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A novel two-parameter continuous lifespan model is developed, based on a truncated Fréchet produced family of distributions known as
the truncated Fréchet inverted Lindley distribution. It includes a thorough discussion of statistical features such as the quantile function,
moments, order statistics, incomplete moments, and Lorenz and Bonferroni curves. .e greatest likelihood approach for estimating
population parameters is described. Finally, one real-world data set to application is utilized to demonstrate the new distribution’s utility.
.e data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm.

1. Introduction

Adding parameter(s) to baseline distributions is a traditional
approach for generating families of probability distributions.
.ese families have the capacity to increase the desirable aspects
of probability distributions as well as extract additional infor-
mation from a variety of data sets, which may be used in a
variety of fields such as engineering, economics, biology, and
environmental sciences. Another generator utilizes the short-
ened random variable. In this context, significant research on
the truncated (T)-G families is the T Fréchet-G [1], TWeibull-G
[2], Type II T Fréchet-G (TIITFG) [3],T Burr X-G [4], T
Lomax-G [5], T power Lo-G (TPLoG) [6], TX family of dis-
tributions [7], T log-logistic-G [8], generalized odd Weibull-G
[9], Topp-Leone-G [10], transmuted odd Fréchet-G [11] and
truncated Cauchy power [12].

Aldahlan [3] proposed the TIITFG family with the
following cumulative distribution function (cdf):

F(z; b,φ) � 1 − ee
− (1− G(z;φ))− b

, (1)

and the density function (pdf)

f(z; b,φ) � beg(z;φ)(1 − G(z;φ))
− b− 1

e
− (1− G(z;φ))− b

. (2)

.e following exponential series is used to generate the
expansion of pdf (2):
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Regarding the existing binomial series can be used,

(1 − Z)
− c

� 
∞

i�0

c + i − 1

i
  Z

i
, c> 0, and |Z|< 1. (4)

Employing (3) and (4) in (2), then the pdf of TIITFG,
where b is real, is

f(z; b,φ) � 
∞

i�0
ηig(z;φ) G(z;φ)

i+1
, (5)

where
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⎛⎝ ⎞⎠. (6)

.e quantile function Q(u) of X is given by
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Q(u) � G
− 1 1 − ln

e

1 − u
  

(− 1/b)

 . (7)

Sharma et al.[13] investigated the inverted Lindley (ILi)
distribution, which has the following pdf and cdf,
respectively

g(z; θ) �
θ2

1 + θ
1 + z

z
3 e

(− θ/z)
, z> 0, θ> 0, (8)

G(z; θ) � 1 +
θ

(1 + θ)z
 e

(− θ/z)
, z> 0, θ> 0. (9)

Many statisticians have generalized the ILi distribution
in recent years, such as [14] who studied the extended ILi
distribution, [15] who proposed the generalized ILi distri-
bution, [16] who proposed the power ILi distribution, a new
extension of Ili proposed by [17, 18] who studied weighted Ili

distribution, [19]who studied alpha power transformed ILi
(APTILi) distribution, and [20] who studied extended
exponentiated ILi distribution, and logarithmic ILi model
was studied by [21] and generalized Marshall Olkin ILi by
[22].

.e main goal of this article is to present the Type II
truncated Fréchet inverted Lindley (TIIFILi) distribution, a
novel two-parameter life-time model. .e newmodel is very
flexible. .e pdf can be symmetric, right skewness, and
unimodal. Also, the hrf can be unimodal, increasing, and
J-shaped. Investigate some of its statistical features to discuss
the statistical inference of the TIIFILi model and to give
leading fits than some known models with favourable results
for the TIIFILi model.

.e new model is extremely adaptable, and we may
obtain the cdf and pdf by adding (8) and (9), as shown in (1)
and (2).

F(z; b, θ) � 1 − ee
− 1− (1+(θ/(1+θ)z))e(− θ/z)( )

− b

, z> 0, b, θ> 0, (10)

f(z; b, θ) �
θ2be
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1 + z
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(− θ/z) 1 − 1 +
θ

(1 + θ)z
 e

(− θ/z)
 

− b− 1

e
− 1− (1+(θ/(1+θ)z))e(− θ/z)( )

− b

. (11)

Using the three equations (3)–(5), we can rewrite (11) as
follows:

f(z; b, θ) � 
∞

i�0
ηi

θ2
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1 + z

z
3 e

(− θ(j+1)/z) 1 +
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.

