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In the paper, for a certain class of Hardy operators with kernels, we consider the problem of their boundedness from a second

order weighted Sobolev space to a weighted Lebesgue space.

1. Introduction

Let I = (0,00) and 1 < p, g < co. Let u and v be positive func-
tions locally integrable on the interval I. In addition, suppose
that v € L°(I), where p' = p/p - 1.

Let W = W (v, I) be a set of functions f : I — R hav-

ing generalized derivatives up to the second order on I with
the finite norm

1wz, = I, + 1 O]+ 1) W

where ||-[|, is the standard norm of the space L,(I), 1 <p <

0.
In the paper, we consider the problem of boundedness of
the integral operator

Hf(x)= JXK(x, s)f (s)ds, x>0, (2)

0

with a kernel K(x, s) > 0 from the weighted space W}ZM to the
weighted space L, = L, (u, I) with the norm HfHLq = [lufll,
This problem is equivalent to the validity of the following

inequality

[uFflly < Cllfllwz, f € W, 3)

Let C5°(I) be the set of compactly supported functions

infinitely time continuously differentiable on I. Due to the
assumptions on v, we have that C{°(I) c sza,v' Denote by

W;,V = W;(v, I) the closure of the set C{°(I) with respect
to norm defined by (1). Depending on the behaviour of the
function v at zero and infinity, the set C°(I) can be dense

. 2 . “ 2 _ 2
or not dense in the space W, , i.e, W, =W, or
W2 cW2 and W, + W2 (4)
pv & Wpy3NA W, 7 Wy

respectively.

In the paper, we study inequality (3) under condition (4)
for a certain class of integral operators. Note that in the case
when % is the identity operator .7, inequalities of form (3)
have been studied in many papers. Some results with proofs
and a survey of other results with comments are given in
Chapter 4 of the book [3]. Our work is related to the works
[5, 6], in which inequality (3) with # = . was studied under
various zero boundary conditions for f € W;’V.

The boundedness of integral operators in form (2) from
a first order weighted Sobolev space to a weighted Lebesgue
space has been investigated in the series of papers (see, e.g.,
[1, 2] and references given therein).

The paper is organized as follows. In Section 2, we pres-
ent definitions and statements required to prove the main
results. In Section 3, we present and prove the main results,
especially we obtain necessary and sufficient conditions for
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the validity of inequality (3). In Section 4, we present corol-
laries that follow from the results of Section 3.

2. Axillary Definitions and Statements

Let —00 < a < b<co. In the paper, X, () is the characteris-

tic function of the interval (a, b). Moreover, the notation A
< B means A< c¢Band A=B means A < B« A.
From the book [3], we have the following theorem.

Theorem 1. Let 1 <p<q<o0o0.

(i) The inequality

([

holds if and only if

b 19 , ., , 11p'
A= sup (J uq(t)dt> <J vP (s)ds) <oo. (6)
z€(a,b) \Jz a

In addition, C =~ A, where C is the best constant in (5).

th) " < C(Jh|v(t)f(t)|pdt> Up, (5)

a

)] siopds

a

(ii) The inequality

(!l

holds if and only if

Z 1/q b , 1/]7,
A* = sup <J uq(t)dt> <J v (s)ds> <oo. (8)
z€(a,b) a z

In addition, C = A*, where C is the best constant in (7).
The following definitions and statements are from the

paper [7].

u(r)jbﬂs)ds

t

a

th) B < C(r [v(t)f (t) |Pdt> HP, (7)

Definition 2. Let K(x,s) be a nonnegative function measur-
able on the set O{(x,s): a<s<x<b} and nonincreasing
in the second argument. We say that the function K(x,s)
belongs to the class O (Q) if there exist nonnegative func-
tions w(x) and K, (t, s) measurable on Q such that

K(x,s) = K(x,t) + w(x)Ky, (1, 5), 9)

for a < s <t < x < b; moreover, the equivalence coefficients in
(9) do not depend on s, t, and x.

