
Research Article
Littlewood–Paley Characterization for Musielak–Orlicz–Hardy
Spaces Associated with Self-Adjoint Operators

Jiawei Shen ,1 Shunchao Long ,2 and Yu-long Deng 3

1College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321001, China
2School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
3School of Mathematics Science, Changsha Normal University, Changsha 410100, China

Correspondence should be addressed to Shunchao Long; longsc84@163.com and Yu-long Deng; yuldeng@163.com

Received 14 January 2022; Accepted 31 January 2022; Published 17 March 2022

Academic Editor: Kwok-Pun Ho

Copyright © 2022 Jiawei Shen et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let (X, d, μ) be a metric measure space endowed with a metric d and a non-negative Borel doubling measure μ. Let L be a non-
negative self-adjoint operator on L2(X). Assume that the (heat) kernel associated to the semigroup e− tL satisfies a Gaussian upper
bound. In this paper, we prove that the Musielak–Orlicz–Hardy space Hφ,L(X) associated with L in terms of the Lusin-area
function and the Musielak–Orlicz–Hardy space HL,G,φ(X) associated with L in terms of the Littlewood–Paley function coincide
and their norms are equivalent. To do this, we first establish the discrete characterization of these two spaces. It improves the
known results in the literature.

1. Introduction

/emetric measure space (X, d, μ) is a set X equipped with a
metric d and a non-negative Borel doubling measure μ on X.
Let f ∈ L2(X) and L be a densely defined operator on L2(X)

which satisfies the following two conditions:

(i) (H1) L is a non-negative self-adjoint operator on
L2(X).

(ii) (H2) /e kernel of e− tL, denoted by pt(x, y), is a
measurable function on X × X satisfying the
Gaussian estimates, i.e., there exist C1, C2 > 0 such
that

pt(x, y)


≤
C1

V(x,
�
t

√
)
e

− d(x,y)2/C2t( ), (1)

holds for all t> 0 and x, y ∈ X, where
V(x,

�
t

√
) � μ(B(x,

�
t

√
)).

/e Littlewood–Paley function GL(f) and Lusin-area
function SL(f) associated with the heat semigroup gener-
ated by L are given by

GL(f)(x) � 
∞

0
t
2
Le

− t2L
f(x)




2dt

t
 

1/2

,

SL(f)(x) � 
∞

0


d(x,y)<t
t
2
Le

− t2L
f(x)




2 dμ(y)

μ(B(x, t))

dt

t
 

1/2

.

(2)

In this paper, we focus on the characterization of the
Musielak–Orlicz–Hardy spaces Hφ,L and HL,G,φ, where the
operator L satisfies (H1) and (H2) and φ is a growth function
(cf. Definition 6 below).

Definition 1. Suppose that the operator L satisfies (H1) and
(H2) and φ is a growth function. A function f ∈ H2(X) is
said to be in Hφ,L(X) if SL(f) ∈ Lφ(X) (cf. Definition 7
below). Moreover, we define

‖f‖Hφ,L(X)
� SL(f)

����
����Lφ

� inf λ ∈ (0,∞): 
X
φ x,

SL(f)(x)

λ
 dμ(x)≤ 1 .

(3)
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/eMusielak–Orlicz–Hardy space Hφ,L(X) is defined to
be the complement space of Hφ,L(X).

Definition 2. Suppose that the operator L satisfies (H1) and
(H2) and φ is a growth function. A function f ∈ H2(X) is
said to be in HL,G,φ(X) if GL(f) ∈ Lφ(X). Moreover, we
define

‖f‖HL,G,φ(X)
� GL(f)

����
����Lφ

� inf λ ∈ (0,∞): 
X
φ x,

GL(f)(x)

λ
 dμ(x)≤ 1 .

(4)

/e Musielak–Orlicz–Hardy space HL,G,φ(X) is defined
to be the complement space of HL,G,φ(X).

Recently, the study of Hardy spaces associated with
operators has been attracting great interest. It was initiated
by Auscher et al. who studied the Hardy space H1

L(Rn) with
operators L in [1], where the heat kernel of L satisfies the
pointwise Poisson upper bounded condition. Later on,
Duong and Yan [2, 3] presented the adapted BMO theory on
condition that the heat kernel of L satisfies the pointwise
Gaussian estimate. In [4], Yan established the theory of
Hardy space H

p
L(Rn) for 0<p< 1 associated with the op-

erator L satisfying Davies–Gaffney estimates.
It is a natural question to ask the behavior of weighted

Hardy space H
p

L,ω(Rn) associated with an operator L and an
appropriate weightω. A pioneering investigation work of the
weighted Hardy space H1

L,ω(Rn) associated with the
Schrödinger operator L was the paper by Song and Yan [5].
In 2016, Duong et al. [6] considered the weighted Hardy
spaces H

p

L,S,ω(Rn) and H
p

L,G,ω(Rn) on homogeneous space X

for 0<p≤ 1 and obtained the equivalence of these two kinds
by adding Moser-type conditions, where the operator L has
the kernel satisfying Gaussian upper bound. Shortly after
that, the equivalence of these two kinds spaces was char-
acterized by Hu [7] without assuming the Moser-type
boundedness condition.

In 2014, Ky [8] introduced the Musielak–Orlicz–Hardy
space Hφ(Rn) by using growth function φ. Naturally, the
Musielak–Orlicz–Hardy space Hφ,L which is defined by
means of the Lusin-area function associated with an oper-
ator L was introduced and studied in [9], where L satisfies
Davies–Gaffney estimates. Unfortunately, the characteriza-
tion of Hφ,L required an extra assumption that φ satisfies the
uniformly reverse Hölder condition (cf. [9]).

Motivated by the above, we are concerned with the
Musielak–Orlicz spaces Hφ,L(X) and HL,G,φ(X) which we
define by means of the Lusin-area function and the Lit-
tlewood–Paley function on homogeneous space X. Our aim
in the present paper is to prove that the two kinds of
Musielak–Orlicz spaces are equivalent. Our main result is
stated as follows.

Theorem 1. Suppose that the operator L satisfies (H1) and
(H2) and φ is a growth function of uniformly lower type p1.

.en, the spaces Hφ,L(X) and HL,G,φ(X) coincide and their
norms are equivalent.

/eorem 1 obtains the behavior of Littlewood–Paley
g-function GL on Hφ,L and partly improves the result in [9].
To make it clear, we first establish the discrete character-
ization of the Musielak–Orlicz spaces Hφ,L(X) and
HL,G,φ(X) and state these results as follows.

Theorem 2. Suppose that the operator L satisfies (H1) and
(H2) and φ is a growth function of uniformly lower type p1.
Let f ∈ Hφ,L(X)∩L2(X). .en, for all M ∈ N with
M> (nq(φ)/2p1), f has an ATL,M-expansion such that

‖f‖Hφ,L(X) � Wf

�����

�����Lφ(X)
. (5)

Theorem 3. Suppose that the operator L satisfies (H1) and
(H2) and φ is a growth function of uniformly lower type p1.
Let f ∈ HL,G,φ(X)∩L2(X). .en, for all M ∈ N with
M> (nq(φ)/2p1), f has an ATL,M-expansion such that

‖f‖HL,G,φ(X) � Wf

�����

�����Lφ(X)
. (6)

/eorems 2 and 3 extend the results in [6, 7], respec-
tively. Also, we extend the results in [9] by removing the
assumption of uniformly reverse Hölder condition. As a
consequence of /eorems 2 and 3, we immediately get
/eorem 1.

/e paper is organized as follows. Section 2 contains
some basic definitions and lemmas concerning metric
measure spaces, growth functions, Musielak–Orlicz space,
andATL,M-family./e aim of Section 3 is to prove/eorem
2 and establish the characterization of Musie-
lak–Orlicz–Hardy space Hφ,L. We develop a method to unify
the different control terms of inner integral. /e aim of
Section 4 is to prove /eorem 3 and set up the character-
ization of Musielak–Orlicz–Hardy space HL,G,φ. We borrow
the ideas from [6,10]. Consequently, we get that the char-
acterization of Musielak–Orlicz–Hardy space by means of
Hφ,L and HL,G,φ is equivalent.

