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In the paper, for a certain class of Hardy operators with kernels, we consider the problem of their boundedness from a second
order weighted Sobolev space to a weighted Lebesgue space.

1. Introduction

Let I = ð0,∞Þ and 1 < p, q <∞. Let u and v be positive func-
tions locally integrable on the interval I. In addition, suppose
that v−p′ ∈ Lloc1 ðIÞ, where p′ = p/p − 1.

LetW2
p,v ≡W2

pðv, IÞ be a set of functions f : I ⟶ℝ hav-
ing generalized derivatives up to the second order on I with
the finite norm

fk kW2
p,v
= vf ′′
�� ��

p
+ f ′ 1ð Þ�� �� + f 1ð Þj j, ð1Þ

where k·kp is the standard norm of the space LpðIÞ, 1 < p <
∞.

In the paper, we consider the problem of boundedness of
the integral operator

K f xð Þ =
ðx
0
K x, sð Þf sð Þds, x > 0, ð2Þ

with a kernel Kðx, sÞ ≥ 0 from the weighted spaceW2
p,v to the

weighted space Lq,u ≡ Lqðu, IÞ with the norm k f kLq,u = kuf kq.
This problem is equivalent to the validity of the following
inequality

uK fk kq ≤ C fk kW2
p,v
, f ∈W2

p,v: ð3Þ

Let C∞
0 ðIÞ be the set of compactly supported functions

infinitely time continuously differentiable on I. Due to the
assumptions on v, we have that C∞

0 ðIÞ ⊂W2
p,v. Denote by

_W
2
p,v ≡ _W

2
pðv, IÞ the closure of the set C∞

0 ðIÞ with respect
to norm defined by (1). Depending on the behaviour of the
function v at zero and infinity, the set C∞

0 ðIÞ can be dense

or not dense in the space W2
p,v, i.e., _W

2
p,v =W2

p,v or

_W
2
p,v ⊂W2

p,v and _W
2
p,v ≠W2

p,v, ð4Þ

respectively.
In the paper, we study inequality (3) under condition (4)

for a certain class of integral operators. Note that in the case
when K is the identity operator I , inequalities of form (3)
have been studied in many papers. Some results with proofs
and a survey of other results with comments are given in
Chapter 4 of the book [3]. Our work is related to the works
[5, 6], in which inequality (3) withK ≡I was studied under
various zero boundary conditions for f ∈W2

p,v .
The boundedness of integral operators in form (2) from

a first order weighted Sobolev space to a weighted Lebesgue
space has been investigated in the series of papers (see, e.g.,
[1, 2] and references given therein).

The paper is organized as follows. In Section 2, we pres-
ent definitions and statements required to prove the main
results. In Section 3, we present and prove the main results,
especially we obtain necessary and sufficient conditions for

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 5257476, 10 pages
https://doi.org/10.1155/2022/5257476

https://orcid.org/0000-0003-3011-1783
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5257476


the validity of inequality (3). In Section 4, we present corol-
laries that follow from the results of Section 3.

2. Axillary Definitions and Statements

Let −∞≤ a < b≤∞. In the paper, χða,bÞð·Þ is the characteris-
tic function of the interval ða, bÞ. Moreover, the notation A
≪ B means A ≤ cB and A ≈ B means A≪ B≪ A.

From the book [3], we have the following theorem.

Theorem 1. Let 1 < p ≤ q <∞.

(i) The inequality

ðb
a
u tð Þ

ðt
a
f sð Þds

����
����
q

dt
� �1/q

≤ C
ðb
a
v tð Þf tð Þj jpdt

� �1/p
, ð5Þ

holds if and only if

A = sup
z∈ a,bð Þ

ðb
z
uq tð Þdt

� �1/q ðz
a
v−p′ sð Þds

� �1/p′
<∞: ð6Þ

In addition, C ≈ A, where C is the best constant in (5).

(ii) The inequality

ðb
a
u tð Þ

ðb
t
f sð Þds

����
����
q

dt

 !1/q

≤ C
ðb
a
v tð Þf tð Þj jpdt

� �1/p
, ð7Þ

holds if and only if

A⋆ = sup
z∈ a,bð Þ

ðz
a
uq tð Þdt

� �1/q ðb
z
v−p′ sð Þds

� �1/p′
<∞: ð8Þ

In addition, C ≈ A⋆, where C is the best constant in (7).
The following definitions and statements are from the

paper [7].

Definition 2. Let Kðx, sÞ be a nonnegative function measur-
able on the set Ωfðx, sÞ: a < s ≤ x < bg and nonincreasing
in the second argument. We say that the function Kðx, sÞ
belongs to the class O−

1 ðΩÞ if there exist nonnegative func-
tions wðxÞ and K0,1ðt, sÞ measurable on Ω such that

K x, sð Þ ≈ K x, tð Þ +w xð ÞK0,1 t, sð Þ, ð9Þ

for a < s ≤ t ≤ x < b; moreover, the equivalence coefficients in
(9) do not depend on s, t, and x.

Definition 3. Let Kðx, sÞ be a nonnegative function measur-
able on the set Ω and nonincreasing in the second argument.
We say that the function Kðx, sÞ belongs to the class O−

2 ðΩÞ
if there exist K1ðx, tÞ ∈ O−

1 ðΩÞ and nonnegative functions w

ðxÞ, K0,2ðt, sÞ, and K1,2ðt, sÞ measurable on Ω such that

K x, sð Þ ≈ K x, tð Þ + K1 x, tð ÞK1,2 t, sð Þ +w xð ÞK0,2 t, sð Þ, ð10Þ

for a < s ≤ t ≤ x < b; moreover, the equivalence coefficients in
(10) do not depend on s, t, and x.

Definition 4. Let Kðx, sÞ be a nonnegative function measur-
able on the set Ω and nonincreasing in the second argument.
We say that the function Kðx, sÞ belongs to the class O−

3 ðΩÞ
if there exist K1ðx, tÞ ∈ O−

1 ðΩÞ, K2ðx, tÞ ∈ O−
2 ðΩÞ, and non-

negative functions wðxÞ, K0,3ðt, sÞ, K1,3ðt, sÞ, and K2,3ðt, sÞ
measurable on Ω such that

K x, sð Þ ≈ K x, tð Þ + K2 x, tð ÞK2,3 t, sð Þ + K1 x, tð ÞK1,3 t, sð Þ +w xð ÞK0,3 t, sð Þ,
ð11Þ

for a < s ≤ t ≤ x < b; moreover, the equivalence coefficients in
(11) do not depend on s, t, and x.