Definition 3. Let K(x,s) be a nonnegative function measur-
able on the set 2 and nonincreasing in the second argument.
We say that the function K(x, s) belongs to the class 0, (Q)
if there exist K, (x, t) € 07(Q) and nonnegative functions w
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(x), Ko, (t,s), and K, (¢, s) measurable on Q such that
K(x,s) = K(x,t) + K| (%, t)K | ,(t, s) + w(x)K5(t,5), (10)

for a < s <t < x < b; moreover, the equivalence coefficients in
(10) do not depend on s, t, and x.

Definition 4. Let K(x, s) be a nonnegative function measur-
able on the set 2 and nonincreasing in the second argument.
We say that the function K(x, s) belongs to the class 05 (Q)
if there exist K, (x,t) € 0;(Q), K,(x,t) € 0,(Q), and non-
negative functions w(x), K(t,s), K, ;5(t,s), and K,;(t,s)
measurable on Q such that

K(x,5) = K(x, t) + Ky (x, ) Ky 5(t, 5) + Ky (%, £) K 5(t, 5) + w(x) K 5(t, ),
(11)

for a < s <t < x < b; moreover, the equivalence coefficients in
(11) do not depend on s, t, and x.
Let

’

By, (a,b) = oo (JjK‘f (x, 2)u (x)dx) " (JM (s)ds> v ,
(12)

’

b Vg ;o ) 1/p

B, y(a, b) =22(L‘11ph) (J uq(x)wq(x)dx> (J Kb (z,s)v? (s)ds) ,
(13)

B,(a,b) = max {B,(a, b), B, (a,b) }. (14)

Theorem 5. Let 1 < p < q < o0o. Let the kernel of operator (2)
belong to the class O. Then, the inequality

(Jb @) UqSC(JbMt)f(tﬂpdt) !

a (15)

holds if and only if B;(a, b) < co. In addition, C = B,(a, D),
where C is the best constant in (15).
Let

u(x) JXK(x, s)f(s)ds

a

’

wsen g rmon) " [7o0)”
(16)

/

1p

Bufab)= sp (‘hK'} (x. z)uq(x)dx> " (‘.ZKI;’,Z(Z, o7 (s)ds>

z€(ab Ja

(17)

!

B,,(a,b) = sup (ruq (x)w! (x)dx) " (J‘ZK’E,,VZ (z s)v*P’(s)ds) v ,

z€(ab) \Jz a

B,(a, b) = max {B,,(a, b), B, (a,b), Byy(a, b)}. (19)
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Theorem 6. Let 1 < p < q < 00. Let the kernel of operator (2)
belong to the class 0,(Q). Then, inequality (15) holds if and
only if B,(a, b) < co. In addition, C = B,(a, b), where C is the
best constant in (15).

Let

!

B;;(a,b) = sup (qu(x, z)u’f(x)dx) " (JVP (s)ds) " ,

z€(a,b) \Jz

(20)

’

B, (a b) = up (Jng (x, 2)u (x)dx) B (J:Kg:3(z, s (s)ds) v ,

z€(a,b
(21)

Buab)= s (JbK? (x.2) uq(x)dx) " (J:Kg’f3(z, v (s)ds) "

z€(ab

B,y(a,b) = sup (Jbuq (x)uﬂ(x)dx) " (EK{};(Z, s)v’P,(s)ds> v ,

z€(ab) \Jz

(23)

B;(a, b) = max {B;;(a, b), B; ,(a, b), B ;(a, b), B3 p(a, b) }.
(24)

Theorem 7. Let 1 < p < q < 00. Let the kernel of operator (2)

belong to the class 05(Q2). Then, inequality (15) holds if and

only if B;(a, b) < co. In addition, C =~ B;(a, b), where C is the
best constant in (15).

For f € wa, we assume that tlin(} f(t) =1£(0), tllna f'
(0)=f'(0), lim f(t)=f(c0), and lim f'(£)=f"(co)
regardless of whether they are finite or infinite.