Most of the notations we use are standard. C denotes a
positive constant that may change from line to line and we
use the subscript for the sake of eliminating confusion. We
write A � B if there exist constants C1 and C2 which are
independent of A and B such that C1B≤A≤C2B. For a
measurable set A, |A| denotes the Lebesgue measure of A

and χA is the characteristic function.

2. Basic Concepts and Lemmas

2.1.MetricMeasureSpaces. Ametric measure space (X, d, μ)

is a set X equipped with a metric d and a non-negative Borel
doubling measure μ on X. Fix x ∈ X and let r ∈ (0,∞), and
we denote the open ball centered at x with radius r by

B(x, r) � y ∈ X: d(x, y)< r , (7)

and set V(x, r) � μ(B(x, r)).
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Definition 3. A space of homogeneous type (X, d, μ) is a set
X with a metric d and a non-negative measure μ on X, so
that there exists a constant CD ∈ [1,∞) such that for all
x ∈ X and r> 0,

V(x, 2r)≤CDV(x, r)<∞. (8)

Definition 3 was introduced by Coifman and Weiss [11].
/e property of μ in (8) is the doubling condition and it
implies the strong n homogeneity property, i.e., for some
constant C> 0 and homogeneity n,

V(x, λr)≤Cλn
V(x, r) (9)

holds uniformly for all λ ∈ [1,∞), x ∈ X, and r> 0.
Let CD be as in (8) and set m � log2CD, and Grigor’yan

et al. have shown that (see [12])

V(x, R)≤CD

R + d(x, y)

r
 

m

V(y, r) (10)

holds for all x, y ∈ X and 0< r≤R<∞. It is easy to verify, by
doubling condition (8), that for any N> n, there exists a
constant CN such that for all x ∈ X and t> 0,


X

1 + t
− 1

d(x, y) 
− N

dμ(y)≤CNV(x, t). (11)

/e dyadic cube decomposition on spaces of homoge-
neous type comes from Christ [13] as follows:

Lemma 1. Let (X, d, μ) be a space of homogeneous type.
.en, there exists a collection of open subsets
Qk

α ⊂ X: k ∈ Z, α ∈ Ik  and constants δ ∈ (0, 1) and
0<C1, C2 <∞ such that

(i) μ(X∖∪ αQk
α) � 0, ∀k; for each fixed k, if α≠ β, then

Qk
α ∩Qk

β � ∅.
(ii) For any α, β, k, l, if k≤ l, then either Ql

β ⊂ Qk
α or

Ql
β ∩Qk

α � ∅.
(iii) For each (k, α) and each l< k, there is a unique β ∈ Il

such that Qk
α ⊂ Ql

β.
(iv) Diameter (Qk

α)≤C1δ
k.

(v) Each Qk
α contains some ball B(zk

α, C2δ
k), where

zk
α ∈ X.

/e sets Qk
α are analogues of the Euclidean dyadic cubes;

it may help to think of Qk
α as being essentially a cube of ball of

diameter roughly δk with center zk
α. We then set

ℓ(Qk
α) � C1δ

k. It is worthy pointing out that the precise value
of C1 is non-essential (cf. Christ [13]). Here and in what
follows, we assume C1 � δ− 1.

2.2. Growth Functions. We first recall the Orlicz function. A
non-decreasing function Φ: [0,∞)⟶ [0,∞) is called an
Orlicz function if Φ(0) � 0, Φ(t)> 0 for all t ∈ (0,∞) and
limt⟶∞Φ(t) �∞ (cf. Yang [9]).

/e function Φ is said to be of upper type p (resp., lower
type p) for some p ∈ [0,∞), if for all t ∈ [1,∞) (resp.,
t ∈ [0, 1]) and s ∈ [0,∞), there is a constant C> 0 such that
Φ(st)≤CtpΦ(s). Φ is said to be of type (p1, p2) if it is of
both upper type p1 and lower type p2.

Given a function φ: X × [0,∞)⟶ [0,∞), for any
x ∈ X, φ(x, ·) is an Orlicz function. If there exists a constant
C> 0 such that for all x ∈ X, t ∈ [1,∞) (resp., t ∈ [0, 1]))
and s ∈ [0,∞),

φ(x, st)≤Ct
pφ(x, s), (12)

then φ is said to be of uniformly upper type p (resp.,
uniformly lower type p). Moreover, φ is said to be of positive
uniformly upper type (resp., uniformly lower type) if it is of
uniformly upper type (resp., uniformly lower type) p for
some p ∈ (0,∞).

Let φ: X × [0,∞)⟶ [0,∞). If for all t ∈ [0,∞),
x↦φ(x, t) is measurable and for all bounded subsets K of X,



K

sup
t∈(0,∞)

φ(x, t) 
K
φ(y, t)dμ(y) 

− 1
 dμ(x)<∞. (13)

/en, φ(·, t) is said to be uniformly locally integrable (cf.
[8]).

We next recall the uniformly Muckenhoupt condition in
[9, 14].

Definition 4. Let φ: X × [0,∞)⟶ [0,∞) be uniformly
locally integrable. /e function φ(·, t) is said to satisfy the
uniformly Muckenhoupt condition for some q ∈ [1,∞),
denoted by φ ∈ Aq(X), if

Aq(φ) � sup
t∈(0,∞)

sup
B⊂X

1
μ(B)


B
φ(x, t)dμ(x) 

1
μ(B)


B
[φ(y, t)]

− q′/q( )dμ(x) 

q/q′( )

<∞,

(14)

when q ∈ (1,∞) and (1/q) + (1/q′) � 1, or
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A1(φ) � sup
t∈(0,∞)

sup
B⊂X

1
μ(B)


B
φ(x, t)dμ(x) ess sup

y∈B
[φ(y, t)]

− 1⎛⎝ ⎞⎠<∞. (15)

Here the first supremum is taken over all t ∈ (0,∞) and
the second one is taken over all balls B ⊂ X.

We define A∞(X) � ∪ q∈[1,∞)Aq(X) and let

q(φ) � inf q ∈ [1,∞): φ ∈ Aq(X)  (16)

be the critical indices of φ. Moreover, we denote

φ(E, t) � 
E
φ(x, t)dμ(x), (17)

for any measurable subset E of X and t ∈ [0,∞). Let M be
the Hardy–Littlewood maximal function on X, namely, for
all x ∈ X,

M(f)(x) � sup
B∋x

1
μ(B)


B
|f(y)|dμ(y), (18)

where the supremum is taken over all balls B containing x.
/e following lemma on the properties of A∞(X) is Lemma
2.8 in [9].

Lemma 2

(i) A1(X) ⊂ Ap(X) ⊂ Aq(X) for 1≤p≤ q<∞.
(ii) If φ ∈ Ap(X) with p ∈ (1,∞), then there exist some

q ∈ (1, p) such that φ ∈ Aq(X).
(iii) If φ ∈ Ap(X) with p ∈ (1,∞), then there exists a

constant C> 0 such that for all measurable functions
f on X and t ∈ [0,∞),


X

[M(f)(x)]
pφ(x, t)dμ(x)≤C

X
|f(x)|

pφ(x, t)dμ(x).

(19)

(iv) If φ ∈ Ap(X) with p ∈ (1,∞), then there exists a
constant C> 0 such that for all balls B ⊂ X and
measurable set E ⊂ B and t ∈ [0,∞),

φ(B, t)

φ(E, t)
≤C

μ(B)

μ(E)
 

p

. (20)

We now introduce the notion of growth functions (cf.
[8, 9]).

Definition 5. Let φ: X × [0,∞)⟶ [0,∞). /en, φ(x, t) is
a Musielak–Orlicz function, if

(i) φ(x, ·): [0,∞)⟶ [0,∞) is an Orlicz function for
all x ∈ X.