(12)

We may rewrite the above equation using the binomial
expansion as

f(z; b, θ) � 
∞

k�0
Ck

1 + z

z
k+3 e

(− θ(j+1)/z)
, (13)

where

Ck � 
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k
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θk+2

(1 + θ)
k+1. (14)

.e TIIFILi distribution function, the hazard rate
function (hrf), the inverted hazard rate function, and the
cumulative hazard rating function are given when a random
variable Z follows the TIIFILi model,

R(z; b, θ) � ee
− 1− 1+

θ
(1 + θ)z

 e(− θ/z) 

− b

,
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(15)

τ(z; b, θ) �
θ2be/1 + θ  (1 + z)/z3

 e
(− θ/z) 1 − (1 +(θ/(1 + θ)z))e

(− θ/z)
 

− b− 1
e

− 1− (1+(θ/(1+θ)z))e(− θ/z)( )
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, (16)
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and

H(z; b, θ) �
1

1 − 1 − (1 +(θ/(1 + θ)z))e
(− θ/z)

 
− b

. (17)

Figures 1 and 2 show the pdf and hrf plots of the TIIFILi
distribution.

Figure 1 demonstrates how the pdf might be unimodal
and tilted to the right. Figure 2 depicts various potential hrf
forms, including monotone increasing, up-side-down, and
J-shaped.

.e remainder of this article is arranged as follows:
Section 2 investigates distribution’s mathematical charac-
teristics of the proposed model. Section 3 covers the estimate
of distribution parameters using the maximum likelihood
method of estimation. Section 4 provides actual data

applications to illustrate the potential of the new distribu-
tion, and Section 5 ends with remarks.

2. Mathematical Properties

In this section, we will study some statistical properties such
as the quantile function, median, order statistics, moments,
moment generating function, incomplete moments, and
Lorenz and Bonferroni curves.

.e quantile function

1 +
θ

(1 + θ)Q(u)
 e

(− θ/Q(u))
� 1 − ln

e

1 − u
  

(− 1/b)

, 0< u< 1.

(18)

By multiplying (9) both sides by − (1 + θ)e− (1+θ),

− 1 + θ +
θ

Q(u)
 e

− (1+θ+(− θ/Q(u)))
� − (1 + θ)e

− (1+θ) 1 − ln
e

1 − u
  

(− 1/b)

 . (19)

.en,

Q(u) � − 1 +
1
θ

+
1
θ
W− 1 − (1 + θ)e

− (1+θ) 1 − ln
e

1 − u
  

(− 1/b)

   

− 1

. (20)

Corollary 1. If Z∼TIITFILi, the median M of Z is given by

Q u( ) � − 1 +
1
θ

+
1
θ
W− 1 − (1 + θ)e

− (1+θ) 1 − [ln(2e)]
(− 1/b)

   
− 1

. (21)

Assuming Z1 <Z2 < · · · <Zn is an order sample from
TIITFILi population, the pdf of the ith ordered statistics is
given as

f zi: n(  �
n!

(i − 1)!(n − i)!
f(z; b, θ)F(z; b, θ)

i− 1
(1 − F(z; b, θ))

n− i
.

(22)

Substituting (10) and (11), and applying general binomial
series expansion, (13) becomes

f zi: n(  �
n!θ2be
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e
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(i − 1)!(n − i)!(1 + θ)

1 + z

z
3  1 − 1 +

θ
(1 + θ)z

 e
(− θ/z)

 

− b− 1

e
− (n− i+1) 1− (1+(θ/(1+θ)z))e(− θ/z)( )

− b

1 − ee
− 1− (1+(θ/(1+θ)z))e(− θ/z)( )

− b

 
i− 1

.

(23)

We can get the first and last order statistics at i� 1 and
i� n, respectively, as follows:

f z1: n(  �
nθ2be

n
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1 + z

z
3 e
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, (24)

and
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Figure 1: .e pdf of the TIIFILi model for various parameter values.
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Figure 2: .e cdf of the TIIFILi model for various parameter values.
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.e rth moments of TIITFILi distribution are defined as
follows:
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r
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Letting y � (θ(j + 1)/z), z � (θ(j + 1)/y),

dz � (− θ(j + 1)/y2)dy, and simplifying further, then
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∞
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(28)

.e moment generating function of TIITFILi model can
be calculated by

MZ(t) � 
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.e incomplete moments, for example, ϖs(t) are pro-
vided by

ϖs(t) � 
t

0
z

s
f(z; b, θ)dz . (30)

Using (10), then, ϖs(t) can be taken, the next formula

ϖs(t) � 
∞

k�0
Ck 

t

0
z

s 1 + z

z
k+3 e

(− θ(j+1)/z)dz. (31)

.e lower incomplete gamma function is then used to
produce

ϖs(t) � 
∞

k�0
Ck(θ(j + 1))

s− k− 2 ] k − s + 2, θ(j + 1)t
− 1

  + θ(j + 1)] k − s + 1, θ(j + 1)t
− 1

  , s< k + 2. (32)
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In this case, ](s, t) is the lower incomplete gamma
function.