The following statement is from the paper [4].

Theorem 8. Let 1 < p < co. If the conditions

J v‘P’(s)ds<ooandJ tP,v_P,(t)dtZOOa (25)

0 1

hold; then, for f € W
(0), and f'(co

!
pv’ there exist the finite values f(0), f
) such that

Wi, ={feW,,:f(0)='(0)=f"(c0) =0} (26)

3. Main Results

First, we state some necessary lemmas. Some of them are
new and of independent interest, and therefore proved in
detail.

3

Lemma 9. Let K(x,s) =K, (x,s) € 0;(Q), where K,(x,s) =
K (x,t) +w(x)K,,(t,s) fora<s<t<x<b. Then

Ky(xs) EJ K, (x 1)dt € 05(Q), (27)

T

JTKl(x, t)(t-s)dt =K, (x,7) (1 —s)* + w(x)J Ky, (7, t)(t - s)dt,

N N

fora<s<t<x<b
X

Ky(xs) = J K (o 0)(t-s)dt e 05(Q).  (29)

N

Proof.

(i) For a<s<Tt<x<b, we have

K, (x t)dt

x%T)+ K (x1)(T-5)+ w(x)J Ko, (7, t)dt.

N

(30)

Therefore, by (10), we get that K,(x,s) € 0, (Q).

(if) For a<s<t<x<b, it easily follows that

[t i

=K, (x,1)(r~-5) +w(x)J

)(t - sdt+JT (x)Kg (7, t)(t = s)dt

N
T

Ko, (7, t)(t = s)dt.

(31)

N

(iii) Using (28), for a < s< 7 <x < b, we have

X

- JXKI (0, £)(t = 7)dt + J

+ w(x)JTKO,l(T, t)(t —s)dt = K5(x, 7) + Ky(x, 7) (7~ 5)

s

X T

Ki(x, t)(t—s)dt +J K (x

s

Ky (%, t)(t—s)dt=J ,)(t—s)dt

T
X

K, (x, t)dt (t=3s) + K, (x,7) (1 - )

T

+ Ky (x,1)(T-5) + w(x)JTKQ1 (. 1)(t - s)dt.

s

(32)

Then, in view of (11), we obtain that K;(x,s) € 05 ().
The proof is complete.



Let a =0 and b = co. Assume that

q

Ba(r) = sup (J (JK(x £)(t - z)dt> " (x)dx> " (JOM (s)ds> v ,

(33)

’

B3,(1) = Os:;g (J: (EK (% t)dt> quq (x)dx> " (J:(z _ S)P’vfp’ (s)ds) Up )

(34)

8510 = s (| K 2o ([ o) .

0eztr (
- s)ds>

(

(

!

35)

- [t [ -0

ég; (T) = max {35,3(7)’ B3,(7), B3, (1), B; O(T)}

36)
37)

By using part (iii) of Lemma 9 and Theorem 7, we have
one more lemma.

Lemma 10. Let I <p < g < oo and K(x,s) €
inequality

(

holds if and only if B;(t)<oco. In addition, C| = B;(7),
where C; is the best constant in (38).
Let

07 (Q). Then, the

qu> " <C; <'Dv(t)g(t)\”dt> I/P)

(38)

u(x)J.x <rK(x, (- s)dt> g(s)ds

0 \Js

/

Bj,(7)= (Jjqu(x, ) (x)dx) " (J';(r —5)#v (s)ds) N ,

(39)

By (1) = (Eouq(x)wq(x)dx>l/q (L ([KO,(T B)(t-s dt " )
(40)
B; (7) = max {B;,z( )> B10(T)} (41)

Using (28) and the inverse Holder’s inequality, by
Theorem 5 we have the following lemma.

Lemma 11. Let 1 < p < q < 0o and K(x, s) € 0;(Q). Then, the

inequality
1) s fponor)”

u(x) JAT <J.TK(x, t)(t- s)dt> g(s)d
(42)

holds if and only if B;(t)<oco. In addition, C,=Bj(T),
where C, is the best constant in (42).
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A (1) = (jm < [[xes t)dt> " (x)dx> & < [ S)P,V,P,(s)ds> w

(43)

From part (i) of Theorem 1, we can state the following
lemma.