(ii) φ(·, t) is a measurable function for all t ∈ [0,∞).

Definition 6. Let φ: X × [0,∞)⟶ [0,∞)./en, φ is called
a growth function, if the following hold.

(i) φ is a Musielak–Orlicz function.
(ii) φ ∈ A∞(X).
(iii) φ is of positive uniformly upper type p1 for some

p1 ∈ (0, 1] and of uniformly lower type p2 for some
p2 ∈ (0, 1].

Lemma 3. Let φ be a growth function and set φ(x, t) �


t

0(φ(x, s)/s)ds for all (x, t) ∈ X × [0,∞). .en, φ is a
growth function, which is equivalent to φ, and φ(x, ·) is
continuous and strictly increasing.

2.3. Musielak–Orlicz Spaces. In this section, we study the
Musielak–Orlicz spaces associated with the growth function
φ.

Definition 7. /e Musielak–Orlicz space Lφ(X) denotes the
set of all measurable function f on X with


X
φ(x, |f(x)|)dμ(x) <∞ and the Luxembourg norm

‖f‖Lφ(X) � inf λ ∈ (0,∞): 
X
φ x,

|f(x)|

λ
 dμ≤ 1 . (21)

/e space Lφ(ℓp, X) is defined to be the set of all fj 
j∈Z

satisfying [j|fj|
p]1/p ∈ Lφ(X) and let

fj 
j

������

������Lφ ℓp,X( )
� 

j

fj




p⎡⎢⎢⎣ ⎤⎥⎥⎦

1/p����������

����������
Lφ(X)

. (22)

We have the following Fefferman–Stein vector-valued
inequality of Musielak–Orlicz type (cf. [15]).

Lemma 4. Let p ∈ (1,∞], φ be a Musielak–Orlicz function
with uniformly lower type p1 and upper type p2, q ∈ (1,∞),
and φ ∈ Aq(X). If q(φ)<p1 ≤p2 <∞, then there exists a
constant C> 0 such that, for all fj 

j∈Z ∈ Lφ(ℓp, X),


X
φ x, 

j

M fj (x)
p⎡⎢⎢⎣ ⎤⎥⎥⎦

1/p

⎛⎝ ⎞⎠dμ(x)≤C
X
φ x, 

j

fj(x)



p⎡⎢⎢⎣ ⎤⎥⎥⎦

1/p

⎛⎝ ⎞⎠dμ(x). (23)
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Corollary 1. Let p,φ be as in Lemma 4. .en, for all
r ∈ (0, (p1/q(φ))) and fj 

j∈Z ∈ Lφ(ℓp, X), there exists a
constant C> 0 such that


X
φ x, 

j

M fj (x)
p⎡⎢⎢⎣ ⎤⎥⎥⎦

(1/rp)

⎛⎝ ⎞⎠dμ(x)≤C
X
φ x, 

j

fj(x)



p⎡⎢⎢⎣ ⎤⎥⎥⎦

(1/rp)

⎛⎝ ⎞⎠dμ(x). (24)

Proof. Fix r ∈ (0, (p1/q(φ))) and let φ(x, t) � φ(x, t1/r).
We claim that φ is of uniformly lower type p1/r and upper
type p2/r. In fact, there exist constants C1, C2 > 0 such that

φ(x, st) � φ x, s
1/r

t
1/r

 ≤C1t
p1/rφ x, s

1/r
  � C1t

p1/rφ(x, s),

φ(x, st) � φ x, s
1/r

t
1/r

 ≤C2t
p2/rφ x, s

1/r
  � C2t

p2/rφ(x, s),

(25)

for all t ∈ [1,∞), x ∈ X and s ∈ [0,∞). Meanwhile, one has

q(φ)<
p1

r
≤

p2

r
<∞, (26)

since q(φ) � q(φ). /erefore, Lemma 4 yields



X

φ x, 
j

M fj (x)
p⎡⎢⎢⎣ ⎤⎥⎥⎦

1/rp

⎛⎝ ⎞⎠dμ(x) � 
X

φ x, 
j

M fj (x)
p⎡⎢⎢⎣ ⎤⎥⎥⎦

1/p

⎛⎝ ⎞⎠dμ(x)

≤C
X

φ x, 
j

fj(x)



p⎡⎢⎢⎣ ⎤⎥⎥⎦

1/p

⎛⎝ ⎞⎠dμ(x) � C
X
φ x, 

j

fj(x)



p⎡⎢⎢⎣ ⎤⎥⎥⎦

1/rp

⎛⎝ ⎞⎠dμ(x).

(27)

It finishes the proof of Corollary 1. □

2.4. ATL,M-Family and Decomposition .eorem. In this
section, we assume that the space X satisfies the strong
homogeneity property (9) with homogeneous dimension n.
In view of Lemma 1, the space X possesses a dyadic de-
composition analogous to the Euclidean dyadic cubes, i.e.,
there exists a collection of open subsets
Qk

α ⊂ X: k ∈ Z, α ∈ Ik  such that for every k ∈ Z,

X � ∪
α∈Ik

Q
k
α, (28)

where Ik is some index set and Qk
α has the properties as in

Lemma 1. Such open subsets Qk
α ⊂ X: k ∈ Z, α ∈ Ik  are

said to be a family of dyadic cubes of X (cf. [6]).

Definition 8. Suppose that the operator L satisfies (H1) and
(H2) andM ∈ N./en, a collection of functions aQ 

Q: Dyadic
in L2(X) is said to be an ATL,M-family associated with an
operator L, if for every dyadic Q, there exists a function
D(L2M) such that

(i) aQ � LM(bQ)(x).
(ii) supp(Lk(bQ)) ⊂ 3Q, k � 0, 1, . . . , 2M.
(iii) |(ℓ(Q)2L)k(bQ) (x)|≤ ℓ(Q)2MV(Q)− (1/2), k � 0, 1,

. . . , 2M.

Here, D(T) denotes the domain of an unbounded op-
erator T and Tk, which is the k-fold composition of T with
itself, in the sense of unbounded operators.

For a function f in L2(X), if there exists sequence
s � sQ 

Q: dyadic, 0≤ sQ <∞, and an ATL,M-family
aQ 

Q: dyadic in L2(X) such that

f � 
Q:dyadic

sQ aQ,
(29)

we say that f has an ATL,M-expansion. /en, we denote the
function related to the sequence s � sQ 

Q:dyadic by Wf(x)

and

Wf(x) � 
Q:dyadic

V(Q)
− (1/2)

sQ


χQ(x) 

2
⎛⎝ ⎞⎠

(1/2)

. (30)

With the notation above, we have the following char-
acterization of L2(X).

Proposition 1. Suppose that the operator L satisfies (H1)
and (H2). Let f ∈ L2(X). .en, for M ∈ N, f has an
ATL,M-expansion

f � 
Q:dyadic

sQ aQ.
(31)

Moreover, let Qk
α and δ be as in Lemma 1. .en,
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sQk
α

� 
δk

δk+1


Qk
α

t
2
Le

− t2L
f(y)




2
dμ(y)

dt

t
 

2

. (32)

Proof. /e proof of Proposition 1 can be found in [6,
/eorem 3.2]. □

3. The Proof of Theorem 2

In this section, we establish a characterization of the
Musielak–Orlicz–Hardy space Hφ,L, where the operator L

satisfies (H1) and (H2) and φ is a growth function.
For every v ∈ (0,∞) and x ∈ X, let
Γv(x) � (y, t) ∈ X × (0,∞): d(x, y)< vt  be the cone of
aperture v and vertex x ∈ X. For any closed subset F of X, we
denote the union of all cones with vertices in F by

Rv(F) � ∪
x∈F
Γv(x). (33)

When v � 1, Γ(x) andR(F) stand for Γ1(x) andR1(x),
respectively. Given an open subset O of X, we establish
Lemma 5 of R(O∁) on the geometric properties. We also
remark that Aguilera and Segovia [16] obtained the same
result in the case of Euclidean space.