Let

B1,1 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
Kq x, zð Þuq xð Þdx

� �1/q ðz
a
v−p′ sð Þds

� �1/p′
,

ð12Þ

B1,0 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
uq xð Þwq xð Þdx

� �1/q ðz
a
Kp′

0,1 z, sð Þv−p′ sð Þds
� �1/p′

,

ð13Þ
B1 a, bð Þ =max B1,1 a, bð Þ, B1,0 a, bð Þ� �

: ð14Þ
Theorem 5. Let 1 < p ≤ q <∞. Let the kernel of operator (2)
belong to the class O−

1 . Then, the inequality

ðb
a
u xð Þ

ðx
a
K x, sð Þf sð Þds

����
����
q

dx
� �1/q

≤ C
ðb
a
v tð Þf tð Þj jpdt

� �1/p
,

ð15Þ

holds if and only if B1ða, bÞ <∞. In addition, C ≈ B1ða, bÞ,
where C is the best constant in (15).

Let

B2,2 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
Kq x, zð Þuq xð Þdx

� �1/q ðz
a
v−p′ sð Þds

� �1/p′
,

ð16Þ

B2,1 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
Kq

1 x, zð Þuq xð Þdx
� �1/q ðz

a
Kp′

1,2 z, sð Þv−p′ sð Þds
� �1/p′

,

ð17Þ

B2,0 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
uq xð Þwq xð Þdx

� �1/q ðz
a
Kp′

0,2 z, sð Þv−p′ sð Þds
� �1/p′

,

ð18Þ
B2 a, bð Þ =max B2,2 a, bð Þ, B2,1 a, bð Þ, B2,0 a, bð Þ� �

: ð19Þ
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Theorem 6. Let 1 < p ≤ q <∞. Let the kernel of operator (2)
belong to the class O−

2 ðΩÞ. Then, inequality (15) holds if and
only if B2ða, bÞ <∞. In addition, C ≈ B2ða, bÞ, where C is the
best constant in (15).

Let

B3,3 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
Kq x, zð Þuq xð Þdx

� �1/q ðz
a
v−p′ sð Þds

� �1/p′
,

ð20Þ

B3,2 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
Kq

2 x, zð Þuq xð Þdx
� �1/q ðz

a
Kp′

2,3 z, sð Þv−p′ sð Þds
� �1/p′

,

ð21Þ

B3,1 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
Kq

1 x, zð Þuq xð Þdx
� �1/q ðz

a
Kp′

1,3 z, sð Þv−p′ sð Þds
� �1/p′

,

ð22Þ

B3,0 a, bð Þ = sup
z∈ a,bð Þ

ðb
z
uq xð Þwq xð Þdx

� �1/q ðz
a
Kp′

0,3 z, sð Þv−p′ sð Þds
� �1/p′

,

ð23Þ

B3 a, bð Þ =max B3,3 a, bð Þ, B3,2 a, bð Þ, B3,1 a, bð Þ, B3,0 a, bð Þ� �
:

ð24Þ

Theorem 7. Let 1 < p ≤ q <∞. Let the kernel of operator (2)
belong to the class O−

3 ðΩÞ. Then, inequality (15) holds if and
only if B3ða, bÞ <∞. In addition, C ≈ B3ða, bÞ, where C is the
best constant in (15).

For f ∈W2
p,v, we assume that lim

t⟶0+
f ðtÞ = f ð0Þ, lim

t⟶0+
f ′

ðtÞ = f ′ð0Þ, lim
t⟶∞

f ðtÞ = f ð∞Þ, and lim
t⟶∞

f ′ðtÞ = f ′ð∞Þ
regardless of whether they are finite or infinite.

The following statement is from the paper [4].

Theorem 8. Let 1 < p <∞. If the conditions

ð∞
0
v−p′ sð Þds <∞and

ð∞
1
tp′v−p′ tð Þdt =∞, ð25Þ

hold; then, for f ∈W2
p,v, there exist the finite values f ð0Þ, f ′

ð0Þ, and f ′ð∞Þ such that

_W
2
p,v = f ∈W2

p,v : f 0ð Þ = f ′ 0ð Þ = f ′ ∞ð Þ = 0
n o

: ð26Þ

3. Main Results

First, we state some necessary lemmas. Some of them are
new and of independent interest, and therefore proved in
detail.

Lemma 9. Let Kðx, sÞ ≡ K1ðx, sÞ ∈ O−
1 ðΩÞ, where K1ðx, sÞ ≈

K1ðx, tÞ +wðxÞK0,1ðt, sÞ for a < s ≤ t ≤ x < b. Then

K2 x, sð Þ ≡
ðx
s
K1 x, tð Þdt ∈ O−

2 Ωð Þ, ð27Þ

ðτ
s
K1 x, tð Þ t − sð Þdt ≈ K1 x, τð Þ τ − sð Þ2 +w xð Þ

ðτ
s
K0,1 τ, tð Þ t − sð Þdt,

ð28Þ

for a < s ≤ τ ≤ x < b;

K3 x, sð Þ ≡
ðx
s
K1 x, tð Þ t − sð Þdt ∈ O−

3 Ωð Þ: ð29Þ

Proof.

(i) For a < s ≤ τ ≤ x < b, we have

K2 x, sð Þ =
ðx
s
K1 x, tð Þdt =

ðx
τ

K1 x, tð Þdt +
ðτ
s
K1 x, tð Þdt

≈ K2 x, τð Þ + K1 x, τð Þ τ − sð Þ +w xð Þ
ðτ
s
K0,1 τ, tð Þdt:

ð30Þ

Therefore, by (10), we get that K2ðx, sÞ ∈ O−
2 ðΩÞ.