Lemma 12. Let 1 < p < g < co. Then, the inequality
00 X T q 1/q T 1/p
<J u(x) <[ K(x, t)dt)[ (- dx) <C; (J |v(t)g(t)|Pdt> ,
T Jr Jo 0

(44)
holds if and only if A~(1) <oo. In addition, C; =A™ (),
where Cj is the best constant in (44).

Assume that

ey =son [ (Lm0 o) ([ - vioa) ™

s)g(s)ds

Pl (Jqu (o 2)ut (x)dx> : <J (2= (s—)v? (s)ds> "

z>T z

(46)

0o 19 [ ¢z sz ' 1p'

Blo(7) = sup (J uq(x)uﬂ(x)dx> <J <LK0J(Z, t)dt)P (s— T)P’v*P’(s)ds> ,
(47)
B; () = max {BE,Z(T)’ B;,(7), By(7) } (48)

By using part (i) of Lemma 9 and Theorem 6, we get the
following statement.

Lemma 13. Let I < p < q < 0o and K(x, s) € 0;(Q). Then, the
inequality

(J OO ”(")Jj <JK (x f)dt> (s—7)g(s)ds

holds if and only if Bj(t)<oco. In addition, Cj = B}(7),
where C7 is the best constant in (49).
Let

qu> . ct (Jjoh/(t) a(t) \Pdt> "

(49)

i =sop (| e ) ([ - orrioas)

z>1 \Jz

(50)

(51)
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A= (Jm ”q(”wq(x)dx) ’ (J (J iKm (s 0)(t- r)df>P/V’P'(s)d$> "

(B,A)"(r) = max {Bj,(7), Bj,(), A"(7) }. (53)

Lemma 14. Let I < p < g < 00 and K(x, s) € O;(Q). Then, the
inequality

(X

holds if and only if (B;A)"(t)<oo. In addition, C}=~
(B,A)" (1), where Cj is the best constant in (54).

qu) " c <'I.jo\v(t) g(t) \Pdt> v

(54)

u(x)ﬁ <JSK(x, £t - T)dt) g(s)ds

T

Proof. Since K(x,s) € 07 (Q), by Lemma 9, we have that

S

JSK(x, t)(t - 7)dt = K(x,5)(s - 7)* + w(x) [ Ko (s, t)(t = 1)dt.

T JT

(55)

Hence, inequality (54) is equivalent to simultaneous
fulfilment of the following inequalities:

(" )" <o ([Cpwara)”

) .
(X

q 1/q s 1p
dx) <Cj, (J |v(t)g(t)\pdt> .
(57)

In addition, max {Cj, C},} = Cj, where Cj, and Cj,
are the best constants in (56) and (57), respectively. By The-
orem 5, inequality (56) holds if and only if max {Bj(7),
Bj(7)} <00, and in addition, CJ, = max {Bj, (1), B{,(7)}.
By part (i) of Theorem 1, inequality (57) holds if and only
if A*(7) < co, and in addition, C3, = A*(7). Then, inequality
(54) holds if and only if (B;A)* (1) < co and C} = (B,A)" (7).
The proof is complete. O

u(x) rK(x, s)(s—1)g(s)ds

u(x)w(x)Ji (JiKm (s, t)(t— T)dt)g(s)ds

Assume that
(A" (0) = sup (J (JiK(x, )t - T)dt)quq(x)dx> " <E°ﬂ’(s)ds> "
(58)

By using part (ii) of Theorem 1, we have the following
lemma.

Lemma 15. Let 1 < p < q < co. Then, the inequality

([ i qu> Ve (.[m\v<t>g<r>|f’dt) )

T (59)

u(x) (KK(x, £)(t- T)dt) '[mg(s)ds

X

holds if and only if (A*)" (1) < co. In addition, C} =~ (A*)" (1)
, where Cj} is the best constant in (59).