Lemma 5. Suppose that (X, d, μ) is a space of homogeneous
type and there exists a constant CD > 1 such that (8) holds. Let
O be an open subset of X and F � O∁. For v> 1, we denote O∗

by

O
∗

� x ∈ X: M χO( (x)>(4v)
− 2 log2CD , (34)

and write F∗ � (O∗)∁. .en,

(i) Rv(F∗) ⊂R(F).
(ii) .ere exists a constant Cv such that

V(z, t)<Cvμ(B(z, t)∩F) (35)

hods for (z, t) ∈Rv(F∗).

Proof. It suffices to show that the lemma holds when
Rv(F∗)≠∅ since it is trivial if Rv(F∗) � ∅. We first prove
(i) on the condition that Rv(F∗)≠∅, which implies O≠X.

Let (z, t) ∈Rv(F∗). We thus have z ∈ F or z ∈ O. It is
easy to see that (z, t) ∈R(F) since d(z, z) � 0< t in the case
z ∈ F and then Rv(F∗) ⊂R(F) holds. /e proof of (i) is
reduced to the verification in the case z ∈ O.

Suppose z ∈ O and let δ � dist(z, F). /en, 0< δ <∞
and B(z, δ) ⊂ O since F is closed and non-empty. For every
(z, t) ∈Rv(F∗), we have y ∈ F∗ such that d(z, y)< vt./us,
writing r � δ + d(z, y), we get B(z, δ) ⊂ B(y, r) and

B(z, δ) ⊂ B(z, δ)∩O ⊂ B(y, r)∩O. (36)

Hence,

V(z, δ)≤ μ(B(y, r)∩O)≤ (4v)
− 2 log2CD V(y, r). (37)

By using (10) twice, we have

V(y, r)≤CD rδ− 1
 

log2CD
V(y, δ)

≤C
2
D rδ− 1

 
log2CD 1 + δ− 1

d(y, z) 
log2CD

V(z, δ)

� 2rδ− 1
 

2 log2CD
V(z, δ),

(38)

and then

δ ≤
r

2v
�
δ + d(z, y)

2v
<
δ + vt

2v
. (39)

It follows that δ < t since v> 1. Recalling the definition of
δ, we get x ∈ F such that d(x, z)< t, which implies
(z, t) ∈R(F). It completes the proof of (i).

Next, we prove (ii). Given (z, t) ∈Rv(F∗), we get y ∈ F∗

such that d(z, y)< vt. /us, B(z, t) ⊂ B(y, (1 + v)t) and

μ(B(z, t)∩O)≤ μ(B(y, (1 + v)t)∩O)

≤ (4v)
− 2 log2CD V(y, (1 + v)t).

(40)

/erefore,

μ(B(z, t)∩O)≤ (4v)
− 2 log2CD CDV(y, t)

≤C
2
D(4v)

− 2 log2CD (1 + v)
log2CD

1 + t
− 1

d(y, z) 
log2CD

V(z, t)

<
1 + v

2v
 

2 log2CD

V(z, t).

(41)

We obtain

1 −
1 + v

2v
 

2 log2CD

 V(z, t)< μ(B(z, t)∩F), (42)

since V(z, t) � μ(B(z, t)∩O) + μ(B(z, t)∩F), and com-
plete the proof of (ii). It finishes the proof of Lemma 5. □

For all v ∈ (0,∞), f ∈ L2(X) and x ∈ X, the variant
Lusin-area function associated with L is given by

SL,v(f)(x) � 
∞

0


d(x,y)<vt
t
2
Le

− t2L
(f)(y)




2 dμ(y)

V(x, t)

dt

t
 

1/2

.

(43)

Lemmas 6 and 7 extend the results in [14, 16] for the
operator SL,v.

Lemma 6. Suppose that the operator L satisfies (H1) and
(H2). Let φ ∈ Ap(X) for 1≤p<∞ and O, O∗, F, F∗ be as in
Lemma 5. .en, there exists a finite constant C, which is
independent ofO, such that for all λ ∈ (0,∞) and f ∈ L2(X),


F∗

SL,v(f)(x)



2φ(x, λ)dμ(x)≤C

F
SL(f)(x)



2φ(x, λ)dμ(x),

(44)

where SL is the short hand of SL,1.
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Proof. Given x ∈ F∗ and (y, t) ∈ Γv(x), we observe that
d(x, y)< vt and hence by (10),

V(x, t)
− 1 ≤CD 1 + t

− 1
d(x, y) 

log2CD
V(y, t)

− 1

<CD(1 + v)
log2CD V(y, t)

− 1
.

(45)

It follows that



F∗

SL,v(f)(x)



2φ(x, λ)dμ(x)

≤CD(1 + v)
log2CD 

F∗

Γv(x)

t
2
Le

− t2L
(f)(y)




2dμ(y)dt

V(y, t)t
 φ(x, λ)dμ(x)

� Cv,D
Rv F∗( )

t
2
Le

− t2L
(f)(y)




2
V(y, t)

− 1φ B(y, vt) ∩F
∗
, λ( 

dμ(y)dt

t
.

(46)

/en, applying Lemma 2 to the sets B(y, t) and B(y, vt),
B(y, t)∩F and B(y, t), respectively, we get

φ(B(y, vt), λ)≤C(2v)
log2CDφ(B(y, t), λ), (47)

φ(B(y, t), λ)≤C
V(y, t)

μ(B(y, t)∩F)
 

p

φ(B(y, t)∩F, λ).

(48)

/erefore, (47), (48), and Lemma 5 yield

φ(B(y, vt), λ)≤Cφ(B(y, t)∩F, λ). (49)

/us, 
F∗

|SL,v(f)(x)|2φ(x, λ)dμ(x) is bounded by

C
Rv F∗( )

t
2
Le

− t2L
(f)(y)




2
V(y, t)

− 1φ(B(y, t)∩F, λ)
dμ(y)dt

t
.

(50)

Finally, in view of Rv(F∗) ⊂R(F) (see Lemma 5), it
follows immediately that (50) is bounded by

C 

R(F)

t
2
Le

− t2L
(f)(y)




2
V(y, t)

− 1φ(B(y, t)∩F, λ)
dμ(y)dt

t

� C
F


Γv(x)

t
2
Le

− t2L
(f)(y)




2dμ(y)dt

V(y, t)t
 φ(x, λ)dμ(x)

≤C
F

SL(f)(x)



2φ(x, λ)dμ(x),

(51)

where we use the fact that

V(y, t)
− 1 ≤CD 1 + t

− 1
d(x, y) 

log2CD
V(x, t)

− 1 <C
2
DV(x, t)

− 1
,

(52)

for (y, t) ∈ Γv(x) in the last line. It finishes the proof of
Lemma 6. □

Lemma 7. Suppose that the operator L satisfies (H1) and
(H2). Let φ be a growth function and φ ∈ Aq(X) for
1< q<∞. .en, there exists a constant Cv > 0 such that


X
φ x, SL,v(f)(x) dμ(x)≤Cv

X
φ x, SL(f)(x)( dμ(x)

(53)

holds for all v ∈ (0,∞) and all measurable functions f.

Proof. It suffices to show that Lemma 7 holds in the case
v ∈ (1,∞) since the conclusion is trivial if v ∈ (0, 1]. Given
λ ∈ (0,∞), we introduce the notations

Oλ � x ∈ X: SL(f)(x)> λ ,

O
∗
λ � x ∈ X: M χOλ

 (x)>(4v)
− log2CD ,

(54)

where M is the Hardy–Littlewood maximal function.
Noting that φ ∈ Aq(X), Lemma 2 yields

φ O
∗
λ , λ(  � φ x ∈ X: M χOλ

 (x)>(4v)
− log2CD , λ 

≤
X

(4v)
q log2CD M χOλ

 (x) 
q
φ(x, λ)dμ(x)

≤Cφ Oλ, λ( .