(ii) For a < s ≤ τ ≤ x < b, it easily follows that

ðτ
s
K1 x, tð Þ t − sð Þdt ≈

ðτ
s
K1 x, τð Þ t − sð Þdt +

ðτ
s
w xð ÞK0,1 τ, tð Þ t − sð Þdt

≈ K1 x, τð Þ τ − sð Þ2 +w xð Þ
ðτ
s
K0,1 τ, tð Þ t − sð Þdt:

ð31Þ

(iii) Using (28), for a < s ≤ τ ≤ x < b, we have

K3 x, sð Þ =
ðx
s
K1 x, tð Þ t − sð Þdt =

ðx
τ

K1 x, tð Þ t − sð Þdt +
ðτ
s
K1 x, tð Þ t − sð Þdt

≈
ðx
τ

K1 x, tð Þ t − τð Þdt +
ðx
τ

K1 x, tð Þdt τ − sð Þ + K1 x, τð Þ τ − sð Þ2

+w xð Þ
ðτ
s
K0,1 τ, tð Þ t − sð Þdt = K3 x, τð Þ + K2 x, τð Þ τ − sð Þ

+ K1 x, τð Þ τ − sð Þ2 +w xð Þ
ðτ
s
K0,1 τ, tð Þ t − sð Þdt:

ð32Þ

Then, in view of (11), we obtain that K3ðx, sÞ ∈ O−
3 ðΩÞ.

The proof is complete.
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Let a = 0 and b =∞. Assume that

B−
3,3 τð Þ = sup

0<z<τ

ðτ
z

ðx
z
K x, tð Þ t − zð Þdt

� �q

uq xð Þdx
� �1/q ðz

0
v−p′ sð Þds

� �1/p′
,

ð33Þ

B−
3,2 τð Þ = sup

0<z<τ

ðτ
z

ðx
z
K x, tð Þdt

� �q

uq xð Þdx
� �1/q ðz

0
z − sð Þp′v−p′ sð Þds

� �1/p′
,

ð34Þ

B−
3,1 τð Þ = sup

0<z<τ

ðτ
z
Kq x, zð Þuq xð Þdx

� �1/q ðz
0
z − sð Þ2p′v−p′ sð Þds

� �1/p′
,

ð35Þ

B−
3,0 τð Þ = sup

0<z<τ

ðτ
z
uq xð Þwq xð Þdx

� �1/q ðz
0

ðz
s
K0,1 z, tð Þ t − sð Þdt

� �p′
v−p′ sð Þds

 !1/p′

,

ð36Þ
B−
3 τð Þ =max B−

3,3 τð Þ, B−
3,2 τð Þ, B−

3,1 τð Þ, B−
3,0 τð Þ� �

: ð37Þ

By using part (iii) of Lemma 9 and Theorem 7, we have
one more lemma.

Lemma 10. Let 1 < p ≤ q <∞ and Kðx, sÞ ∈ O−
1 ðΩÞ. Then, the

inequality

ðτ
0
u xð Þ

ðx
0

ðx
s
K x, tð Þ t − sð Þdt

� �
g sð Þds

����
����
q

dx
� �1/q

≤ C−
1

ðτ
0
v tð Þg tð Þj jpdt

� �1/p
,

ð38Þ

holds if and only if B−
3 ðτÞ <∞. In addition, C−

1 ≈ B−
3 ðτÞ,

where C−
1 is the best constant in (38).

Let

B−
1,1 τð Þ =

ð∞
τ

Kq x, τð Þuq xð Þdx
� �1/q ðτ

0
τ − sð Þ2p′v−p′ sð Þds

� �1/p′
,

ð39Þ

B−
1,0 τð Þ =

ð∞
τ

uq xð Þwq xð Þdx
� �1/q ðτ

0

ðτ
s
K0,1 τ, tð Þ t − sð Þdt

� �p′
v−p′ sð Þds

 !1/p′

,

ð40Þ
B−
1 τð Þ =max B−

1,1 τð Þ, B−
1,0 τð Þ� �

: ð41Þ
Using (28) and the inverse Hölder’s inequality, by

Theorem 5, we have the following lemma.

Lemma 11. Let 1 < p ≤ q <∞ and Kðx, sÞ ∈ O−
1 ðΩÞ. Then, the

inequality

ð∞
τ

u xð Þ
ðτ
0

ðτ
s
K x, tð Þ t − sð Þdt

� �
g sð Þds

����
����
q

dx
� �1/q

≤ C−
2

ðτ
0
v tð Þg tð Þj jpdt

� �1/p
,

ð42Þ

holds if and only if B−
1 ðτÞ <∞. In addition, C−

2 ≈ B−
1 ðτÞ,

where C−
2 is the best constant in (42).

Let

A− τð Þ =
ð∞
τ

ðx
τ

K x, tð Þdt
� �q

uq xð Þdx
� �1/q ðτ

0
τ − sð Þp′v−p′ sð Þds

� �1/p′
:

ð43Þ

From part (i) of Theorem 1, we can state the following
lemma.

Lemma 12. Let 1 < p ≤ q <∞. Then, the inequality

ð∞
τ

u xð Þ
ðx
τ

K x, tð Þdt
� �ðτ

0
τ − sð Þg sð Þds

����
����
q

dx
� �1/q

≤ C−
3

ðτ
0
v tð Þg tð Þj jpdt

� �1/p
,

ð44Þ

holds if and only if A−ðτÞ <∞. In addition, C−
3 ≈ A−ðτÞ,

where C−
3 is the best constant in (44).

Assume that

B+
2,2 τð Þ = sup

z>τ

ð∞
z

ðx
z
K x, tð Þdt

� �q

uq xð Þdx
� �1/q ðz

τ

s − τð Þp′v−p′ sð Þds
� �1/p′

,

ð45Þ

B+
2,1 τð Þ = sup

z>τ

ð∞
z
Kq x, zð Þuq xð Þdx

� �1/q ðz
τ

z − sð Þp′ s − τð Þp′v−p′ sð Þds
� �1/p′

,

ð46Þ

B+
2,0 τð Þ = sup

z>τ

ð∞
z
uq xð Þwq xð Þdx

� �1/q ðz
τ

ðz
s
K0,1 z, tð Þdt

� �p′
s − τð Þp′v−p′ sð Þds

 !1/p′

,

ð47Þ

B+
2 τð Þ =max B+

2,2 τð Þ, B+
2,1 τð Þ, B+

2,0 τð Þ� �
: ð48Þ

By using part (i) of Lemma 9 and Theorem 6, we get the
following statement.