Let infinitely differentiable functions ¢ and y be such that
12¢920,12y20,¢(t)=1for0<t<1/2,¢(t)=0fort>3
12, y(t) =1 for t >3/2 and y(t) = 0 for 0 < t < 1/2. Moreover,
@(t) >0, y(t) >0 for 1/2<t<3/2 and ¢(t) + w(t) =1 for all
tel

Assume that P~ and P* are polynomials such that P~ (¢)
=¢, + ¢;t and P*(¢) = ¢,t, where ¢; € R, i =0, 1, 2. Denote by
{P"} and {P*} the sets of polynomials in the form P~ and
P*, respectively.

Let the conditions of Theorem 8 hold. Then, from (26),
we have

) .
W}%,v = Wp,v ® SDX(O,I){P } ® 1//X(l,oo) {P+}’ (60)

where @ means the direct sum.
From Theorem 8, it follows that (1) is equivalent to the
norm

e, = "], + £ @)+ 17O (61)
Therefore, for f € le,)v we have
e, =", (62)

First, using (60), we establish inequality (3) on the set
wa, which, due to (62), has the form:

1Sy < Cllvf"

)
P,f ewW,,. (63)
Assume that

E(r) = max {B;(¢), By (1), A™ (1)}, F(r) = max {B] (), (BiA)" (2), (A")" (1)},
(64)

EF= 1Trg max {E(7), F(1)}. (65)

Our first main result reads.

Theorem 16. Let 1<p<g<oco and K(x,s) € 0,(Q). Let
condition (25) hold. Then, inequality (63) holds if and only
if EF < 00. In addition, C = EF, where C is the best constant
in (63).

Proof. Sufficiency. From (25) by Theorem 8, it follows the
validity of (26). As in Theorem 2.1 of [5], using (26), for f

2
e W,,» we get



t

)= X, <t>J

0

where 7 € I. Assuming f'’ = g in (66), we have that g €L,,

(I). Moreover, from (26), it follows that fo s)ds=
Assume that LP’V( )={g€L,,(I): [ g(s)ds=0}. Then,

(66), the condition f € W;V is equivalent to the condition g €

iP’V(I ). Replacing (66) into the left-hand side of (63), we find that

14

F=ugfi= j “K(n )f(t)dt

T
gt

0

dx+J

u(x) J:K(x, Hf (Hdt

T
ux

T

q 0
dx+J
T

T

u(x) [

Jo \Js

oo [

)t s)dt) gls)ds

(J (x t)dt) (s—7)g(s)ds - u(x>ﬁ (J'ZK(x, t)(t—T)dt> 9(s)ds—u(x) (EK(X, t)(t—r)dt> Eog(s)ds !

Therefore, inequality (63) has the form

((EK(x, £t - s)dt) g(s)ds

q 00
dx+[

[/ ([ s a0} = mgtorts-ut [ ([ s e =1t ) gt [ K ye o1t [

In the left-hand side of (68), using the Minkowski’s
inequality for sums, then, applying Lemmas 10, 11, 12, 13,
and 14 to each term, we get

pero([voaoras) v [“moaoras)

T

< max (£, F(0) [ biejgtoas) "

(69)

Since the left-hand side of inequality (63) does not
depend on 7 €I, then, taking in the right-hand side of (69)
infimum with respect to 7 € I, we can conclude that

C < EF, (70)

where C is the best constant in (63).

(13079 )| [ (7= 105

q T
dx:J
0

' K(x,t) J —5)g(s)dsdt + u(x)JXK(x, t)J (t-s5)g(s)dsdt - u(x)JXK(x, t)J (s— T)g(s)dsdt—u(x)J K(x,t)(t- T)J g(s)dsdt

u(x)JOK(x, t)J[ (t=s)g(s)ds

([K(x, )(t- s)dt)g(s)ds + u(x)' tK

) ([ Kt 00 -1t ) g(opde s uto|
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t

(=0 "= =), (66)

T

X

q
dx

0
t X 00

q
dx

T T T t

(67)

(x t)dt‘:(‘r —5)g(s)ds — u(x)

dx.