(55)

Writing Fλ � O
∁
λ, F∗λ � (O∗λ )∁ and applying Lemma 6, we

obtain


F∗λ

SL,v(f)(x)



2φ(x, λ)dμ(x)≤

Fλ

SL(f)(x)



2φ(x, λ)dμ(x).

(56)

/us, by using (55) and (56), we have
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φ x ∈ X: SL,v(f)(x)> λ , λ 

≤φ O
∗
λ , λ(  + φ x ∈ F

∗
λ : SL,v(f)(x)> λ , λ 

≤Cφ Oλ, λ(  +
1
λ2


F∗λ

SL,v(f)(x)



2φ(x, λ)dμ(x)

≤C φ Oλ, λ(  +
1
λ2


Fλ

SL(f)(x)



2φ(x, λ)dμ(x) 

≤C φ Oλ, λ(  +
1
λ2


t

0
tφ x ∈ X: SL(f)(x)> t , λ( dt .

(57)

/erefore, we employ (57) together with the assumption
v ∈ (1,∞), Lemma 3, and the uniformly upper type 1 of φ to
get



X

φ x, SL,v(f)(x) dμ(x)≤C 
∞

0

1
λ
φ x ∈ X: SL,v(f)(x)> λ , λ dλ

≤C 
∞

0

1
λ
φ Oλ, λ( dλ + C 

∞

0

1
λ3


t

0
tφ x ∈ X: SL(f)(x)> t , λ( dtdλ

≤C 
∞

0

1
λ
φ x ∈ X: SL(f)(x)> λ , λ( dλ

+ C 
∞

0

1
λ3


t

0
tφ x ∈ X: SL(f)(x)> t , λ( dtdλ

≤C
X
φ x, SL(f)(x)( dμ(x)

+ C 
∞

0
φ x ∈ X: SL(f)(x)> t , t(  

∞

t

dλ
λ2
dt

≤C
X
φ x, SL(f)(x)( dμ(x).

(58)

It finishes the proof of Lemma 7. □

Lemma 8 says that the sequence sQk
α

 α∈Ik

can be
majorized by the Hardy–Littlewoodmaximal operatorM on
(X, d, μ) (cf. [17], pp.147, where we take r � 1).

Lemma 8. Suppose 0< q≤ 1 and N> (n/q). Fix k ∈ Z and
let sQk

α
 α∈Ik

be as in Proposition 1. .en, for any subsequence
Ik
′ ⊂ Ik and for every x ∈ X,



α∈Ik
′

sQk
α





1 + ℓ Q
k
α 

− 1
d x, y

k
α  
≤C M 

α ∈ Ik
′

sQk
α




q
χQk

α
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

1/q

,

(59)

where yk
α is the center of Qk

α and C depends only on n and
N − (n/q).

Proof. of /eorem 2. Fix f ∈ Hφ,L(X)∩L2(X), and we let
λ0 � ‖f‖Hφ,L(X) and λ1 � ‖Wf‖Lφ(X). It suffices to show that
for all λ ∈ (0,∞), we have


X
φ x,

SL(f)(x)

λ
 dμ(x) � 

X
φ x,

Wf(x)




λ
⎛⎝ ⎞⎠dμ(x).

(60)

In fact, since (60) holds for all λ ∈ (0,∞), there exists a
constant C0 such that


X
φ x,

SL(f)(x)

λ1
 dμ(x)≤C0

X
φ x,

Wf(x)




λ1
⎛⎝ ⎞⎠dμ(x)≤C0.

(61)

Using (12) and (61), we have
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X
φ x,

GL(f)(x)

C1λ1
 dμ(x)≤ 1, (62)

for some constant C1, which implies λ0 ≤C1λ1. Analogously,
there exists a constant C2 such that λ1 ≤C2λ0 and we get the
desired result.

We now turn to prove (60). Given (x, k) ∈ X × Z, by
Lemma 1, there exists a unique α ∈ Ik such that x ∈ Qk

α. We
denote such Qk

α by Qk
x and write

Wf(x) � 
k ∈ Z


α ∈ Ik

μ Q
k
α 

− (1/2)
sQk

α



χQk
α
(x) 

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/2)

� 
k ∈ Z

μ Q
k
x 

− 1
sQk

x




2⎧⎨

⎩

⎫⎬

⎭

(1/2)

� 
k ∈ Z


δk

δk+1
μ Q

k
x 

− 1


Qk
x

t
2
Le

− t2L
f(y)




2
dμ(y)

dt

t

⎧⎨

⎩

⎫⎬

⎭

(1/2)

,

(63)

where constants δ ∈ (0, 1) satisfy Lemma 1 and the last line
is obtained by using Proposition 1.

Moreover, for any fixed (x, k) ∈ X × Z, Lemma 1 also
tells us that there are zk

x ∈ Qk
x and constants C1 ∈ (0, 1), C2 �

δ− 1 such that

B z
k
x, C1δ

k
  ⊂ Q

k
x ⊂ B x, C2δ

k
  ⊂ B x, C2δ

− 1
t , (64)

for all t ∈ (δk+1, δk). Consequently,

μ Q
k
α 

− 1
≤V z

k
x, C1δ

k
 

− 1
≤C 1 +

d x, zk
x( 

C1δ
k

 

m

V x, C1δ
k

 
− 1

≤CV x, C1δ
k

 
− 1
≤CV x, δk

 
− 1
≤CV(x, t)

− 1
,

(65)

where we use (10) and the fact that
V(x, δk)≤CDC− m

1 V(x, C1δ
k) with C1 ∈ (0, 1). Hence, (63)

and (65) yield

Wf(x)≤C 
k ∈ Z


δk

δk+1
V(x, t)

− 1


B x,C2δ
− 1t( )

t
2
Le

− t2L
f(y)




2
dμ(y)

dt

t

⎧⎨

⎩

⎫⎬

⎭

1/2

� C 
∞

0


d(x,y)<δ− 2t
t
2
Le

− t2L
f(y)




2 dμ(y)

V(x, t)

dt

t
 

1/2

� CSL,δ− 2(f)(x).

(66)

/us, by using Lemma 7, we deduce that


X
φ x,

SL(f)(x)

λ
 dμ(x)≥C

X
φ x,

Wf(x)




λ
⎛⎝ ⎞⎠dμ(x).

(67)

It remains to establish the reverse inequality of (67). Let δ
be as in Lemma 1. In view of Proposition 1, we write

f � 
k∈Z


α∈Ik

sQk
α
aQk

α
, (68)

and get
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SL(f)(x)

� 
∞

0


d(x,y)<t
t
2
Le

− t2L
f(y)




2 dμ(y)

V(x, t)

dt

t
 

1/2

� 
∞

0


d(x,y)<t
t
2
Le

− t2L


k ∈ Z


α ∈ Ik

sQk
α
aQk

α
⎛⎝ ⎞⎠(y)





2
dμ(y)

V(x, t)

dt

t
⎛⎝ ⎞⎠

1/2

� 
j ∈ Z


δj− 1

δj


d(x,y)<t
t
2
Le

− t2L


k ∈ Z


α ∈ Ik

sQk
α
aQk

α
⎛⎝ ⎞⎠(y)





2
dμ(y)

V(x, t)

dt

t
⎛⎝ ⎞⎠

1/2

≤ 
j ∈ Z


δj− 1

δj


d(x,y)<t
t
2
Le

− t2L

k> j


α ∈ Ik

sQk
α
aQk

α
⎛⎝ ⎞⎠(y)





2

⎛⎜⎜⎝ ⎞⎟⎟⎠

1/2
dμ(y)

V(x, t)

dt

t

+ 
j ∈ Z


δj− 1

δj


d(x,y)<t
t
2
Le

− t2L

k≤ j


α ∈ Ik

sQk
α
aQk

α
⎛⎝ ⎞⎠(y)





2
dμ(y)

V(x, t)

dt

t
⎛⎜⎜⎝ ⎞⎟⎟⎠

1/2

� I1 + I2.

