein type maximal function With some large

enough constant a to be chosen, and the last line follows
from

s+t d )]

<(1+C8 ), () (xn)]'.

Hence, (90) and (92) yield

wf(x)ch [, (f) xt)]2dtl>

9-k+1 1/2
SC{ > Lk [‘%:,L(f)(x,t)]z%} (94)

keZ

‘/JZ,L (f)(x, z-kt)'r <C i 2—(1—1«)[;7[
ik

As in Corollary 1, let r € (0,1) with p = (2/r) > 1. Fix
>0 and choose a > (m/2) such that ar >m + n. Then, we
integrate on both sides of (95) and employ Minkowski in-
equality and Lemma 10 to get

Thus, by using Lemma 9, we deduce that for any 3,7 >0

and a> (m/2), there exists a constant C such that

—j L (Z/t)L
(CROLTC (95)

xV(z,27)[1+2"d(x,2)]
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(j a2, (f)(x l—)

2 | oo
o[ [0
) e’

_c i oG Rpr (J

j=k

o[ @I @]
.[XV(Z 270)[1 + 2kd (x, 2)]

ar du (2)

ar du (2)

| itpLe G0
JXV(Z 291 + 2+ (x, 2)]

r/2 (96)

[ﬁ ' (2_jt)2L67(2’it)2Lf (Z)'2 (dt/t)] (@)

X V(z, ka)[l + de(x, z)]ar

[ee)
<cy (- k)ﬁrj

ik

ik 2 2 N2 2 r/2
o0, 270 )/3’[ j 1’(2‘1t) Le- (7))L f(z)| (dt/t)]
~c| L A——— du(2)
b V(z,27)[1+2"d(x,2)]

gt )

=C (Gk) (.x)

Thus, by using Corollary 1, we have

A

1/2
C| Xkez f M (f) (x,27F) 2 (dt/)
ijﬁ”(x, (Zee i I ) )dﬂ(x)

(s (B Lzt zkr>12<df/f>>mrﬁ>m

SKE - du() 7
X

2/r\1/2
SJX¢<X)C(ZkeZ[ﬂ(fk)(x)] ) >dy(x)

2/r\1/2
SCL{‘P(’C’ (ZkeZGk;X) ) >dy ).

We now turn to estimate Gi’ "(x). Since
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2= G=kpr _ pr

2ik1 for any k € Z, we have
T J s Prlds, (98)

2i-k

2i-k 1

oan-cS 7 [l 2]

(e8]

7 [ ] o "

=CJ?OOOHT|(2 ity re G0 £ (x )\ ] X, ()5 ,M,

j=k

where E; = [2/7%,2/"%1], Using Hélder’s inequality, we
obtain

’ /r
XJ?(Z}{[JZKZ jt)zLe_(z it) Lf( )| _] /ZXE](S)> [iil
= (100)
)
=

e i(zﬁk)ﬁf [[Jnyre e f(x)|2%).
1

j=k

Summarizing all k € Z, we have
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ZGk(x)z/rSCZ Z( -(j- k),BrJ' ’( ]t) Le (zjt)Lf( )‘ )

kez keZ jzk

CZ Z( —(j- k)ﬁrj |(2jf)zLe(z_jt)sz(x)rdtt)

]GZk<J

~c(1-2) 'Y [ e e |

j€Z

—]+1

<3, !

eZ

(101)

g 2dt
e th(x)| ?

= CJOO ’tzLe_tsz(x)'zg
0 t

= C(G(f) (%))

Therefore, (11), (97), and (101) yield

fop(x, M)dy (x)> CL{‘P <x’ |Wf)L(X)| )d# (x).

(102)

It reduces to show the reverse inequality of (102). Let § be
as in Lemma 1. In view of Proposition 1, we write

f= Z Z SQkaqk>

keZ aely

(103)

and get

1/2
: )
>1/2

(
(i g
(28 (e
<

( > stQk)m

keZacl

1/2

keZacel,

[0 e (Z > stQk><x>

k>jael;

(104)

We now estimate the integrand function of I5. For any

k> jand a € I}, noting ag = LMbQ;;, we have

tzLe_t2L< Z Z sQﬁaQ§> (x)

coy s y gy b

<C z 6(2M—N

|t2Lef tzL(aQ;;) (x)| = |t2LM+1e7 tzL(bQ;; ) (x)|

, (105)
_ t—2M|(t2L)M+left L(sz)(x)‘.
Since M > (nq(¢)/2p,) with n given as in (9), we can
choose some g satisfying Corollary 1 such that 2M > (n/q).
Thus, there is some N >0 such that 2M > N > (n/q). Then,
applying Definition 8, the upper bound of the kernel
(LML (cf. 18], Proposition 3.1), and (11), we get

|t Le® L(aQ;; (x)|

Cs oM k\2M K\~ (1/2) —(d(x,9)2ICst>
Sv(x,t)t e(Q"‘) H(Q“) J el )d‘“(y)

3Qk

N
) oM -an) £
<CrMe(Q) " u(Qh) (W) ’
(106)

where yk is the center of QX. Hence, by Lemma 8, we have

k> jael

<C Y Y ()M u(at) _|SQ§|

[1+7d(x, )]

k> jaely

k>j ael;

[1+e(@t) "a(x.8)]

1/q
q/z) > (x)} '

(107)

) (= [ <Z |5Qk"1
k>j ael;

For the integrand function of I, in the case k< j and
a € I, we write
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|t2L67‘2L(aQ§)(x)' _ t2|e—t2L(L(aQ§)>(x)|. (108) Then, using Definition 8, Gaussian estimate (1), and

inequality (11), we obtain

|t2Le_ tzL(aQé) (x)|

2

Sy (&) @) 7] au) (109)

<ce(t) u(@t) " (1+ (@) ta(x k)

Consequently,

t2L< Z Z Schle > (x)

k<jael
<cy Y ee(d) u(@) " ol
[1+0(Qt) (.15
' | (110)
<C Y S2uk ) (1/2) SQk
g Z «Q [1+e(d;)*d(x, y';)]N
1/q
Z 520~ k[ (Z 'st| a (q/ XQ§>(x):| .
k<j a €l
Similar to the discussion in (82) and combining
(104)-(110), we get
5! 2
G (fHilx)<C ( J Zé‘ZM M-, (x)l/q
jez k>j
o 2 1/2
82(] kG ( )l/q
+jezj5j k§<:; ¥ )
ot
jez k>j (111)

- 172
s J~5 Z 82(1 G ( )Z/th>

k<j

1/2
=C Gk X)Z/q<262MN(k ])+Z82 >>
<kEZ k>j k<j
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Therefore, (111) and Corollary 1 yield

J q)(x’cL(f)(x))d x )<C (P<M 1
X A

(2
Ao

19
1/2
(x)z’q> >dy(x)
(q/z) 2/q 1/2
Z ‘st| Xax (%) du (x)
a €l (112)

12
go(x,A 1( st| y XQ’; (x)> >d,u(x)
keZac
W, (x)
=CJX¢<% fA >du(x),

which gives the reverse inequality of (102). It finishes the
proof of Theorem 2. O
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