X ‘T

K(x, t)dtl (r-

Jo

)g(s)ds - u(x)

qu)”q <o [ mesoras) el

Jo

T

Necessity. By the conditions of Theorem 16, we have that
v' €L, (I). Then, for any 7 € I, there exists k, such that

JTv‘P'(t)dt = kTva‘P'(t)dt, (71)

0 T

in addition, k, increases in 7, lim k,=0and lim k, =oco0

T—0*" T—00

Let us use the ideas in the paper [5]. For 7 € I, we con-
sider two sets £, ={ge€L, (0,7): g=0} and £, ={ge
L,,(1,00): g<0}. For each g, €%, and g,€%,, we,
respectively, construct the functions g, € £, and g, € &,
so that g(t) =g,(t) for 0<t<7 and g(t) = g,(t) for t>1
belongs to the set Iip,v(l ).

We define a strictly increasing function p: (0,7) —
(1,00) from the relation

JS V‘P’(t)dt = kTrO v‘P/(t)dt, s€(0,7); (72)
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s 0

J v (t)dt= kTJ v (t)dt,s € (T,00), (73)

0 s

where p~! is inverse to p. From (73), it follows that the func-

tions p and p~! are locally absolutely continuous, p(7) =1

and lir% p(s) = co.Differentiating both relations in (73), we
Ss—

have
l:7v‘1"(p(s)) "(s)],s € (0,7);k
£ s P Okse @k »
v (p(s Lo
= 71}(5,(55 ) [(p7'(5))" s s € (1,00).
Then, for g, € £, we construct
0= kg, (07 (O) D isr (79
v (p(1)
while for g, € Z,, we construct
—p'
9.)=—F u(pl) S 0<tsT (79

Changing the variables p~! (¢) = s and using the first equal-
ity in (74), we find that

[ bogaeypae=re [

T

Similarly, using the second equality in (74), we get
(¢}

j]v(t)gl(t)vdt:ki‘f’j v(S)gy()Pds<co.  (78)

T

0

From (77) and (78), assuming that g(t) = g, (¢) for 0 < ¢
<tand g(t) = g,(t) for t > 7, we have

[ gt =i [ g, o= (k) [, 0 <o

(79)

ie, g €L, (I). For any 7 € I integrating both sides of (75)
from 7 to 0o and (76) from 0 to 7, we find that

0O

Joog(t)dt = —JTg(t)dt, i.e.,J g(t)dt=0. (80)

T 0 0
Hence, constructed from the functions g, € &, and g, €

Z,, the function g belongs to I:p,v(l ). Replacing it into (68),

we get

(x, £)(t - s)dt) g, (s)ds> dx

VR
—
=) 3
N
<
—
=
S~—
[
=) =
7 N
2 =2

JTK(x, H(t- s)dt) g,(s)ds
K(x, t)dtj (t—35)g,(s)ds

K(x t>dt) (5= 1)\g(5)/ds (81)

K(x, )= ) (5

o[-0 Tre) )

where all terms in the left-hand side are nonnegative.
Let the function g € I:p,v(l ) constructed from the func-
tion g, € Z,. Then, from (81) and (79), we have

(j (u(x)r (EK(x, (- s)dt) a9 (s)ds) Y+ Jm (u(x)f <J:K(x, (- s)dt) g,(s)ds+ u(x)JiK(x, t)dtf(f -9)g, (s)) qu> P cL+k)"” (J:h/(s) 9,(5) |Pds> v

0

(82)



Due to arbitrariness of g, € L, (0, ), by Lemmas 10, 11,
and 12, the latter gives that

E(r) < (1+k)"C. (83)

Similarly, due to (81) and (79), for the function g € I:P)V
(I) constructed from the function g, € &,, we obtain

Fr) < (1+K77)c. (84)
From (83) and (84), we find that

EF = inf max {E(7), F(r)} < Cinf [max { (1+ &) (1+ k1) }] " <4C.
(85)
Therefore, EF <« C, which, together with (70), yields that

EF = C, where C is the best constant in (63). The proof is
complete. O

Let

oo ([ s )" ]

u(x)J:K(x, t)dt

u(x) jl:K(x, ) tdtr dx> ”q}.