(69)

We firstly estimate the inner integral of I1. For any k> j

and α ∈ Ik, noting aQk
α

� LMbQk
α
, we have

t
2
Le

− t2L
aQk

α
 (y)



 � t
2
L

M+1
e

− t2L
bQk

α
 (y)





� t
− 2M

t
2
L 

M+1
e

− t2L
bQk

α
 (y)



.
(70)

Since M> (nq(φ)/2p1) with n given as in (9), we can
choose some q satisfying Corollary 1 such that 2M> (n/q).
/us, there is some N> 0 such that 2M>N> (n/q). /en,
applying Definition 8, the upper bound of the kernel
(t2L)M+1e− t2L (cf. [18], Proposition 3.1), and (11), we get

t
2
Le

− t2L
aQk

α
 (y)





≤
C5

V(y, t)
t
− 2Mℓ Q

k
α 

2M
μ Q

k
α 

− (1/2)

3Qk

α

e
− d(y,z)2/C6t2( )dμ(z)

≤Ct
− 2Mℓ Q

k
α 

2M
μ Q

k
α 

− (1/2) t

t + d y, zk
α( 

 

N

,

(71)

where zk
α is the center of Qk

α. Since d(x, y)< t, we further
have


d(x,y)<t

t
2
Le

− t2L
aQk

α
 (y)




2 dμ(y)

V(x, t)
 

1/2

≤Ct
− 2Mℓ Q

k
α 

2M
μ Q

k
α 

− (1/2)


d(x,y)<t

t + d(x, y)

t + d x, zk
α( 

 

2N dμ(y)

V(x, t)
⎛⎝ ⎞⎠

1/2

≤Ct
− 2Mℓ Q

k
α 

2M
μ Q

k
α 

− (1/2)
1 + t

− 1
d x, z

k
α  

− N
,

(72)

Hence, Lemma 8 yields the inner integral of I1 which is
bounded by
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d(x,y)<t

t
2
Le

− t2L

k> j


α ∈ Ik

sQk
α
aQk

α
⎛⎝ ⎞⎠(y)





2
dμ(y)

V(x, t)
⎛⎜⎜⎝ ⎞⎟⎟⎠

1/2

≤C 
k> j


α∈Ik

t
− 2Mℓ Q

k
α 

2M
μ Q

k
α 

− (1/2) sQk
α





1 + t
− 1

d x, z
k
α  

N

≤C 
k>j

δ(2M− N)(k− j)

α∈Ik

μ Q
k
α 

− (1/2) sQk
α





1 + ℓ Q
k
α 

− 1
d x, z

k
α  

N

≤C 
k>j

δ(2M− N)(k− j)
M 

α ∈ Ik

sQk
α




q
μ Q

k
α 

− (q/2)
χQk

α
⎛⎝ ⎞⎠(x)⎡⎢⎢⎣ ⎤⎥⎥⎦

1/q

.

(73)

Secondly, we estimate the inner integral of I2. For any
k≤ j and α ∈ Ik, we write

t
2
Le

− t2L
aQk

α
 (y)



 � t
2

e
− t2L

L aQk
α

  (y)


. (74)

/en, using Definition 8, Gaussian estimate (1), and
inequality (11), we obtain

t
2
Le

− t2L
aQk

α
 (y)





≤
C5

V(y, t)
t
2ℓ Q

k
α 

− 2
μ Q

k
α 

− (1/2)

3Qk

α

e
− d(y,z)2/C6t2( )dμ(z)

≤Ct
2ℓ Q

k
α 

− 2
μ Q

k
α 

− (1/2)
1 + ℓ Q

k
α 

− 1
d y, z

k
α  

− N

.

(75)

Since d(x, y)< t≤ ℓ(Qk
α), we further have


d(x,y)<t

t
2
Le

− t2L
aQk

α
 (y)




2 dμ(y)

V(x, t)
 

1/2

≤Ct
2ℓ Q

k
α 

− 2
μ Q

k
α 

− (1/2)


d(x,y)<t

ℓ Qk
α(  + d(x, y)

ℓ Qk
α(  + d x, zk

α( 
 

2N dμ(y)

V(x, t)
⎛⎝ ⎞⎠

1/2

≤Ct
2ℓ Q

k
α 

− 2
μ Q

k
α 

− (1/2)
1 + ℓ Q

k
α d x, z

k
α  

− N
,

(76)

Hence, Lemma 8 yields the inner integral of I2 which is
bounded by
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d(x,y)<t

t
2
Le

− t2L

k≤ j


α ∈ Ik

sQk
α
aQk

α
⎛⎝ ⎞⎠(y)





2
dμ(y)

V(x, t)
⎛⎜⎜⎝ ⎞⎟⎟⎠

1/2

≤C 
k≤ j


α∈Ik

t
2ℓ Q

k
α 

− 2
μ Q

k
α 

− (1/2) sQk
α





1 + ℓ Q
k
α 

− 1
d x, z

k
α  

N

≤C 
k≤ j

δ2(j− k)

α∈Ik

μ Q
k
α 

− (1/2) sQk
α





1 + ℓ Q
k
α 

− 1
d x, z

k
α  

N

≤C 
k≤ j

δ2(j− k)
M 

α ∈ Ik

sQk
α




q
μ Q

k
α 

− (q/2)
χQk

α
⎛⎝ ⎞⎠(x)⎡⎢⎢⎣ ⎤⎥⎥⎦

1/q

.

(77)

Fix j ∈ Z, and we let β> 0 and

τ �
1, k> j;

− 1, k≤ j.
 (78)

Writing Fk(x) � M(α∈Ik
|sQk

α
|qμ(Qk

α)− (q/2)χQk
α
)(x), we

now turn to estimate

J � 
k

δβτ(k− j)
Fk(x)

(1/q)
)
2

.⎛⎝ (79)

Since

δβτ(k− j)
�

βδβ

1 − δβ

δτ(k− j)− 1

δτ(k− j)
s
β− 1ds, (80)

we have

J � Cβ 
k


δτ(k− j)− 1

δτ(k− j)
Fk(x)

(1/q)
s
β− 1ds⎛⎝ ⎞⎠

2

� Cβ 
1

0

k

χEk
(s)Fk(x)

1/q
s
β− 1

ds⎛⎝ ⎞⎠

2

≤Cβ 
1

0
s
β− 1

ds  
1

0

k

χEk
(s)Fk(x)

1/q⎛⎝ ⎞⎠

2

s
β− 1ds⎛⎝ ⎞⎠

≤Cβ 
1

0

k

χEk
(s)Fk(x)

1/q⎛⎝ ⎞⎠

2

s
β− 1ds

� Cβ 
k


δτ(k− j)− 1

δτ(k− j)
Fk(x)

2/q
s
β− 1ds

� Cβ 
k

δβτ(k− j)
Fk(x)

2/q
,

(81)

where Ek � [δτ(k− j), δτ(k− j)− 1]. In view of inequalities
(73)–(81), taking β � 2M − N, τ � 1, and β � 2, τ � − 1 re-
spectively, we get

SL(f)(x)≤C 
j∈Z


δj− 1

δj

k> j

δ(2M− N)(k− j)
Fk(x)

1/q





2
dt

t
⎛⎜⎜⎝

+ 
j ∈ Z


δj− 1

δj

k≤ j

δ2(j− k)
Fk(x)

1/q





2
dt

t
⎞⎟⎟⎠

1/2

≤C 
j∈Z


δj− 1

δj

k> j

δ(2M− N)(k− j)
Fk(x)

2/qdt

t
⎛⎝

+ 
j ∈ Z


δj− 1

δj

k≤ j

δ2(j− k)
Fk(x)

2/q dt

t
⎞⎠

1/2

� C 
k ∈ Z

Fk(x)
2/q


k> j

δ(2M− N)(k− j)
+ 

k≤ j

δ2(j− k)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/2

≤C 
k ∈ Z

Fk(x)
2/q⎛⎝ ⎞⎠

1/2

.