Lemma 13. Let 1 < p ≤ q <∞ and Kðx, sÞ ∈ O−
1 ðΩÞ. Then, the

inequality

ð∞
τ

u xð Þ
ðx
τ

ðx
s
K x, tð Þdt

� �
s − τð Þg sð Þds

����
����
q

dx
� �1/q

≤ C+
1

ð∞
τ

v tð Þg tð Þj jpdt
� �1/p

,

ð49Þ

holds if and only if B+
2 ðτÞ <∞. In addition, C+

1 ≈ B+
2 ðτÞ,

where C+
1 is the best constant in (49).

Let

B+
1,1 τð Þ = sup

z>τ

ð∞
z
Kq x, zð Þuq xð Þdx

� �1/q ðz
τ

s − τð Þ2p′v−p′ sð Þds
� �1/p′

,

ð50Þ

B+
1,0 τð Þ = sup

z>τ

ð∞
z
uq xð Þwq xð Þdx

� �1/q ðz
τ

Kp′
0,1 z, sð Þ s − τð Þ2p′v−p′ sð Þds

� �1/p′
,

ð51Þ
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A+ τð Þ = sup
z>τ

ð∞
z
uq xð Þwq xð Þdx

� �1/q ðz
τ

ðs
τ

K0,1 s, tð Þ t − τð Þdt
� �p′

v−p′ sð Þds
 !1/p′

,

ð52Þ
B1Að Þ+ τð Þ =max B+

1,1 τð Þ, B+
1,0 τð Þ, A+ τð Þ� �

: ð53Þ
Lemma 14. Let 1 < p ≤ q <∞ and Kðx, sÞ ∈ O−

1 ðΩÞ. Then, the
inequality

ð∞
τ

u xð Þ
ðx
τ

ðs
τ

K x, tð Þ t − τð Þdt
� �

g sð Þds
����

����
q

dx
� �1/q

≤ C+
2

ð∞
τ

v tð Þg tð Þj jpdt
� �1/p

,

ð54Þ

holds if and only if ðB1AÞ+ðτÞ <∞. In addition, C+
2 ≈

ðB1AÞ+ðτÞ, where C+
2 is the best constant in (54).

Proof. Since Kðx, sÞ ∈ O−
1 ðΩÞ, by Lemma 9, we have that

ðs
τ

K x, tð Þ t − τð Þdt ≈ K x, sð Þ s − τð Þ2 +w xð Þ
ðs
τ

K0,1 s, tð Þ t − τð Þdt:

ð55Þ

Hence, inequality (54) is equivalent to simultaneous
fulfilment of the following inequalities:

ð∞
τ

u xð Þ
ðx
τ

K x, sð Þ s − τð Þ2g sð Þds
����

����
q

dx
� �1/q

≤ C+
2,2

ð∞
τ

v tð Þg tð Þj jpdt
� �1/p

,

ð56Þ
ð∞
τ

u xð Þw xð Þ
ðx
τ

ðs
τ

K0,1 s, tð Þ t − τð Þdt
� �

g sð Þds
����

����
q

dx
� �1/q

≤ C+
2,1

ð∞
τ

v tð Þg tð Þj jpdt
� �1/p

:

ð57Þ
In addition, max fC+

2,1, C+
2,2g ≈ C+

2 , where C+
2,1 and C+

2,2
are the best constants in (56) and (57), respectively. By The-
orem 5, inequality (56) holds if and only if max fB+

1,1ðτÞ,
B+
1,0ðτÞg <∞, and in addition, C+

2,2 ≈max fB+
1,1ðτÞ, B+

1,0ðτÞg.
By part (i) of Theorem 1, inequality (57) holds if and only
if A+ðτÞ <∞, and in addition, C+

2,1 ≈ A+ðτÞ. Then, inequality
(54) holds if and only if ðB1AÞ+ðτÞ <∞ and C+

2 ≈ ðB1AÞ+ðτÞ.
The proof is complete.

Assume that

A∗ð Þ+ τð Þ = sup
z>τ

ðz
τ

ðx
τ

K x, tð Þ t − τð Þdt
� �q

uq xð Þdx
� �1/q ð∞

x
v−p′ sð Þds

� �1/p′
:

ð58Þ

By using part (ii) of Theorem 1, we have the following
lemma.

Lemma 15. Let 1 < p ≤ q <∞. Then, the inequality

ð∞
τ

u xð Þ
ðx
τ

K x, tð Þ t − τð Þdt
� �ð∞

x
g sð Þds

����
����
q

dx
� �1/q

≤ C+
3

ð∞
τ

v tð Þg tð Þj jpdt
� �1/p

,

ð59Þ

holds if and only if ðA∗Þ+ðτÞ <∞. In addition, C+
3 ≈ ðA∗Þ+ðτÞ

, where C+
3 is the best constant in (59).

Let infinitely differentiable functions φ and ψ be such that
1 ≥ φ ≥ 0, 1 ≥ ψ ≥ 0, φðtÞ = 1 for 0 < t < 1/2, φðtÞ = 0 for t ≥ 3
/2, ψðtÞ = 1 for t > 3/2 and ψðtÞ = 0 for 0 < t ≤ 1/2. Moreover,
φðtÞ > 0, ψðtÞ > 0 for 1/2 < t < 3/2 and φðtÞ + ψðtÞ = 1 for all
t ∈ I.

Assume that P− and P+ are polynomials such that P−ðtÞ
= c0 + c1t and P+ðtÞ = c2t, where ci ∈ℝ, i = 0, 1, 2. Denote by
fP−g and fP+g the sets of polynomials in the form P− and
P+, respectively.