(86)

Our main result concerning Hardy-type inequality (3)
reads.

Theorem 17. Let 1<p<g<oco and K(x,s)€ 0;(Q). Let
conditions in (25) hold. Then, inequality (3) holds if and only
if max {G, EF} < co. In addition, C =~ max {G, EF}, where C
is the best constant in (3).

Proof. Due to (60), we consider inequality (3) on the set
PXo P} VX (P} = H. (87)
The function f € H has the form
FO=0Oxon (6 +at) + ¥ (D)X 0 (et (88)

Hence, f "(t) =0 almost everywhere on t € I. Therefore,
on the basis of (61), we have

lugtfl, <C(|f @] +17O)).feH.  (89)
Let f, € H be such that

Jo®) = ()X (0, (1) + ¥(1) X (1,00) (1)1 (90)
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Then, from (89), we obtain
00 X q 1q
C> (L u(x)LK(x, t)f,(t) dt dx) >min {¢(1),y(1)}

x (J: “x s Jm

1

1 q 1/q
dx) s

(o1)

u(x)EK(x, t)dt

u(x)[

K(x, t)dt + u(x) [XK(x, t)tdt

J1

which implies that C > G.

Let max {|¢o| +[c;|, e[} =L. Then, |f(2)] SL(X(O,I)(t)
+ X(l,oo)(t)t)‘ Replacing the function f into the left-hand
side of (89), we get

(I
]

1
The latter, together with C > G, gives that C= G. Then,

by Theorem 16, it follows that C =~ max {G, EF}, where C
is the best constant in (3). The proof is complete. O

u(x)J.:K(x, Hf (1) dtr dx) Mol <J;
u(x)J;K(x, t)dt+ u(x)JXK(x, t)tdt

1

u(x)J%K(x, t)dt

q70 1q
dx) < LG.

q
dx

4. Corollaries

Assume that the kernel K(x,s) of operator (2) satisfies the
Oinarov condition

K(x,s)=K(x,t) +K(t,5),0<s<t<x<o00, (93)

which is often applied for integral operators. Then, in B; (1),
the expression B3 () turns to the expression

=g ([ wa) (] et 7o)

(94)

in By (1) the expression By ((7) turns to the expression
00 1/q T T ?' ,
Biy(1) = (J uq(x)dx) <J (J K(t, t)(t—s)dt) yP (s)ds) R
T 0 s

in B; (7) the expression B (7) turns to the expression

e[ ([ ([ 7o)

(96)

and in (B,A)"(), the expressions B{(t), A*(t), respec-
tively, turn to the expressions

’

B! (1) = sup (Jmuq (x) dx) " (JZKP’(Z, )(s =) 2V (s) ds> v ,

Z>T z T

(97)
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w1 pec <Eouq ® dx) : (Ji (JS,K(S’ Ht-1) dt> p’v’P’ (5)d5> IIP’.

(98)

After these changes, we denote E(t) by E(t), F(t) by F
(1), and EF by EF and get the following statement.

Corollary 18. Let 1 < p <q <00 and the kernel of (2) satisfy
condition (93). Let conditions (25) hold.