(82)

/erefore, (82) and Corollary 1 yield

12 Journal of Function Spaces




X
φ x,

SL(f)(x)

λ
 dμ(x)≤C

X
φ x, λ− 1


k ∈ Z

Fk(x)
2/q⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠dμ(x)

≤C
X
φ x, λ− 1


k ∈ Z


α ∈ Ik

sQk
α




q
μ Q

k
α 

− (q/2)
χQk

α
(x)⎛⎝ ⎞⎠

2/q

⎛⎝ ⎞⎠

1/2

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠dμ(x)

� C
X
φ x, λ− 1


k ∈ Z


α ∈ Ik

sQk
α




2
μ Q

k
α 

− 1
χQk

α
(x)⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠dμ(x)

� C
X
φ x,

Wf(x)

λ
 dμ(x),

(83)

which gives the reverse inequality of (67). It finishes the
proof of /eorem 2. □

4. The Proof of Theorem 3

In this section, we establish a characterization of the
Musielak–Orlicz–Hardy space HL,G,φ, where the operator L

satisfies (H1) and (H2) and φ is a growth function. Our
proof will borrow some ideals from Duong et al. [6].

We first recall some basic definitions and facts about
Fefferman–Stein type maximal function, referring to [7] for
a complete account.

Given f ∈ L2(X), a> 0, and (x, t) ∈ X × (0,∞), the
Fefferman–Stein type maximal function is defined as

M
∗
a,L(f)(x, t) � ess sup

y∈X

t
2
Le

− t2L
f(y)





1 + t
− 1

d(x, y) 
a. (84)

Lemma 9 is useful (cf. [7]).

Lemma 9. Suppose the operator L satisfies (H1) and (H2).
Let m be as in (10). .en, for any β, r> 0 and a> (m/2), there
exists a constant C> 0 such that

M
∗
a,L(f) x, 2− l

t 



r
≤C 
∞

j�l

2− (j− l)βr


X

2− j
t 

2
Le

− 2− jt( )
2
L
f(x)





r

V z, 2− l
  1 + 2l

d(x, z) 
ar dμ(z) (85)

holds for all f ∈ L2(X), l ∈ Z, x ∈ X, and t ∈ [1, 2).

We also need Lemma 10, and its proof is standard, which
we omit here.

Lemma 10. Let n and m be as in (9) and (10), and N> n + m.
.en, there exists a constant C> 0 such that


X

|f(x)|

V(x, t) 1 + t
− 1

d(x, y) 
N
dμ(x)≤CM(f)(y) (86)

holds for all measurable functions f on (X, d, μ), t> 0, and
each y ∈ X.

Proof. of/eorem 3. Fix f ∈ HL,G,φ(X)∩L2(X), and we let
λ0 � ‖f‖HL,G,φ(X) and λ1 � ‖Wf‖Lφ(X). It suffices to show that
for all λ ∈ (0,∞), we have


X
φ x,

GL(f)(x)

λ
 dμ(x) � 

X
φ x,

Wf(x)




λ
⎛⎝ ⎞⎠dμ(x).

(87)

In fact, since (87) holds for all λ ∈ (0,∞), there exists a
constant C0 such that


X
φ x,

GL(f)(x)

λ1
 dμ(x)≤C0

X
φ x,

Wf(x)




λ1
⎛⎝ ⎞⎠dμ(x)≤C0.

(88)

Using (12) and (88), we have


X
φ x,

GL(f)(x)

C1λ1
 dμ(x)≤ 1, (89)

for some constant C1, which implies λ0 ≤C1λ1. Analogously,
there exists a constant C2 such that λ1 ≤C2λ0 and we get the
desired result.
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We now fix arbitrary λ ∈ (0,∞) and turn to prove (88).
Given (x, k) ∈ X × Z, by Lemma 1, there exists a unique
α ∈ Ik such that x ∈ Qk

α. We denote such Qk
α by Qk

x and write

Wf(x) � 
k ∈ Z


α ∈ Ik

μ Q
k
α 

− (1/2)
sQk

α



χQk
α
(x) 

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/2)

� 
k ∈ Z

μ Q
k
x 

− 1
sQk

x




2⎧⎨

⎩

⎫⎬

⎭

(1/2)

� 
k ∈ Z


δk

δk+1
μ Q

k
x 

− 1


Qk
x

t
2
Le

− t2L
f(y)




2
dμ(y)

dt

t

⎧⎨

⎩

⎫⎬

⎭

(1/2)

,

(90)

where constants δ ∈ (0, 1) satisfy Lemma 1 and the last line
is obtained by using Proposition 1.

Moreover, for any fixed (x, k) ∈ X × Z, Lemma 1 also
tells us that there are zk

x ∈ Qk
x and constants

C3 ∈ (0, 1), C4 > 0 such that

B z
k
x, C3δ

k
  ⊂ Q

k
x ⊂ B x, C4δ

k
  ⊂ B x, C4δ

− 1
t  � Bx, (91)

for all t ∈ (δk+1, δk). Consequently, by inequalities (9) and
(10), we have



δk

δk+1

μ Q
k
x 

− 1


Qk
x

t
2
Le

− t2L
f(y)




2
dμ(y)

dt

t

≤ 
δk

δk+1
μ B z

k
x, C3δ

k
 

− 1
 

B x,C4δ
k( )

t
2
Le

− t2L
f(y)




2
dμ(y)

dt

t

≤C 
δk

δk+1

μ B x, C4δ
k

  

μ B z
k
x, C3δ

k
  

esssup
y∈B x,C4δ

k( )

t
2
Le

− t2L
f(y)




2dt

t

≤C 
δk

δk+1
esssup

y∈Bx

t
2
Le

− t2L
f(y)




2dt

t

≤C 
δk

δk+1
M
∗
a,L(f)(x, t) 

2dt

t
,

(92)

for some appropriate constant C, whereM∗a,L(f)(x, t) is the
Fefferman–Stein type maximal function with some large
enough constant a to be chosen, and the last line follows
from

esssup
y∈Bx

t
2
Le

− t2L
f(y)




2

� esssup
y∈Bx

t
2
Le

− t2L
f(y)




2

1 + t
− 1

d(x, y) 
2a

1 + t
− 1

d(x, y) 
2a

≤ 1 + C1δ
− 1

  M
∗
a,L(f)(x, t) 

2
.

(93)

Hence, (90) and (92) yield

Wf(x)≤C 
∞

0
M
∗
a,L(f)(x, t) 

2dt

t
 

1/2

≤C 
k ∈ Z


2− k+1

2− k

M
∗
a,L(f)(x, t) 

2 dt

t

⎧⎨

⎩

⎫⎬

⎭

1/2

� C 
k ∈ Z


2

1
M
∗
a,L(f) x, 2− k

t  
2dt

t

⎧⎨

⎩

⎫⎬

⎭

1/2

.

(94)

/us, by using Lemma 9, we deduce that for any β, r> 0
and a> (m/2), there exists a constant C such that

M
∗
a,L(f) x, 2− k

t 



r
≤C 
∞

j�k

2− (j− k)βr


X

2− j
t 

2
Le

− 2− jt( )
2
L
f(z)





r

V z, 2− k
  1 + 2k

d(x, z) 
ar dμ(z). (95)

As in Corollary 1, let r ∈ (0, 1) with p � (2/r)> 1. Fix
β> 0 and choose a> (m/2) such that ar>m + n. /en, we
integrate on both sides of (95) and employ Minkowski in-
equality and Lemma 10 to get

14 Journal of Function Spaces




2

1
M
∗
a,L(f) x, 2− k

y 



2dt

t
 

r/2

≤C 
2

1


∞

j�k

2− (j− k)βr


X

2− jt( 
2
Le− 2− jt( )

2
Lf(z)





r

V z, 2− k(  1 + 2kd(x, z) 
ar dμ(z)





2/r

dt

t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

r/2

� C 
∞

j�k
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2
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X

2− jt( 
2
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2
Lf(z)





r

V z, 2− k(  1 + 2kd(x, z) 
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2/r

dt

t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

r/2

≤C 
∞

j�k
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X


2
1 2− jt( 

2
Le− 2− jt( )

2
Lf(z)





2
(dt/t) 

r/2

V z, 2− k
  1 + 2k

d(x, z) 
ar dμ(z)

� C
X


∞
j�k 2

− (j− k)βr

2
1 2− jt( 

2
Le− 2− jt( )

2
Lf(z)





2
(dt/t) 

r/2

V z, 2− k
  1 + 2k

d(x, z) 
ar dμ(z)

≤CM 

∞

j�k

2− (j− k)βr

2

1
2− j

t 
2
Le

− 2− jt( )
2
L
f(·)





2dt

t
 

r/2
⎛⎝ ⎞⎠(x)

� CM Gk( (x).