Let the conditions of Theorem 8 hold. Then, from (26),
we have

W2
p,v = _W

2
p,v ⊕ φχ 0,1ð Þ P−f g ⊕ ψχ 1,∞ð Þ P+f g, ð60Þ

where ⊕ means the direct sum.
From Theorem 8, it follows that (1) is equivalent to the

norm

fk kW2
p,v
= vf ′′
�� ��

p
+ f ′ 0ð Þ�� �� + f 0ð Þj j: ð61Þ

Therefore, for f ∈W2
p,v we have

fk kW2
p,v
= vf ′′
�� ��

p
: ð62Þ

First, using (60), we establish inequality (3) on the set
W2

p,v, which, due to (62), has the form:

uK fk kq ≤ C vf ′′
�� ��

p
, f ∈ _W

2
p,v: ð63Þ

Assume that

E τð Þ =max B−
3 τð Þ, B−

1 τð Þ, A− τð Þf g, F τð Þ =max B+
2 τð Þ, B1Að Þ+ τð Þ, A∗ð Þ+ τð Þ� �

,

ð64Þ

EF = inf
τ∈I

max E τð Þ, F τð Þf g: ð65Þ

Our first main result reads.

Theorem 16. Let 1 < p ≤ q <∞ and Kðx, sÞ ∈ O−
1 ðΩÞ. Let

condition (25) hold. Then, inequality (63) holds if and only
if EF <∞. In addition, C ≈ EF, where C is the best constant
in (63).

Proof. Sufficiency. From (25) by Theorem 8, it follows the
validity of (26). As in Theorem 2.1 of [5], using (26), for f
∈W2

p,v, we get
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where τ ∈ I. Assuming f ′′ = g in (66), we have that g ∈ Lp,v
ðIÞ. Moreover, from (26), it follows that

Ð∞
0 gðsÞds = 0.

Assume that ~Lp,vðIÞ = fg ∈ Lp,vðIÞ:
Ð∞
0 gðsÞds = 0g. Then, in

(66), the condition f ∈ _W
2
p,v is equivalent to the condition g ∈

~Lp,vðIÞ. Replacing (66) into the left-hand side of (63), we find that

Therefore, inequality (63) has the form

In the left-hand side of (68), using the Minkowski’s
inequality for sums, then, applying Lemmas 10, 11, 12, 13,
and 14 to each term, we get

F ≪ E τð Þ
ðτ
0
v sð Þg sð Þj jpds

� �1/p
+ F τð Þ

ð∞
τ

v sð Þg sð Þj jpds
� �1/p

≪max E τð Þ, F τð Þf g
ð∞
0

v sð Þg sð Þj jpds
� �1/p

:

ð69Þ

Since the left-hand side of inequality (63) does not
depend on τ ∈ I, then, taking in the right-hand side of (69)
infimum with respect to τ ∈ I, we can conclude that

C≪ EF, ð70Þ

where C is the best constant in (63).

Necessity. By the conditions of Theorem 16, we have that
v−1 ∈ Lp′ðIÞ. Then, for any τ ∈ I, there exists kτ such that

ðτ
0
v−p′ tð Þdt = kτ

ð∞
τ

v−p′ tð Þdt, ð71Þ

in addition, kτ increases in τ, lim
τ⟶0+

kτ = 0 and lim
τ⟶∞

kτ =∞.

Let us use the ideas in the paper [5]. For τ ∈ I, we con-
sider two sets L1 = fg ∈ Lp,vð0, τÞ: g ≥ 0g and L2 = fg ∈
Lp,vðτ,∞Þ: g ≤ 0g. For each g1 ∈L1 and g2 ∈L2, we,
respectively, construct the functions g2 ∈L2 and g1 ∈L1
so that gðtÞ = g1ðtÞ for 0 < t ≤ τ and gðtÞ = g2ðtÞ for t > τ

belongs to the set ~Lp,vðIÞ.
We define a strictly increasing function ρ : ð0, τÞ⟶

ðτ,∞Þ from the relation

ðs
0
v−p′ tð Þdt = kτ

ð∞
ρ sð Þ

v−p′ tð Þdt, s ∈ 0, τð Þ ; ð72Þ

F ≡ uK fk kqq =
ðτ
0
u xð Þ

ðx
0
K x, tð Þf tð Þdt

����
����
q

dx +
ð∞
τ

u xð Þ
ðx
0
K x, tð Þf tð Þdt

����
����
q

dx =
ðτ
0
u xð Þ

ðx
0
K x, tð Þ

ðt
0
t − sð Þg sð Þds

����
����
q

dx

+
ð∞
τ

u xð Þ
ðτ
0
K x, tð Þ

ðt
0
t − sð Þg sð Þdsdt

���� + u xð Þ
ðx
τ

K x, tð Þ
ðτ
0
τ − sð Þg sð Þdsdt − u xð Þ

ðx
τ

K x, tð Þ
ðt
τ

s − τð Þg sð Þdsdt−u xð Þ
ðx
τ

K x, tð Þ t − τð Þ
ð∞
t
g sð Þdsdt

����
q

dx

=
ðτ
0
u xð Þ

ðx
0

ðx
s
K x, tð Þ t − sð Þdt

� �
g sð Þds

����
����
q

dx +
ð∞
τ

u xð Þ
ðτ
0

ðτ
s
K x, tð Þ t − sð Þdt

� �
g sð Þds

���� + u xð Þ
ðx
τ

K x, tð Þdt
ðτ
0
τ − sð Þg sð Þds − u xð Þðx

τ

ðx
s
K x, tð Þdt

� �
s − τð Þg sð Þds − u xð Þ

ðx
τ

ðs
τ

K x, tð Þ t − τð Þdt
� �

g sð Þds−u xð Þ
ðx
τ

K x, tð Þ t − τð Þdt
� �ð∞

x
g sð Þds

����
q

dx:

ð67Þ

f tð Þ = χ 0,τð Þ tð Þ
ðt
0
t − sð Þf ′′ sð Þds + χ τ,∞ð Þ tð Þ

ðτ
0
τ − sð Þf ′′ sð Þds −

ðt
τ

s − τð Þf ′′ sð Þds − t − τð Þ
ð∞
t
f ′′ sð Þds

� 	
, ð66Þ

ðτ
0
u xð Þ

ðx
0

ðx
s
K x, tð Þ t − sð Þdt

� �
g sð Þds

����
����
q

dx
�

+
ð∞
τ

u xð Þ
ð
τ
0

ðτ
s
K x, tð Þ t − sð Þdt

� �
g sð Þds

���� + u xð Þ
ðx
τ

K x, tð Þdt
ðτ
0
τ − sð Þg sð Þds − u xð Þ

ðx
τ

ðx
s
K x, tð Þdt

� �
s − τð Þg sð Þds−u xð Þ

ðx
τ

ðs
τ

K x, tð Þ t − τð Þdt
� �

g sð Þds − u xð Þ
ðx
τ

K x, tð Þ t − τð Þdt
� �ð∞

x
g sð Þds

����
q

dx
�1/q

≤ C
ð∞
0

v sð Þg sð Þj jpds
� �1/p

, g ∈ ~Lp,v Ið Þ:

ð68Þ
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ðρ−1 sð Þ

0
v−p′ tð Þdt = kτ

ð∞
s
v−p′ tð Þdt, s ∈ τ,∞ð Þ, ð73Þ

where ρ−1 is inverse to ρ. From (73), it follows that the func-
tions ρ and ρ−1 are locally absolutely continuous, ρðτÞ = τ
and lim

s⟶0+
ρðsÞ =∞.Differentiating both relations in (73), we

have

1
kτ

= v−p′ ρ sð Þð Þ
v−p′ sð Þ ρ′ sð Þ�� ��, s ∈ 0, τð Þ ; kτ

= v−p′ ρ−1 sð Þ
 �
v−p′ sð Þ ρ−1 sð Þ
 �′�� ��, s ∈ τ,∞ð Þ:

ð74Þ

Then, for g1 ∈L1, we construct

g2 tð Þ = −kτg1 ρ−1 tð Þ
 � v−p′ tð Þ
v−p′ ρ−1 tð Þð Þ , t > τ, ð75Þ

while for g2 ∈L2, we construct

g1 tð Þ = −
1
kτ

g2 ρ tð Þð Þ v−p′ tð Þ
v−p′ ρ tð Þð Þ , 0 < t ≤ τ: ð76Þ

Changing the variables ρ−1ðtÞ = s and using the first equal-
ity in (74), we find that

ð∞
τ

v tð Þg2 tð Þj jpdt = kpτ

ð∞
τ

v tð Þg1 ρ−1 tð Þ
 � v−p′ tð Þ
v−p′ ρ−1 tð Þð Þ

�����
�����
p

dt

= kpτ

ðτ
0
vp ρ sð Þð Þgp1 sð Þ v

−pp′ ρ sð Þð Þ
v−pp′ sð Þ

�����
����� ρ′ sð Þ�� ��ds

= kpτ

ðτ
0
v sð Þg1 sð Þj jp v

−p′ ρ sð Þð Þ
v−p′ sð Þ ρ′ sð Þ�� ��ds

= kp−1τ

ðτ
0
v sð Þg1 sð Þj jpds <∞:

ð77Þ

Similarly, using the second equality in (74), we get

ðτ
0
v tð Þg1 tð Þj jpdt = k1−pτ

ð∞
τ

v sð Þg2 sð Þj jpds <∞: ð78Þ

From (77) and (78), assuming that gðtÞ = g1ðtÞ for 0 < t
≤ τ and gðtÞ = g2ðtÞ for t > τ, we have

ð∞
0

v tð Þg tð Þj jpdt = 1 + kp−1τ


 �ðτ
0
v tð Þg1 tð Þj jpdt = 1 + k1−pτ


 �ð∞
τ

v tð Þg2 tð Þj jpdt <∞,

ð79Þ

i.e., g ∈ Lp,vðIÞ. For any τ ∈ I integrating both sides of (75)

from τ to ∞ and (76) from 0 to τ, we find that

ð∞
τ

g tð Þdt = −
ðτ
0
g tð Þdt, i:e:,

ð∞
0
g tð Þdt = 0: ð80Þ

Hence, constructed from the functions g1 ∈L1 and g2 ∈
L2, the function g belongs to ~Lp,vðIÞ. Replacing it into (68),

we get

ðτ
0

u xð Þ
ðx
0

ðx
s
K x, tð Þ t − sð Þdt

� �
g1 sð Þds

� �q

dx
�

+
ð∞
τ

u xð Þ
ðτ
0

ðτ
s
K x, tð Þ t − sð Þdt

� �
g1 sð Þds

�

+ u xð Þ
ðx
τ

K x, tð Þdt
ðτ
0
τ − sð Þg1 sð Þds

+ u xð Þ
ðx
τ

ðx
s
K x, tð Þdt

� �
s − τð Þ g2 sð Þj jds

+ u xð Þ
ðx
τ

ðs
τ

K x, tð Þ τ − sð Þdt
� �

g2 sð Þj jds

+u xð Þ
ðx
τ

K x, tð Þ t − τð Þdt
� �ð∞

x
g2 sð Þj jds

�q

dx
�1/q

≤ C
ð∞
0

v sð Þg sð Þj jpds
� �1/p

,

ð81Þ

where all terms in the left-hand side are nonnegative.
Let the function g ∈ ~Lp,vðIÞ constructed from the func-

tion g1 ∈L1. Then, from (81) and (79), we have

ðτ
0

u xð Þ
ðx
0

ðx
s
K x, tð Þ t − sð Þdt

� �
g1 sð Þds

� �q

dx +
ð∞
τ

u xð Þ
ðτ
0

ðτ
s
K x, tð Þ t − sð Þdt

� �
g1 sð Þds + u xð Þ

ðx
τ

K x, tð Þdt
ðτ
0
τ − sð Þg1 sð Þ

� �q

dx
� �1/q

≤ C 1 + kp−1τ


 �1/p ðτ
0
v sð Þg1 sð Þj jpds

� �1/p
:

ð82Þ
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Due to arbitrariness of g1 ∈ Lp,vð0, τÞ, by Lemmas 10, 11,
and 12, the latter gives that

E τð Þ≪ 1 + kp−1τ


 �1/p
C: ð83Þ

Similarly, due to (81) and (79), for the function g ∈ ~Lp,v
ðIÞ constructed from the function g2 ∈L2, we obtain

F τð Þ≪ 1 + k1−pτ


 �1/p
C: ð84Þ

From (83) and (84), we find that

EF = inf
τ∈I

max E τð Þ, F τð Þf g≪ C inf
τ∈I

max 1 + kp−1τ


 �
1 + k1−pτ


 �� �� 1/p ≤ 41/pC:

ð85Þ

Therefore, EF ≪ C, which, together with (70), yields that
EF ≈ C, where C is the best constant in (63). The proof is
complete.