.e Lorenz and Bonferroni curves are given by

LF(z) �
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3. Maximum Likelihood Estimation

Assume that Z1, Z2, ..., Zn is a random sample of size n from
a population with TIITFILi pdf and that the log-likelihood
function is provided by

LogL � n + n log(b) + 2n log(θ) − n log(1 + θ) + 
n

i�1
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z
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i
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.e score functions which correspond to equating the
first-order partial derivative of the last equation to zero is
given by
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where Ni � 1 − (1 + (θ/(1 + θ)zi))e
(− θ/zi), Mi � (zNi/zθ)

are the solutions, say b and θ. .e maximum likelihood
estimators of the TIITFILi distribution correspond to the
scoring functions. .e score functions, on the other hand,
are nonlinear functions; the numerical values of the maxi-
mum likelihood estimates may be derived using the Newton
Raphson iterative optimisation technique.

4. Modelling to Data Sets

To describe the performance of the TIITFILi model in re-
ality, actual data sets are explored. .e whole first set of data
comes from [23]. .e outcomes of the fits are compared in
data set to the power Li (PLi) by [24], alpha power trans-
formed Li (APTLi) by [25], and APT extended exponential
(APTEE) by [26] models.

Statistics measures such as minus log-likelihood ([1),
Akaike information criterion (IC) ([2), Bayesian IC
([3), corrected AIC ([4), and Hannan-Quinn IC ([5)
are obtained. Several criteria are used to compare the
TIITFILi model’s performance against those of other
models.

.e maximum likelihood estimates (MLEs), standard
errors (SErs) of parameters, and the above statistics mea-
sures for the both data sets are given in Table 1. Figures 3–6
provide further information.

Table 1: Analysis results for the first data.

Model MLEs (SErs) [1 [2 [3 [4 [5

TIITFILi
b � 0.254(0.0396)
θ� 2.625(0.804) 162.44 328.88 327.835 329.325 329.777

APTEE
α � 0.161(0.282)

β � 2.01 × 10− 4(0.024)

c � 0.011(0.022)

176.631 359.262 357.694 360.186 360.607

APTLi α � 0.1(0.1037)

c � 0.011(0.024)
183.415 370.83 369.784 371.274 371.727

PLi
β � 1.525(0.155)

θ � 2.63 × 10− 3(2.058 × 10− 3)
195.999 395.999 394.953 396.443 396.895
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Figure 3: Estimated pdf of the TIITFILi and other competing models for first data.
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Table 1 reveals that the TIITFILi model is best suitable
than the APTLi, APTEE, and PLi models. Figures 3 to 6
attempt to estimate pdfs, cdfs, sfs, and pp plots for the fitted
models. We infer that now the TIITFILi model fits the data
set better.

5. Conclusion

.is research suggested a novel two-parameter truncated
Fréchet inverted Lindley model (TIITFILi) distribution for
modelling engineering data and other applications. .e
TIITFILi model generalizes and extends the inverted Lindley
distribution. .e TIITFILi distribution’s hazard rate might
be increasing, unimodal, and J-shaped. Mathematical
properties of the new model such as ordinary moments,
incomplete moments, and the quantile function, order
statistics, are discussed. .e maximum likelihood approach

is used to estimate the parameters of the new distribution.
.e novel distribution’s value and potential are proven by
comparing its fit to a real-world data set to those of existing
distributions. According to the goodness-of-fit statistics, the
new distribution fits better than the other competing
distributions.

Abbreviations

T: Truncated
TIITFG: Type II truncated Fréchet-G
TPLoG: Truncated power Lomax-G
ILi: Inverted Lindley
APTILi: Alpha power transformed inverted Lindley
hrf: .e hazard rate function
cdf: Cumulative distribution function
pdf: Density function

0.0

0.2

0.4

0.6

0.8

0 50 100
z

150 250200

1.0

Empirical
TIITFILi
APTLi

PLi
APTEE

Figure 5: Estimated sf of the TIITFILi and other competing models for the data.

0.0

0.0 0.2 0.4 0.6 0.8
Obs

1.0

0.2

0.4

Ex
p

0.6

0.8

1.0

Figure 6: PP plots of the TIITFILi for the data.

8 Journal of Function Spaces



MLEs: Maximum likelihood estimates
SErs: Standard errors
APTEE: Alpha power transformed extended exponential
PLi: Power Lindley
APTLi: Alpha power transformed Lindley.
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