(96)

/us, by using Corollary 1, we have


X
φ x,

Wf(x)




λ
⎛⎝ ⎞⎠dμ(x)

≤
X
φ x,

C k∈Z 
2
1 M∗a,L(f) x, 2− kt(  

2
(dt/t) 

1/2

λ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dμ(x)

� 
X
φ x,

C k∈Z 
2
1 M∗a,L(f) x, 2− kt(  

2
(dt/t) 

r/2
 

2/r
⎛⎝ ⎞⎠

1/2

λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dμ(x)

≤
X
φ x,

C k∈Z M Gk( (x) 
2/r

 
1/2

λ
⎛⎜⎝ ⎞⎟⎠dμ(x)

≤C
X
φ x,

k∈ZGk(x)
2/r

 
1/2

λ
⎛⎝ ⎞⎠dμ(x).

(97)

We now turn to estimate G2/r
k (x). Since
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2− (j− k)βr
�

βr

1 − 2− βr

2j− k+1

2j− k

s
− βr− 1ds, (98)

for any k ∈ Z, we have

Gk(x) � C 
∞

j�k


2j− k+1

2j− k

2

1
2− j

t 
2
Le

− 2− jt( )
2
L
f(x)





2dt
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r/2 ds

s
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� C 
∞
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∞

1

2

1
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t 
2
Le
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2
L
f(x)





2dt

t
 

r/2

χEj
(s)

ds

s
βr+1

� C 
∞

1


∞

j�k


2

1
2− j

t 
2
Le

− 2− jt( )
2
L
f(x)





2dt

t
 

r/2

χEj
(s)

ds

s
βr+1,

(99)

where Ej � [2j− k, 2j− k+1]. Using Hölder’s inequality, we
obtain

Gk(x)
2/r

� C 
∞

1


∞

j�k


2

1
2− j

t 
2
Le

− 2− jt( )
2
L
f(x)





2dt

t
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χEj
(s)

ds
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⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

2/r

≤C 
∞

1
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∞
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∞
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2

1
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2
Le
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2
L
f(x)





2dt
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∞
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2

1
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2
Le
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2
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t
 χEj
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s
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� C 
∞

j�k
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2
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2
Le

− 2− jt( )
2
L
f(x)
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� C 
∞

j�k

2− (j− k)βr

2

1
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t 
2
Le

− 2− jt( )
2
L
f(x)





2dt

t
 .

(100)

Summarizing all k ∈ Z, we have
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k∈Z

Gk(x)
2/r ≤C 

k∈Z

j≥ k

2− (j− k)βr

2

1
2− j

t 
2
Le

− 2− jt( )
2
L
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2
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2
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2
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2
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2
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2
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f(x)





2dt

t
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j∈Z


2− j+1
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t
2
Le

− t2L
f(x)




2dt

t

� C 
∞

0
t
2
Le

− t2L
f(x)




2dt

t

� C GL(f)(x)( 
2
.

(101)

/erefore, (11), (97), and (101) yield


X
φ x,

GL(f)(x)

λ
 dμ(x)≥C

X
φ x,

Wf(x)




λ
⎛⎝ ⎞⎠dμ(x).

(102)

It reduces to show the reverse inequality of (102). Let δ be
as in Lemma 1. In view of Proposition 1, we write

f � 
k∈Z


α∈Ik

sQk
α
aQk

α
, (103)

and get

GL(f)(x) � 
∞

0
t
2
Le

− t2L
f(x)




2dt

t
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∞

0
t
2
Le
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α
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2
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2
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α ∈ Ik
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aQk
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2
dt

t
⎛⎜⎜⎝ ⎞⎟⎟⎠

1/2

� I3 + I4.

(104)

We now estimate the integrand function of I3. For any
k> j and α ∈ Ik, noting aQk

α
� LMbQk

α
, we have

t
2
Le

− t2L
aQk

α
 (x)



 � t
2
L

M+1
e

− t2L
bQk

α
 (x)





� t
− 2M

t
2
L 

M+1
e

− t2L
bQk

α
 (x)



.
(105)

Since M> (nq(φ)/2p1) with n given as in (9), we can
choose some q satisfying Corollary 1 such that 2M> (n/q).
/us, there is some N> 0 such that 2M>N> (n/q). /en,
applying Definition 8, the upper bound of the kernel
(t2L)M+1e− t2L (cf. [18], Proposition 3.1), and (11), we get

t
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N
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(106)

where yk
α is the center of Qk

α. Hence, by Lemma 8, we have
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α
⎛⎝ ⎞⎠(x)⎡⎢⎢⎣ ⎤⎥⎥⎦

1/q

.

(107)

For the integrand function of I4 in the case k≤ j and
α ∈ Ik, we write
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e
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  (x)


. (108) /en, using Definition 8, Gaussian estimate (1), and
inequality (11), we obtain
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Consequently,
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α ∈ Ik

sQk
α




q
μ Q

k
α 

− (q/2)
χQk

α
⎛⎝ ⎞⎠(x)⎡⎢⎢⎣ ⎤⎥⎥⎦

1/q

.

(110)

Similar to the discussion in (82) and combining
(104)–(110), we get

GL(f)(x)≤C 
j∈Z


δj− 1

δj

k> j

δ(2M− N)(k− j)
Gk(x)

1/q





2
dt

t
⎛⎜⎜⎝

+ 
j ∈ Z


δj− 1

δj

k≤ j

δ2(j− k)
Gk(x)

1/q





2
dt

t
⎞⎟⎟⎠

1/2

≤C 
j∈Z


δj− 1

δj

k> j

δ(2M− N)(k− j)
Gk(x)

2/q dt

t
⎛⎝

+ 
j ∈ Z


δj− 1

δj

k≤ j

δ2(j− k)
Gk(x)

2/q dt

t
⎞⎠

1/2

� C 
k ∈ Z

Gk(x)
2/q


k> j

δ(2M− N)(k− j)
+ 

k≤ j

δ2(j− k)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/2

≤C 
k ∈ Z

Gk(x)
2/q⎛⎝ ⎞⎠

1/2

.

(111)
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/erefore, (111) and Corollary 1 yield


X
φ x,

GL(f)(x)

λ
 dμ(x)≤C

X
φ x, λ− 1


k ∈ Z

Gk(x)
2/q⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠dμ(x)

≤C
X
φ x, λ− 1


k ∈ Z


α ∈ Ik

sQk
α




q
μ Q

k
α 

− (q/2)
χQk

α
(x)⎛⎝ ⎞⎠

2/q

⎛⎝ ⎞⎠

1/2

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠dμ(x)

� C
X
φ x, λ− 1


k ∈ Z


α ∈ Ik

sQk
α




2
μ Q

k
α 

− 1
χQk

α
(x)⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠dμ(x)

� C
X
φ x,

Wf(x)

λ
 dμ(x),

(112)

which gives the reverse inequality of (102). It finishes the
proof of /eorem 2. □
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in Math, vol. 242, Springer-Verlag, Berlin-New York, NY,
USA, 1971.

[12] A. Grigor’yan, J. Hu, and K. Lau, “Heat kernels on metric
spaces with doubling measure,” Fractal geometry and sto-
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