Let

G =max
ð∞
0

u xð Þ
ðx
0
K x, tð Þ dt

����
����
q

dx
� �1/q

,
ð∞
0

u xð Þ
ðx
0
K x, tð Þ t dt

����
����
q

dx
� �1/q( )

:

ð86Þ

Our main result concerning Hardy-type inequality (3)
reads.

Theorem 17. Let 1 < p ≤ q <∞ and Kðx, sÞ ∈ O−
1 ðΩÞ. Let

conditions in (25) hold. Then, inequality (3) holds if and only
if max fG, EFg <∞. In addition, C ≈max fG, EFg, where C
is the best constant in (3).

Proof. Due to (60), we consider inequality (3) on the set

φχ 0,1ð Þ P−f g + ψχ 1,∞ð Þ P+f g =H: ð87Þ

The function f ∈H has the form

f tð Þ = φ tð Þχ 0,1ð Þ tð Þ c0 + c1tð Þ + ψ tð Þχ 1,∞ð Þ tð Þc2t: ð88Þ

Hence, f ′′ðtÞ = 0 almost everywhere on t ∈ I. Therefore,
on the basis of (61), we have

uK fk kq ≤ C f ′ 0ð Þ�� �� + f 0ð Þj j
� �

, f ∈H: ð89Þ

Let f0 ∈H be such that

f0 tð Þ = φ tð Þχ 0,1ð Þ tð Þ + ψ tð Þχ 1,∞ð Þ tð Þt: ð90Þ

Then, from (89), we obtain

C ≥
ð∞
0

u xð Þ
ðx
0
K x, tð Þf0 tð Þ dt

����
����
q

dx
� �1/q

≥min φ 1ð Þ, ψ 1ð Þf g

×
ð1
0
u xð Þ

ðx
0
K x, tð Þdt

����
����
q

dx +
ð∞
1

u xð Þ
ð1
0
K x, tð Þ dt + u xð Þ

ðx
1
K x, tð Þ t dt

����
����
q

dx
� �1/q

,

ð91Þ

which implies that C≫G.
Let max fjc0j + jc1j, jc2jg = L. Then, j f ðtÞj ≤ Lðχð0,1ÞðtÞ

+ χð1,∞ÞðtÞtÞ. Replacing the function f into the left-hand
side of (89), we get

ð∞
0

u xð Þ
ðx
0
K x, tð Þf tð Þ dt

����
����
q

dx
� �1/q

≤ L
ð1
0
u xð Þ

ðx
0
K x, tð Þ dt

����
����
q

dx
�

+
ð∞
1

u xð Þ
ð1
0
K x, tð Þ dt + u xð Þ

ðx
1
K x, tð Þ t dt

����
����
q

dx
�1/q

≪ LG:
ð92Þ

The latter, together with C≫G, gives that C ≈ G. Then,
by Theorem 16, it follows that C ≈max fG, EFg, where C
is the best constant in (3). The proof is complete.

4. Corollaries

Assume that the kernel Kðx, sÞ of operator (2) satisfies the
Oinarov condition

K x, sð Þ ≈ K x, tð Þ + K t, sð Þ, 0 < s ≤ t ≤ x <∞, ð93Þ

which is often applied for integral operators. Then, in B−
3 ðτÞ,

the expression B−
3,0ðτÞ turns to the expression

B−
3,0 τð Þ = sup

0<z<τ

ðτ
z
uq xð Þdx

� �1/q ðz
0

ðz
s
K z, tð Þ t − sð Þdt

� �p′
v−p′ sð Þds

 !1/p′

,

ð94Þ

in B−
1 ðτÞ the expression B−

1,0ðτÞ turns to the expression

B−
1,0 τð Þ =

ð∞
τ

uq xð Þdx
� �1/q ðτ

0

ðτ
s
K τ, tð Þ t − sð Þdt

� �p′
v−p′ sð Þds

 !1/p′

,

ð95Þ

in B+
2 ðτÞ the expression B+

2,0ðτÞ turns to the expression

B+
2,0 τð Þ = sup

z>τ

ð∞
z
uq xð Þdx

� �1/q ðz
τ

ðz
s
K z, tð Þdt

� �p′
s − τð Þp′v−p′ sð Þds

 !1/p′

,

ð96Þ

and in ðB1AÞ+ðτÞ, the expressions B+
1,0ðτÞ, A+ðτÞ, respec-

tively, turn to the expressions

B+
1,0 τð Þ = sup

z>τ

ð∞
z
uq xð Þ dx

� �1/q ðz
τ

Kp′ z, sð Þ s − τð Þ2p′v−p′ sð Þ ds
� �1/p′

,

ð97Þ
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A+ τð Þ = sup
z>τ

ð∞
z
uq xð Þ dx

� �1/q ðz
τ

ðs
τ

K s, tð Þ t − τð Þ dt
� �p′

v−p′ sð Þds
 !1/p′

:

ð98Þ
After these changes, we denote EðτÞ by ~EðτÞ, FðτÞ by ~F

ðτÞ, and EF by ~E~F and get the following statement.

Corollary 18. Let 1 < p ≤ q <∞ and the kernel of (2) satisfy
condition (93). Let conditions (25) hold.

(i) Inequality (63) holds if and only if ~E~F <∞. In addi-
tion, C ≈ ~E~F, where C is the best constant in (63)

(ii) Inequality (3) holds if and only if max fG, ~E~Fg <∞.
In addition, C ≈max fG, ~E~Fg, where C is the best
constant in (3)

Let n ≥ 3. Instead of operator (2), we consider the operator
of Riemann-Liouville In−2, defined by

In−2 f xð Þ = 1
n − 3ð Þ!