(i) Inequality (63) holds if and only if EF < co. In addi-
tion, C = EF, where C is the best constant in (63)

(ii) Inequality (3) holds if and only if max {G, EF} < co.
In addition, C = max {G, EF}, where C is the best
constant in (3)

Let n > 3. Instead of operator (2), we consider the operator
of Riemann-Liouville I,_,, defined by

X

Lo ()= g | -0 A 99)

0

The kernel (x—t)"™ of the operator I,_, satisfies condi-

X

s T

Then instead of inequalities (42) and (44), we, respec-
tively, have

(X

qu) " <C, (Jr|v(s)g(s) |pds) ”P,
0
(104)

u(x)r(r -5)"g(s)ds

0

i) Ve ([postora)”
(105)

u(x)(x - T)”’ZJ.T(T —s)g(s)ds

S

tion (93), and therefore, it belongs to the class 0;(Q). In this
case, we replace K(x,t) and K, (x,t) by (x— )" and

assume that w(x) = 1. For the kernel (x—t)"
(38) has the form

(

Then, according to Theorem 5, we have C; =~ % (1) =
max { B (1), B, ,(1)}, where

B, (1) = sup <J(x - Z)q<”1)u"(x)dx> : (JZV_P | (S)d5> "

inequality,

qu) Yeq (st v

0

ute)[ (=gt

(100)

0<z<T z 0
(101)
T 1q sz , , 1p'
B,(t) = sup (J uq(x)dx) (J (z—s)P(mDyP (s)ds) .
0<z<t z 0
(102)

For the sum of kernels of the operators in (42) and (44),
we deduce that

JT(x — )" (t—s)dt + J (x=t)"dt(t-s)= (x—17)" (7= +(1=5)"" + (x-1)" (-8 = (1 -5)" + (x—1)" (T~ 5).

(103)

By part (i) of Theorem 1, this yields that

G, =~ (quq (x)dx) " (JT(T - s)P’<"-1>v*P’(s)ds) " (7),

T 0

C; = (Jm (x- T)q<"*2>uq(x)dx> " (JT(T — )y (s)ds) " o5 (7).

0 (107)

Assume that o/~ (1) = max {&/; (1), o5 (1) }. Now, for the
sum of kernels of the operators in (49) and (54), we get

r(x - t)"'3dt (s—7)+ J (x- t)"_3(t -7)dt = (x - 5)"'2(5 -T)+(x— s)”_3(s - 1)2 +(s— ‘r)"'l = (x— s)”_z(s -T)+(s— T)”_l = (x— T)”_Z(s - 7).

T

Then instead of inequalities (49) and (54), we obtain

i) Ve ([ ara)”

(109)

(108)

Hence, by part (i) of Theorem 1 we have

Ci = SZSE (I:O(x - )12y (x)dx> " <£(s —)yr (s)ds> " =d" (7).
| (110)



10

For the kernel (x —t)"~ inequality (59) can be written as
follows:

Therefore, by using part (ii) of Theorem 1, we find

Ci= <r(x — 7)1y (x)dx) " (Jwﬁ’(s)ds) " (o) (7).

T z

00

)1 [ gle)ds

JX

i) Ve ([Cara)”

T

(111)

Assume that

() = max { B (v), &~ (1)}, F(v) = max {" (v), ()" (1)},

(113)
%’?:in? max {&(1), F(1)}. (114)

Thus, for inequality (63) with operator (99)
[l of I, < Cllvf || £ €Wy, (115)

we can conclude the following statement.

Corollary 19. Let I1<p<q<oo and conditions (25) hold.
Then, inequality (115) holds if and only if EF < co. In addi-
tion, C = &%, where C is the best constant in (115).

Assume that I, ,f(t) = g(t) in (115). Then, g""2)(¢)
f(t) and g(0)=0, i=0,1, -+, n— 3. Moreover, g (t) =
''(t) and inequality (115) turns to the inequality

f

lugll, < C[|vg" (116)

4
with conditions

g"(0)=0,i=0,1,---,n—1, 9"V (c0) = 0. (117)

From Corollary 19, we get one more corollary.

Corollary 20. Let 1<p<g<oco and conditions (25) hold.
Then, inequality (116) with conditions (117) holds if and only
if 8F < 00. In addition, C = &, where C is the best constant
in (116).

The statement of Corollary 20 gives one of the results of
the work [6].
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