ðx
0
x − tð Þn−3 f tð Þ dt: ð99Þ

The kernel ðx − tÞn−3 of the operator In−2 satisfies condi-

tion (93), and therefore, it belongs to the class O−
1 ðΩÞ. In this

case, we replace Kðx, tÞ and K0,1ðx, tÞ by ðx − tÞn−3 and

assume that wðxÞ ≡ 1. For the kernel ðx − tÞn−3 inequality,
(38) has the form

ðτ
0
u xð Þ

ðx
0
x − sð Þn−1g sð Þds

����
����
q

dx
� �1/q

≤ C−
1

ðτ
0
v sð Þg sð Þj jpds

� �1/p
:

ð100Þ

Then, according to Theorem 5, we have C−
1 ≈B−

1 ðτÞ =
max fB−

1,1ðτÞ,B−
1,2ðτÞg, where

B−
1,1 τð Þ = sup

0<z<τ

ðτ
z
x − zð Þq n−1ð Þuq xð Þdx

� �1/q ðz
0
v−p′ sð Þds

� �1/p′
,

ð101Þ

B−
1,0 τð Þ = sup

0<z<τ

ðτ
z
uq xð Þdx

� �1/q ðz
0
z − sð Þp′ n−1ð Þv−p′ sð Þds

� �1/p′
:

ð102Þ
For the sum of kernels of the operators in (42) and (44),

we deduce that

Then instead of inequalities (42) and (44), we, respec-
tively, have

ð∞
τ

u xð Þ
ðτ
0
τ − sð Þn−1g sð Þds

����
����
q

dx
� �1/q

≤ C−
2

ðτ
0
v sð Þg sð Þj jpds

� �1/p
,

ð104Þ

ð∞
τ

u xð Þ x − τð Þn−2
ðτ
0
τ − sð Þg sð Þds

����
����
q

dx
� �1/q

≤ C−
3

ðτ
0
v sð Þg sð Þj jpds

� �1/p
:

ð105Þ

By part (i) of Theorem 1, this yields that

C−
2 ≈

ð∞
τ

uq xð Þdx
� �1/q ðτ

0
τ − sð Þp′ n−1ð Þv−p′ sð Þds

� �1/p′
=A−

1 τð Þ,

ð106Þ

C−
3 ≈

ð∞
τ

x − τð Þq n−2ð Þuq xð Þdx
� �1/q ðτ

0
τ − sð Þp′v−p′ sð Þds

� �1/p′
=A−

2 τð Þ:

ð107Þ
Assume that A−ðτÞ =max fA−

1 ðτÞ,A−
2 ðτÞg. Now, for the

sum of kernels of the operators in (49) and (54), we get

Then instead of inequalities (49) and (54), we obtain

ð∞
τ

u xð Þ x − τð Þn−2
ðx
τ

s − τð Þg sð Þds
����

����
q

dx
� �1/q

≤ C+
1

ð∞
τ

v sð Þg sð Þj jpds
� �1/p

:

ð109Þ

Hence, by part (i) of Theorem 1 we have

C+
1 ≈ sup

z>τ

ð∞
z

x − τð Þq n−2ð Þuq xð Þdx
� �1/q ðz

τ

s − τð Þp′v−p′ sð Þds
� �1/p′

=A+ τð Þ:

ð110Þ

ðτ
s
x − tð Þn−3 t − sð Þdt +

ðx
τ

x − tð Þn−3dt τ − sð Þ ≈ x − τð Þn−3 τ − sð Þ2 + τ − sð Þn−1 + x − τð Þn−2 τ − sð Þ ≈ τ − sð Þn−1 + x − τð Þn−2 τ − sð Þ:

ð103Þ

ðx
s
x − tð Þn−3dt s − τð Þ +

ðs
τ

x − tð Þn−3 t − τð Þdt ≈ x − sð Þn−2 s − τð Þ + x − sð Þn−3 s − τð Þ2 + s − τð Þn−1 ≈ x − sð Þn−2 s − τð Þ + s − τð Þn−1 ≈ x − τð Þn−2 s − τð Þ:

ð108Þ
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For the kernel ðx − tÞn−3 inequality (59) can be written as
follows:

ð∞
τ

u xð Þ x − τð Þn−1
ð∞
x
g sð Þds

����
����
q

dx
� �1/q

≤ C+
2

ð∞
τ

v sð Þg sð Þj jpds
� �1/p

:

ð111Þ

Therefore, by using part (ii) of Theorem 1, we find

C+
2 ≈

ðz
τ

x − τð Þq n−1ð Þuq xð Þdx
� �1/q ð∞

z
v−p′ sð Þds

� �1/p′
= A∗ð Þ+ τð Þ:

ð112Þ

Assume that

E τð Þ =max B−
1 τð Þ,A− τð Þf g,F τð Þ =max A+ τð Þ, A∗ð Þ+ τð Þ� �

,

ð113Þ

EF = inf
τ∈I

max E τð Þ, F τð Þf g: ð114Þ

Thus, for inequality (63) with operator (99)

uIn−2 fk kq ≤ C vf ′′
�� ��

p
, f ∈W2

p,v , ð115Þ

we can conclude the following statement.

Corollary 19. Let 1 < p ≤ q <∞ and conditions (25) hold.
Then, inequality (115) holds if and only if EF <∞. In addi-
tion, C ≈EF , where C is the best constant in (115).

Assume that In−2 f ðtÞ = gðtÞ in (115). Then, gðn−2ÞðtÞ =
f ðtÞ and gðiÞð0Þ = 0, i = 0, 1,⋯, n − 3. Moreover, gðnÞðtÞ = f
′′ðtÞ and inequality (115) turns to the inequality

ugk kq ≤ C vg nð Þ
��� ���

p
, ð116Þ

with conditions

g ið Þ 0ð Þ = 0, i = 0, 1,⋯, n − 1, g n−1ð Þ ∞ð Þ = 0: ð117Þ

From Corollary 19, we get one more corollary.

Corollary 20. Let 1 < p ≤ q <∞ and conditions (25) hold.
Then, inequality (116) with conditions (117) holds if and only
if EF <∞. In addition, C ≈EF , where C is the best constant
in (116).

The statement of Corollary 20 gives one of the results of
the work [6].
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